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Abstract: A new internal, base-mediated redox-cyclisation reac-
tion has been discovered and developed. In this transformation, the
sacrificial reduction of an alkynyl moiety to an alkene allows direct
functionalisation of an α-amino C–H bond. This approach allows
the preparation of several 1,3-oxazinane derivatives in an atom-
efficient manner.
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The direct functionalisation of C–H bonds is a current and
highly attractive topic in contemporary organic synthe-
sis.1 Numerous creative and innovative C–H activation
methods have been developed in the past decades. Recent-
ly, a novel approach to the functionalisation of sp3 C–H
bonds through internal hydride transfer has received a
great deal of attention.2 In contrast to traditional C–H
activation reactions, such transformations proceed in the
absence of external oxidants and generally hinge on an in-
ternal 1,5-hydride shift process. 

Intrigued by this concept, we have developed a redox-trig-
gered C–H functionalisation strategy (Scheme 1).3 In this
one-pot process, C–H bonds α to a pyrrolidine or piperi-
dine moiety 1 are directly converted into C–C bonds, ac-
companied by concomitant reduction of a neighbouring
carboxaldehyde group. Herein, we report the discovery
and development of a base-promoted redox isomerisation
of α-alkynyl pyrrolidines 3 that allows the deployment of
sequential, iterative C–H functionalisation sequences
(Scheme 2).

Scheme 1 Previously developed internal redox-triggered C–H func-
tionalisation of amines

During our recent studies on redox-triggered C–H func-
tionalisation, we attempted to transform adduct 3a into 5a
by base-promoted 7-exo-dig cyclisation (Scheme 3).4 To
our surprise, while none of the oxepane 5a was observed

in these early attempts, N,O-acetal (aminal) 4a was ob-
tained in low (but reproducible) isolated yields when NaH
was employed as base. In contrast to well-known Brønst-
ed or Lewis acid catalyzed redox reactions,2 this transfor-
mation piqued our interest since it proceeds under
orthogonal conditions (in the presence of base rather than
acid) and presented the potential to deliver compound 4a
in an atom-economical manner.5 We thus decided to in-
vestigate this unexpected result further. 

Scheme 2  Base-promoted redox cyclisation

Scheme 3  Discovery of the base-promoted redox cyclisation

A selection of conditions that were surveyed is depicted in
Table 1. According to our initial discovery, aminal 4a was
obtained in 10% yield, although full conversion of sub-
strate 3a was observed (Table 1, entry 1). Lowering the
temperature from 60 to 50 °C significantly enhanced the
selectivity, leading to a great improvement of the yield of
4a (entry 2). The use of larger amounts of NaH or switch-
ing to potassium tert-butoxide as base did not lead to sig-
nificant improvement (entries 3 and 4). In spite of
numerous additional experiments (not shown), it was not
possible to improve the yield of product 4a further.6

With suitable conditions in hand, we then investigated the
scope of this base-promoted redox reaction. Moderate to
good yields of the desired 1,3-oxazinane derivatives were
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obtained for a range of substrates (Scheme 4). Substrate
3b, bearing a para-methoxy substituent, proved to be un-
reactive under the optimised conditions. However, in-
creasing the temperature to 100 °C led to a good yield of
desired oxazinane 4b. When substrates 3c and 3d, con-
taining electron-deficient aromatic rings, were subjected
to the redox cyclisation conditions, the desired 1,3-oxazi-
nane derivatives 4c and 4d were also obtained albeit in
lower yields. Substituents on the benzene of phenyl
alkynes 3e–h also led to slightly lower yields. 

To acquire further insight into the mechanism of this reac-
tion, a deuterium labelling experiment was performed as
shown in Scheme 5. When the reaction of 3a was conduct-
ed with NaH (1.0 equiv) and deuterium oxide
(2.0 equiv),7 the product d-4a was isolated containing
20% of the deuterium label at the indicated position.
Based on this experiment, we can tentatively propose a
mechanism for this base-promoted redox-cyclisation
(Scheme 6). 

At the outset, deprotonation of the alcohol functionality in
3a gives alkoxide A, which may trigger an internal depro-
tonation of the propargylic α-amine moiety, leading to the
formation of intermediate B. The allenic anion B (bearing
an OH or OD residue) thus generated is internally
quenched by the alcohol, providing allenamine intermedi-
ate C.8 Isomerisation of allenamine C (assisted by D2O)
then leads to iminium intermediate D, the nucleophilic
trapping of which furnishes deuterated oxazinane deriva-
tive d-4a.

Table 1 Optimisation of the Redox Reaction of 3aa

Entry Base Temp (°C) Yield (%)b

1 NaH (1.0 equiv) 60 10

2 NaH (1.0 equiv) 50 52

3 NaH (2.0 equiv) 50 trace

4 t-BuOK (1.0 equiv) 50 30
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Scheme 6  Plausible mechanism for the base-promoted redox C–H functionalisation
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Scheme 4  Substrate scope for the base-promoted redox C–H func-
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THF (2.5 mL), NaH (4.0 mg), 50 °C, 24 h.7 a Reaction performed at
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N O

Ph

N O

Ph

N O

Ph

N O

Ph

Cl

F3C

OMe

N O N O

N O N O

Et t-Bu

OMe
F3C

CF3

4a, 52%
4b, 47%a

4c, 32%

4d, 33% 4e, 29% 4f, 38%

4g, 39% 4h, 33%

N

OH

Ar

NaH (1.0 equiv)

THF, 50 °C, 24 h

R

N O

Ar

R3 4

Scheme 5 Labelling experiment

N

OH

Ph
N O

Ph

NaH (1.0 equiv), D2O (2.0 equiv) 

THF, µw, 100°C

D
20% D

d-4a3a

H
H

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

 



1724 S. Shaaban et al. LETTER

Synlett 2013, 24, 1722–1724 © Georg Thieme Verlag  Stuttgart · New York

The obtained 1,3-oxazinane derivatives possess an addi-
tional N,O-acetal moiety, which suggests further possibil-
ities for functionalisation. To this end, we attempted to
further elaborate product 4b by reaction with another nu-
cleophile (Scheme 7). In the event, it was found that lith-
ium alkynyltrifluoroborate 6 reacted smoothly with 4b,
affording the aminoenyne 6b in 81% yield. Notably, 6b
contains both alkynyl- and alkenyl fragments at the
α-position of the pyrrolidine moiety, introduced sequen-
tially in a redox-based fashion.

In summary, we have discovered and developed a base-
promoted redox cyclisation providing a series of 1,3-oxa-
zinane derivatives in moderate to good yields.9 In this pro-
cess, a C–H bond α to an amine moiety is transformed into
a C–O bond through a redox process whereupon an alkyne
fragment is simultaneously reduced to an alkene. Further
mechanistic investigations, exploration of synthetic appli-
cations, and development of redox reactions as tools for
C–H functionalisation are ongoing in our group.
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Scheme 7 Elaboration of compound 4b
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