The B(C₆F₅)₃ Boron Lewis Acid Route to Arene-Annulated Pentalenes

Chao Chen,^[a] Marcel Harhausen,^[a, b] Aiko Fukazawa,^[b] Shigehiro Yamaguchi,^{*[b]} Roland Fröhlich,^[a] Constantin G. Daniliuc,^[a] Jeffrey L. Petersen,^[c] Gerald Kehr,^[a] and Gerhard Erker^{*[a]}

Abstract: 4,5-Dimethyl-1,2-bis(1-naphthylethynyl)benzene (12) undergoes a rapid multiple ring-closure reaction upon treatment with the strong boron Lewis acid $B(C_6F_5)_3$ to yield the multiply annulated, planar conjugated π system 13 (50% yield). In the course of this reaction, a C₆F₅ group was transferred from boron to carbon. Treatment of 12 with CH₃B(C₆F₅)₂ proceeded similarly, giving a mixture of 13 $(C_6F_5$ -transfer) and the product 15, which was formed by CH₃-group trans-1,2-Bis(phenylethynyl)benzene fer. (8a) reacts similarly with $CH_3B(C_6F_5)_2$ to yield a mixture of the respective $C_6F_{5^-}$ and CH_3 -substituted dibenzopentalenes **10a** and **16**. The reaction is thought to proceed through zwitterionic intermediates that exhibit vinyl cation reactivities. Some $B(C_6F_5)_3$ -substituted species (**26**, **27**) consequently formed by in situ deprotonation upon treatment of the respective 1,2-bis-(alkynyl)benzene starting materials

Keywords: conjugation • cyclization • dibenzopentalenes • internal alkynyl coupling • Lewis acids (24, 8) with the frustrated Lewis pair $B(C_6F_5)_3/P(o-tolyl)_3$. The overall formation of the C_6F_5 -substituted products formally require $HB(C_6F_5)_2$ cleavage in an intermediate dehydroboration step. This was confirmed in the reaction of a thienylethynyl-containing starting material 21 with $B(C_6F_5)_3$, which gave the respective annulated pentalene product 23 that had the $HB(C_6F_5)_2$ moiety 1,4-added to its thiophene ring. Compounds 12–14, 23, and 26 were characterized by X-ray diffraction.

Introduction

Their extended conjugated π -systems at planar polycyclic frameworks make dibenzopentalenes and their derivatives very interesting substrates for the development of advanced organic materials.^[1] There are surprisingly few viable synthetic entries to dibenzopentalene systems. Most of them involve metal-induced or metal-catalyzed reactions. Some of them require quite harsh reaction conditions; some otherwise very attractive pathways still give rather low yields.^[2] Nevertheless, there has been a small number of attractive dibenzopentalene syntheses described in the recent literature

[a] Dr. C. Chen,⁺ Dr. M. Harhausen,⁺ Dr. R. Fröhlich,⁺⁺ Dr. C. G. Daniliuc,⁺⁺ Dr. G. Kehr, Prof. G. Erker Organisch Chemisches Institut der Universität Münster Corrensstrasse 40, 48149 Münster (Germany) E-mail: erker@uni-muenster.de

[b] Dr. M. Harhausen,⁺ Prof. A. Fukazawa, Prof. S. Yamaguchi Department of Chemistry Graduate School of Science Nagoya University Furo, Chikusa, Nagoya, 464-8602 (Japan) E-mail: yamaguchi@chem.nagoya-u.ac.jp

[c] Prof. J. L. Petersen⁺⁺
 Bennett Department of Chemistry
 West Virginia University
 P.O. Box 6045, Morgantown, WV 26506 (USA)

- [+] These authors contributed equally to this work.
 [++] X-ray crystal structure analyses.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201400096.

involving typical metal-catalyzed coupling reactions. Here are a few typical examples: Tilley et al. utilized the Pd-catalyzed coupling of compounds **1a** and **2** to produce the diphenyl-substituted dibenzopentalene system **3** (and a number of related derivatives) at high temperature (> 130 °C).^[3] Kawase et al. found that acetylenic substrates such as **1b** could be homocoupled by treatment with zinc powder and a nickel catalyst to give the dibenzopentalene derivatives **4** (see Scheme 1).^[4] Saito et al. found a unique synthetic entry to dibenzopentalenes by means of treatment of alkyne **5** with elemental lithium. The dianion of the corresponding dibenzopentalene **4** was probably formed in a radical pathway. Subsequent oxidation with I₂ gave **4** (Scheme 2).^[5,6]

Scheme 1. Examples of previously reported dibenzopentalene systems.

Chem. Asian J. 2014, 9, 1671-1681

Wiley Online Library

Scheme 2. Redox pathway to a dibenzopentalene derivative.

In a recent communication we disclosed a novel metalfree entry to dibenzopentalene systems. Our new $B(C_6F_5)_{3}$ induced reaction is also special in the sense that it yields unsymmetrically substituted dibenzopentalenes by a simple isomerization reaction of *o*-dialkynylbenzene derivatives under very mild reaction conditions. The formation of **7** from **6** is an example (see Scheme 3).^[7]

Scheme 3. $B(C_6F_5)_3$ -induced synthesis of 7.

In some cases we observed a more complex reaction pathway with competing C_6F_5 -transfer. Typical examples are the reactions of the starting materials **8a,b** with $B(C_6F_5)_3$ which gave mixtures of the products **9a,b**, **10a,b**, and **11a,b** (Scheme 4). The formation of the stoichiometric C_6F_5 -transfer products **10** involved a dehydroboration reaction, which was supported by internal HB(C_6F_5)₂ trapping in a bis-thienyl-substituted derivative, and we also observed some B- $(C_6F_5)_3$ -substituted deprotonation products in conjunction with trapping experiments using bulky amine bases.^[7] The indene-type products **11** also involved stoichiometric C_6F_5 transfer reactions. These compounds were, however, probably formed as secondary products from a boron-containing species during the work-up procedure.^[7,8]

We have now substantially extended this reaction and obtained additional mechanistic evidence to understand the potentially competing pathways taken in the reactions of *o*-1,2-bis(arylalkynyl)benzenes with the strongly electrophilic $RB(C_6F_5)_2$ reagents.^[9,10] These new and extended examples will be described in this account.

Results and Discussion

Reaction of Naphthyl-Substituted Bisalkynylbenzenes

We prepared 1,2-diiodo-4,5-dimethylbenzene from *o*-xylene according to a literature procedure.^[11] This was then Sono-gashira coupled^[12] with 1-ethynylnaphthalene^[13] to give the bisalkynylbenzene derivative **12** (39%). Compound **12** shows acetylenic ¹³C NMR resonances of the pair of symmetry-equivalent C=C-naphthyl substituents at δ 93.9 and 90.9 ppm, and a respective IR band at $\tilde{\nu}$ =2172 cm⁻¹. Compound **12** was furthermore characterized by X-ray diffraction. It shows the typical structural features of doubly substituted alkyne moieties. The conformational arrangement of the pair of naphthyl substituents at the ends of the linear alkyne units is close to C₂-symmetric (the structure is depicted in the Supporting Information).

We mixed **12** with $B(C_6F_5)_3$ (1 molar equiv) at low temperature in CH_2Cl_2 (-20 °C) and then let the mixture warm to room temperature, followed by stirring for 2 days. Workup involving chromatographic separation eventually gave the product **13** as a dark red solid in 50% yield and the minor component **14** (6%) (see Scheme 5). In both cases, a C_6F_5 substituent was transferred concurrently with the ring-closure reactions. Consequently, we have monitored five ¹⁹F NMR resonances of the C_6F_5 substituent of the

Scheme 5. Formation of the products 13 and 14.

Scheme 4. Preparation of the products 9-11.

Chem. Asian J. 2014, 9, 1671-1681

CHEMISTRY

AN ASIAN JOURNAL

product **13** at δ –138.0/–138.2 (*o*), –155.2 (*p*), and –161.39/ –161.44 ppm (*m*-F of C₆F₅), indicating a hindered rotation of the ring (with respect to the NMR time scale). We have monitored the typical signal of the remaining 1-naphthyl substituent in **13** and those of the annulated C₁₀H₆ unit. Compound **13** features ¹H NMR methyl singlets at δ 2.14 (3H) and 1.82 ppm (3H) and the resonances of their adjacent CH units at δ 6.73 and 5.73 ppm (each 1H), respectively.

Both the products **13** and **14** were characterized by X-ray diffraction. The structure of the major product **13** in the crystal shows the presence of the phenalene framework that is annulated with the substituted indene building block. The pentacyclic annulated framework is planar and completely unsaturated. The indene six-membered ring bears a pair of methyl substituents and the adjacent five-membered carbocycle bears the C_6F_5 -substituent that had been transferred from the $B(C_6F_5)_3$ Lewis acid during the reaction. It is rotated almost perpendicular to the indene plane (dihedral angle C34-C33-C1-C2 -114.6(4)°). The next six-membered ring of **13** has the remaining 1-naphthyl substituent attached to it (θ C14-C13-C23-C32 -98.0(4)°) (see Figure 1).

Figure 1. A projection of the molecular structure of compound **13** (thermal ellipsoids are shown with 30% probability). Selected bond lengths (Å): C1–C2 1.388(4), C2–C14 1.467(4), C14–C15 1.467(4), C15–C20 1.409(4), C2–C3 1.451(4), C3–C12 1.435(4), C12–C11 1.419(4), C11–C13 1.453(4), C13–C14 1.358(4), C3–C4 1.376(4), C4–C5 1.402(4), C5–C6 1.360(5), C6–C7 1.401(5), C7–C12 1.415(5), C15–C16 1.393(4), C16–C17 1.391(4), C17–C18 1.399(5), C18–C19 1.398(4).

The minor reaction product **14** shows the NMR resonances of a pair of different naphthyl substituents. We have monitored the ¹H/¹³C NMR features of the exocyclic fulvene=CH[naphthyl] unit at δ 7.25/134.6 ppm. In addition, this product also contains a C₆F₅ substituent at the indene five-membered carbocycle (¹⁹F NMR: δ –137.9/–138.0 (*o*), –155.6 (*p*), –162.8/–162.9 ppm (*m*-F of C₆F₅). Compound **14** was also characterized by X-ray diffraction (see the Supporting Information for details).

We also reacted the naphthyl-substituted starting material **12** with the methyl group-containing borane $CH_3B(C_6F_5)_2$.^[10] From the chemistry of the alkyl-B(C_6F_5)₂-induced 1,1-carboborations^[14,15] we might have expected to find a reaction route favored by selective methyl-group transfer. However, it turned out that the reaction of $CH_3B(C_6F_5)_2$ with **12** is rather unselective. We have observed the formation of the products **13** and **15**, formed by C_6F_5 or CH_3 transfer, respectively, in a close to 1:1 molar ratio (Scheme 6). The products

Scheme 6. Preparation of the products 13 and 15.

were separated by column chromatography. The new product **15** was characterized by spectroscopy (CH₃: ¹H NMR: δ : 2.68, 2.22, and 1.81 ppm; for further details, see the Experimental Section and the Supporting Information).

A similar result was obtained when the doubly phenylsubstituted starting material 8a (see Scheme 4) was reacted with the boron Lewis acid CH₃B(C₆F₅)₂. Stirring the mixture for 2 days at room temperature in dichloromethane gave a mixture of the respective products **10a** (formed by C₆F₅transfer) and **16** (formed by transfer of the CH₃-group) (see Scheme 7). The products were separated by chromatogra-

Scheme 7. Preparation of the compounds 10a and 16.

phy, and the new product **16** was characterized by spectroscopy (CH₃: δ 2.25 (¹H), 12.1 ppm (¹³C), see the Experimental Section for details).

Variations and Mechanistic Implications

We have shown with a series of examples that 1,2-bis(arylethynyl)benzenes can readily be converted into substituted dibenzopentalenes and related systems containing extended π -systems at planar polycyclic carbon σ -frameworks. The overall boron Lewis acid induced reaction sequences involve typical carbocation reactivities. This can be formulated for both the naphthyl- and phenyl-substituted examples. The re-

Chem. Asian J. 2014, 9, 1671-1681

action sequence followed in the naphthyl series^[1a] can probably be described as follows (see Scheme 8). We assume that the reaction starts by $B(C_6F_5)_3$ addition to the proximal acetylene carbon atom of 12. The ensuing vinyl cation reactivity of a resulting zwitterionic intermediate (17) allows for the subsequent closure of the five-membered ring to generate 18, which then might be prone for electrophilic attack on the adjacent 1-naphthyl substituent (19). C_6F_5 -substituent migration (20) with subsequent elimination of $HB(C_6F_5)_2$ would then directly lead to the observed major product 13. This general pathway that formally involves a variant of a 1,1-carboboration at an acetylene carbon atom^[1a,15] is supported by our findings in the corresponding phenyl- and thienyl-substituted series (see below), where we were able to deprotonate the $B(C_6F_5)_3$ -substituted intermediate with P-(o-tolyl)₃ as the Lewis base (utilizing the frustrated Lewis pair effect^[16]). We also could trap the HB(C_6F_5)₂ product from the necessary dehydroboration reaction in the thienyl series.

We have obtained the supporting evidence for several of the proposed steps by studying the reactions of a variety of different substituted 1,2-bis(alkynyl)benzene derivatives with $B(C_6F_5)_3$ under special conditions. Let us first address the retro-hydroboration reaction that we have proposed to take place at the stage of the reactive intermediate **20** (see Scheme 8). For that purpose we prepared the unsymmetrical thienyl-containing bis(alkynyl)benzene derivative **21** by means of the synthetic sequence outlined in Scheme 9. Compound **21** was then reacted with one molar equivalent of B-

Scheme 8. Formal mechanistic pathway of the formation of compound **13**.

Chem. Asian J. 2014, 9, 1671-1681

Ph HC≡CPh HC=CSiMe a) b) Br 1a (74%) (73%) SiMe₃ $B(C_{6}F_{5})_{3}$ c) d) (92%) 21 (79%) F₅C₆ B(C₆F₅)₂ B(C₆F₅) 22 23

Scheme 9. a) NEt₃, rt, 24 h, $[Pd(PPh_3)_2Cl_2]$ cat., CuI. b) NEt₃, 60 °C, 3 days, $[Pd(PPh_3)_2Cl_2]$ cat., CuI. c) K_2CO_3 , MeOH, rt, 4 h. d) $[Pd-(PPh_3)_2Cl_2]$ cat., CuI.

 $(C_6F_5)_3$ in pentane at room temperature overnight. Work-up eventually gave the product **23** as a red-brown solid, isolated in 40% yield. The X-ray crystal structure analysis (single crystals were obtained from CH₂Cl₂/pentane at room temperature by the diffusion method) revealed that the HB- $(C_6F_5)_2$ addition product to a thieno-annulated benzopentalene system^[17,18] had been obtained. Product **23** features a C_6F_5 group and a phenyl substituent at the central pentalene-derived unit. It shows a $B(C_6F_5)_2$ substituent at the junction with the thiophene framework, whose sulfur atom forms a dative bond to the adjacent boron Lewis acid [C2-B1 1.589(3) Å, S1-B1 1.984(2) Å, C2-S1 1.887(2) Å] (see Figure 2).

Figure 2. Molecular structure of compound **23** (thermal ellipsoids are shown with 30% probability). Selected bond lengths (Å) and angles (°): C2–B1 1.589(3), S1–B1 1.984(2), C2–S1 1.887(2), C2–C13 1.505(2), C13–C14 1.333(3), C14–C15 1.500(3), C2–C3 1.477(2), C3–C4 1.357(3), C3–C11 1.469(3), C11–C12 1.372(3), C11–C10 1.467(3), C12–C13 1.471(3); C3-C2-S1 128.5(1), C3-C2-B1 128.8(2), C4-C3-C2 142.7(2).

In solution the internal hydroboration product **23** shows ¹H NMR resonances of the CH₂ group of the dihydrothiophene moiety at δ 4.09 and 3.59 ppm (²J_{HH}=17.0 Hz) and of the adjacent = C-H proton at δ 5.43 ppm. Compound **23** shows six separate *o*-C₆F₅ ¹⁹F NMR resonances and three separate *p*-C₆F₅ resonances of the C₆F₅ substituent at carbon and both chemically inequivalent C₆F₅ groups at boron (¹¹B: -6.9 ppm).

The formation of product **23** indicates that a retro-hydroboration is likely to proceed after the C_6F_5 -transfer from boron to a carbon atom of the pentalene framework had occurred to generate **22** (see Scheme 9; which is the thiophene-containing equivalent of intermediate **20** in Scheme 8). In the case of **22**, the liberated HB(C_6F_5)₂ is then apparently trapped internally by 1,4-addition to the annulated thiophene framework at this specific arene/hetarene-annulated pentalene framework.^[7]

We have also obtained some experimental support for the involvement of a dibenzopentalene borate intermediate (see **19**, Scheme 8) by using the unsymmetrically substituted bis-(alkynyl)benzene derivative **24** as the starting material for the cyclization reaction with $B(C_6F_5)_3$. Compound **24** was readily prepared by a twofold Sonogashira coupling reaction starting from *o*-bromoiodobenzene (Scheme 10). We then

Scheme 10. a) NEt₃, rt, 24 h, $[Pd(PPh_3)_2Cl_2]$ cat., CuI. b) HN*i*Pr₂, 80 °C, 3 days, $[Pd(PPh_3)_2Cl_2]$ cat., CuI.

reacted the starting material **24** with the intermolecular frustrated Lewis pair (FLP) $B(C_6F_5)_3/P(o-tolyl)_3^{[16,19]}$ in pentane at room temperature. Product formation was apparently initiated by $B(C_6F_5)_3$ Lewis acid addition to the $C \equiv C-(p-tolyl)$ unit, followed by ring closure with the adjacent $C \equiv C-n$ propyl function and subsequent electrophilic aromatic substitution to generate the alleged intermediate **25**. This was then effectively deprotonated under the applied reaction conditions by the bulky $P(o-tolyl)_3$ Lewis base component of the FLP to give the observed product **26**.

The phosphonium/dibenzopentalenylborate salt **26** was isolated as a brown solid in 90% yield. In solution it features the typical ¹H NMR resonances of the *n*-propyl substituent, a ¹¹B NMR resonance at δ –16.1 ppm, a ³¹P NMR

resonance of the [P]H unit at δ –13.2 ppm with a typical coupling constant of ${}^{1}J_{\rm PH}$ =482 Hz, and a total of 15 separated 19 F NMR features of the B(C₆F₅)₃ substituent, which contains a chiral propeller conformational geometry that is "frozen" on the NMR time scale under the applied monitoring conditions at 298 K.

Compound **26** was also characterized by X-ray diffraction (single crystals were obtained from a layered CH_2Cl_2/n -heptane mixture at room temperature). The X-ray crystal structure analysis (see Figure 3) confirmed the regioselective for-

Figure 3. Molecular structure of the anion of salt **26** (thermal ellipsoids are shown with 30% probability). Selected bond lengths (Å) and angles (°): C1–C2 1.482(3), C2–C7 1.424(3), C7–C8 1.482(3), C8–C9 1.371(3), C9–C10 1.505(3), C10–C15 1.419(3), C15–C16 1.454(3), C16–C1 1.364(3), C1–C17 1.497(3), C9–B1 1.627(3); C8-C9-B1 133.8(2), C10-C9-B1 120.7(2), C2-C1-C17 125.4(2), C16-C1-C17 128.2(2).

mation of the triply substituted dibenzopentalene framework. Compound **26** shows the methyl group at the terminal phenylene ring syn-oriented to the *n*-propyl substituent at the dibenzopentalene "C-ring" and the bulky $B(C_6F_5)_3$ propeller arranged at the opposite sector at the adjacent central five-membered ring system. The structure features an independent $[HP(o-tolyl)_3]^+$ phosphonium counter cation in the crystal.

We also treated the bis(phenylethynyl)benzene starting materials **8a** and **8b** with the $B(C_6F_5)_3/P(o-tolyl)_3$ FLP. Under similar reaction conditions, this resulted in the formation of the related salts **27a**,**b** in high yield (see Scheme 11).

Scheme 11. Formation of the salts 27 a,b.

Electronic Structure and Properties of Dibenzopentalenes and Related π-Electron Systems

The synthesized dibenzopentalenes and related π -electron systems are an attractive class of molecules with planar polycyclic skeletons. Kawase and coworkers have already reported that dibenzopentalene derivatives exhibit characteristic absorption spectra with a very weak absorption band in the long-wavelength region around 600 nm.^[3b,4,17] They also demonstrated that this absorption band is attributable to forbidden HOMO–LUMO transitions, which are one of the characteristics of $4n\pi$ electron systems. We have recently reported the electronic effect of electron-withdrawing C₆F₅ groups on the electronic structure of dibenzopentalenes, leading to significant bathochromic shifts of the absorption bands.^[7] With a new phenalene-containing π -conjugated system in hand, we were interested in the perturbation by a phenalene moiety in **13** to the electronic structure.

We first evaluated the photophysical properties of the indenophenalene π system 13 in comparison with the dibenzopentalene derivative 10b. Figure 4 displays the UV/Vis absorption spectra of compounds 13 and 10b in acetonitrile.

Figure 4. UV/Vis absorption spectra of ${\bf 10b}$ (black) and ${\bf 13}$ (gray) in acctonitrile.

Compound 13 exhibits the longest-wavelength absorption band with the maximum wavelength (λ_{max}) of 513 nm with a relatively large molar extinction coefficient ($\varepsilon = 8100$), which contrasts the fact that the longest-wavelength absorption band of the dibenzopentalene derivative 10b around 600 nm is very weak. This result indicates that the extension of the π -conjugated skeleton with a phenalene skeleton significantly alters the electronic structure and thus the photophysical properties.

To gain insights into the difference in the electronic structure between dibenzopentalenes and indenophenalenes, DFT calculations were conducted for **10b** and **13** at the B3LYP/6-31G(d) level (Figure 5). In **13**, both the HOMO and LUMO are effectively delocalized over the indenophenalene skeleton. Although the character of the LUMOs in **10b** and **13** resembles each other, the HOMO and HOMO -1 in **10b** switch the order in **13**, presumably due to the expanded π conjugation in the phenalene substructure in the HOMO of **13**. As a result, **13** has a higher-lying HOMO

Figure 5. Energy diagrams and pictorial representations of the HOMO-1, HOMO, and LUMO of the dibenzopentalene **10b** and the relevant phenalene-fused system **13** calculated at the B3LYP/6-31G(d) level, and their lowest energy transitions estimated by TD-DFT calculations at the B3LYP/6-31G(d) level.

than **10b**. Based on time-dependent DFT (TD-DFT) calculations, the HOMO-LUMO transition is mainly responsible for the longest-wavelength absorption in **13**. The blue shift as well as the significantly larger ε value in the longest-wavelength absorption band of **13** compared to **10b** is consistent with the results of the calculated values (**13**: $\lambda = 554$ nm, f = 0.0015; **10b**: $\lambda = 605$ nm, f = 0.1655).

Another notable feature of the indenophenalene **13** is the high electrochemical stability as verified by cyclic voltammetry (Figure 6). Compound **13** showed reversible redox waves

Figure 6. Cyclic voltammogram of **13** measured in CH_2Cl_2 (sample: 1 mm; $Bu_4N^+PF6^-$: 0.1 m; scan rate: 100 mV s⁻¹). Fc=ferrocene.

with first oxidation and reduction potentials of $E_{1/2}=0.68$ V and -1.74 V (versus Fc/Fc⁺), respectively. These results demonstrate that the incorporation of the phenalene-fused structure strongly perturbs the electronic structure, and also indicate the potential application of this new ring-fused π skeleton as a building block of redox-active functional organic dyes.

Chem. Asian J. 2014, 9, 1671-1681

Conclusions

Our study shows that rather complex, extended, fully conjugated and annulated organic π -systems can rather easily be obtained by means of sequential carbon–carbon coupling reactions initiated and mediated by strongly electrophilic RB-(C₆F₅)₂-type Lewis acids. There are still some selectivity issues that need attention but we have found promising examples that indicate a potential usefulness of this method for forming such extended π -systems easily from readily available acetylenic precursors.

Experimental Section

General procedures

All syntheses involving air- and moisture-sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. NMR spectra were recorded on a Bruker AC 200P, on a Bruker AV 300, on a Bruker AV 400, on a Varian Inova 500, and on a Varian UnityPlus 600 spectrometer. ¹H NMR and ¹³C NMR: chemical shifts δ are given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shifts δ are given relative to CFCl₃ (external reference, δ =0), ¹¹B NMR: chemical shifts δ are given relative to BF₃·Et₂O (external reference, $\delta = 0$), ³¹P NMR: chemical shifts δ are given relative to H_3PO_4 (85% in H_2O) (external reference, $\delta = 0$). NMR assignments were supported by additional 2D NMR experiments. Elemental analyses were performed on an Elementar Vario El III instrument. IR spectra were recorded on a Varian 3100 FT-IR spectrometer (Excalibur Series). Melting points were obtained with a DSC Q20 instrument (TA Instruments). Electrospray ionization mass spectra (MS-ESI) were recorded on a Bruker Micro-TOF machine. Prior exact mass (EM) measurement calibration was performed using sodium formiate clusters. The spectra are described by listing the calculated mass and the observed signals or by comparison of the isotopic pattern of the calculated and the measured signals of the mass. A preparative gel permeation chromatography (GPC) system [LC-9201 (Japan Analytical Industry) equipped with a polystyrene gel column (JAIGEL 1H and 2H, Japan Analytical Industry)] was used for further purification of diyne and pentalene derivatives. UV/VIS spectra were recorded in Nagoya using a Shimadsu UV-3150 UV-VIS NIR spectrophotometer. Listed are the solvent, the wavelength of the extinction maxima (λ_{max}), and the molar extinction coefficient ε . X-Ray diffraction: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT; data reduction, Denzo-SMN;^[26] absorption correction, Denzo;^[27] structure solution, SHELXS-97;^[28] structure refinement, SHELXL-97;^[29] and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and wR^2 values are given for all reflections. Exceptions and special features: Compound 14 crystallized with one half dichloromethane molecule per asymmetric unit. The structure was refined with Flack parameter of 0.37(4). CCDC 981779 (12), CCDC 981780 (13), CCDC 981781 (14), CCDC 981782 (23), CCDC 981783 (26) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compounds **8a**,^[20] **8b**,^[20] 1,2-diiodo-4,5-dimethylbenzene,^[11,20] 1-bromo-2-(phenylethynyl)benzene,^[21] 1-bromo-2-(p-tolylethynyl)benzene,^[23] 1-(trimethylsilylethynyl)-2-(phenylethynyl)benzene,^[24] and 2-ethynyl-1-(phenylethynyl)benzene,^[22] were prepared according to procedures described in the literature.

Preparation of 4,5-dimethyl-1,2-bis(1-naphthylethynyl)benzene (12)^[20]

1,2-Diiodo-4,5-dimethylbenzene (4.2 g, 12 mmol), [Pd(PPh₃)Cl₂] (750 mg, 1.1 mmol), and CuI (400 mg, 2.1 mmol) were dissolved in degassed NEt₃ (50 mL). After 1-ethynylnaphthalene (4.0 mL, 35.3 mmol) was added, the resulting black mixture was heated to 100 °C for 12 h. Then all the volatiles were removed in vacuum, and the residue was extracted with diethyl ether (3×50 mL). After filtration, diethyl ether was removed in vacuo. The crude product was washed with a mixture of n-pentane and CH₂Cl₂ (6:1, 20 mL) and dried to finally give the product as a brown solid (1.9 g, 4.7 mmol, 39%). M.p. 147°C; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): $\delta =$ 8.54 (d, ${}^{3}J=8.4$ Hz, 1H, 9^N-H), 7.88 (d, ${}^{3}J=8.2$ Hz, 1H, 4^N-H), 7.86 (d, ${}^{3}J = 8.2$ Hz, 1 H, 6^N-H), 7.81 (d, ${}^{3}J = 7.1$ Hz, 1 H, 2^N-H), 7.55 (s, 1 H, 2-H), 7.47 (m, 1H, 3^N-H), 7.43 (m, 1H, 7^N-H), 7.13 (m, 1H, 8^N-H), 2.36 ppm (s, 3H, Me); ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 298 K): $\delta = 138.2$ (C-1), 133.59 (C-10^N), 133.56 (C-5^N), 133.52 (C-2), 131.0 (C-2^N), 129.2 (C-4^N), 128.5 (C-6^N), 127.2 (C-8^N), 126.76 (C-7^N), 126.75 (C-9^N), 125.6 (C-3^N), 123.3 (C-3), 121.3 (C-1^N), 93.9 (C-4), 90.9 (C-5), 19.8 ppm (Me); IR (ATR): $\tilde{\nu} = 2172 \text{ cm}^{-1}$ (C = C); HRMS (ESI): m/z calcd for C₃₂H₂₂+Ag⁺: 513.0767 [M+Ag+]; found: 513.0767.

X-ray crystal structure analysis of compound 12

Formula $C_{32}H_{22}$, M=406.50, colorless crystal, $0.28 \times 0.23 \times 0.12$ mm, a = 8.1726(2), b = 11.0699(3), c = 13.3109(4) Å, $\alpha = 101.795(1)$, $\beta = 99.307(1)$, $\gamma = 104.491(2)^{\circ}$, V = 1112.14(5) Å³, $\rho_{calc} = 1.214$ gcm⁻³, $\mu = 0.069$ mm⁻¹, empirical absorption correction ($0.981 \le T \le 0.991$), Z = 2, triclinic, space group $P\overline{1}$ (No. 2), $\lambda = 0.71073$ Å, T = 223(2) K, ω and ϕ scans, 5568 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ]=0.59 Å⁻¹, 3775 independent ($R_{int} = 0.031$) and 3184 observed reflections [$I > 2\sigma(I)$], 291 refined parameters, R = 0.055, $wR^2 = 0.141$, max. (min.) residual electron density 0.25 (-0.14) e Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of 1-(2-thienylethynyl)-2-(phenylethynyl)benzene (21)

2-Ethynyl-1-(phenylethynyl)benzene (1.11 g, 5.57 mmol, 1 equiv) was dissolved in THF (20 mL) and then degassed for 30 min. In another Schlenk flask o-iodothiophene (1.00 g, 6.01 mmol, 1.1 equiv) was dissolved in NEt₃ (20 mL) and tetrahydrofuran (20 mL), and then degassed. After $30\ min,\ [Pd(PPh_3)_4]\ (318\ mg,\ 5\ mol\ \%)\ and\ CuI\ (104\ mg,\ 10\ mol\ \%)\ were$ added to the Schlenk flask. Subsequently, the diyne solution was transferred via a canula and the reaction mixture was stirred for 1 day at 60 °C. Then the reaction mixture was filtered and the filtrate was concentrated in vacuo. The obtained residue was first purified by column chromatography (n-hexane) and then purified by GPC (CHCl₃) yielding compound 21 (1.23 g, 4.32 mmol, 79%) as a yellow brown solid. M.p. 81°C; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): $\delta = 7.65$ (2 H), 7.40 (3 H)(each m, Ph), 7.59, 7.37 (each m, each 2H, C6H4), 7.37 (2H), 7.07 ppm (1H)(m, C_4H_3S); ¹³C{¹H} NMR (126 MHz, CD_2Cl_2 , 298 K): $\delta = 132.6$, 128.2, 127.7, 123.4 (C4H3S), 132.1, 131.9, 128.7, 128.5, 125.79, 125.75 (C6H4), 132.0, 129.0, 128.8, 123.4 (Ph), 94.1 (=CPh), 92.3, 88.4 (=C), 87.0 ppm (=C-[C₄H₃S]); IR (ATR): $\tilde{v} = 2175 \text{ cm}^{-1}$ (C \equiv C); HRMS (ESI): m/z calcd for $C_{20}H_{12}S + Na^+: 307.0552 [M+Na^+]; found: 307.0529.$

Preparation of 2-hexynyl-1-(p-tolylethynyl)benzene (24)

1-Bromo-2-(p-tolylethynyl)benzene (1.35 g, 5 mmol, 1 equiv), [Pd-(PPh₃)₂Cl₂] (140 mg, 4 mol %), and CuI (300 mg, 32 mol %) were dissolved in degassed HNiPr2 (50 mL). Then 1-pentyne (1 mL, 10 mmol, 2.0 equiv) was added. The resulting black mixture was heated to 80 °C for 3 days. Subsequently, all volatiles were removed in vacuum, and the obtained residue was extracted with diethylether $(3 \times 50 \text{ mL})$. After filtration of the ether suspension, the solvent was removed in vacuum, and the residue was purified by column chromatography (n-pentane). Compound 24 was obtained as an orange-red liquid (644 mg, 2.49 mmol, 50%). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): $\delta = 7.56$ (m, 1 H, 3-H), 7.50 (m, 2 H, o-tol), 7.48 (m, 1H, 6-H), 7.29 (m, 2H, 4,5-H), 7.23 (m, 2H, m-tol), 2.54 (2H), 1.72 (2H), 1.13 (3H)(each m, n-Pr), 2.41 ppm (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ=139.2 (p-tol), 132.3 (C-6), 132.1 (C-3), 131.9 (o-tol), 129.6 (m-tol), 128.3, 127.7 (C-4,5), 126.9, 126.1 (C-1,2), 120.6 (*i*-tol), 95.2 (\equiv C-*n*-Pr), 93.4 ((\equiv Ctol), 88.3 ((C \equiv ^{tol}), 79.9 (C \equiv ^{*n*-Pr}), 22.7, 22.0, 13.8 (*n*-Pr), 21.7 ppm (Me); IR (ATR): $\tilde{\nu}$ =2216 cm⁻¹ (C=C);

HRMS (ESI): m/z calcd for $C_{20}H_{18}$ +Ag⁺: 365.0454 [M+Ag⁺]; found: 365.0450.

Reaction of 12 with $B(C_6F_5)_3$: Preparation of compounds 13 and 14

 $B(C_6F_5)_3$ (256 mg, 0.5 mmol, 1 equiv) was dissolved in cold CH_2Cl_2 (-20°C, 5 mL) and added to a solution of 4,5-dimethyl-1,2-bis(1-naphthylethynyl)benzene (12b) (202 mg, 0.5 mmol, 1 equiv) in cold CH_2Cl_2 (-20°C, 5 mL). The resulting dark red solution was allowed to warm to room temperature and stirred for 2 days before diethyl ether (grade p.a., 5 mL) was added. Then all volatiles were removed in vacuo. The obtained residue was purified by column chromatography (cyclohexane:CH₂Cl₂=20:1) to give the products 13 (142 mg, 0.25 mmol, 50%) and 14 (18 mg, 0.03 mmol, 6% [ca. 85% pure ${}^{1}H(CD_{2}Cl_{2})$]) as dark red solids. Compound 13: M.p. 311 °C; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): $\delta = 8.16$ (dm, ${}^{3}J = 8.3$ Hz, 1H, 4^N-H), 8.06 (dm, ${}^{3}J = 8.2$ Hz, 1H, 6^N-H), 7.90 (dm, ${}^{3}J=8.1$ Hz, 1H, 11-H), 7.87 (dm, ${}^{3}J=8.0$ Hz, 1H, 13-H), 7.77 (dm, ${}^{3}J = 7.8$ Hz, 1 H, 9-H), 7.75 (dd, ${}^{3}J = 8.3$ ${}^{3}J = 7.0$ Hz, 1 H, 3^N-H), 7.68 (dm, ${}^{3}J=8.5$ Hz, 1H, 9^N-H), 7.64 (dd, ${}^{3}J=7.0$ Hz, J=1.2 Hz, 1H, 2^N-H), 7.53 (m, 1H, 10-H), 7.53 (m, 1H, 7^{N} -H), 7.36 (dd, ${}^{3}J = 8.0$ Hz, 7.4 Hz, 1H, 14-H), 7.31 (m, 1H, 8^{N} -H), 7.18 (dd, ${}^{3}J=7.4$ Hz, ${}^{4}J=1.1$ Hz, 1H, 15-H), 6.73 (s, 1H, 4-H), 5.73 (s, 1H, 1-H), 2.14 (s, 3H, 3-Me), 1.82 ppm (s, 3H, 2-Me); ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 298 K): $\delta = 141.3$, 137.5 (C-5,18), 139.5 (C-17), 137.0 (C-3), 135.4 (C-1^N), 134.2 (C-5^N), 134.1 (C-2), 133.6 (C-12), 133.0 (C-16), 132.9 (C-7), 132.7 (C-10^N), 131.21 (C-13), 131.15 (C-19), 130.0 (C-15), 129.5 (C-11), 129.1 (C-4^N), 128.9 (C-8), 128.7 (C-6^N), 127.9 (C-2^N), 127.4, 126.7 (C-10,7^N), 127.0 (C-14), 126.9 (C-8^N), 126.3 (C-3^N), 126.2 (C-20), 126.1 (C-9^N), 125.4 (C-1), 125.2 (C-9), 120.6 (C-4), 119.2 (br, C-6), 20.24 (2-Me), 20.20 ppm (3-Me), [C₆F₅ not listed]; ¹⁹F NMR (470 MHz, CD₂Cl₂, 298 K): $\delta = -138.0$, -138.2 (each m, each 1F, $o-C_6F_5$), -155.2 (t, ${}^{3}J=20.7$ Hz, 1F, $p-C_6F_5$), -161.39, -161.44 ppm (each m, each 1F, m-C₆F₅), [$\Delta \delta^{19}F_{mp}$ =6.2]; UV/Vis (CH₃CN): λ_{max} (log ε) = 350 nm (4.04), 439 nm (4.09), 513 nm (3.91); HRMS (ESI): m/z calcd for [C₃₈H₂₁F₅+Na⁺]: 595.1456 [*M*+Na⁺]; found: 595.1457.

X-ray crystal structure analysis of compound 13

Single crystals suitable for the X-ray crystal structure analysis were obtained by slow evaporation of a solution of **13** in CH₂Cl₂. Formula $C_{38}H_{21}F_5$, M=572.55, red crystal, $0.20 \times 0.17 \times 0.03$ mm, a=30.7143(10), b=7.4972(2), c=24.9464(8) Å, $\beta=110.193(2)^\circ$, V=5391.4(3) Å3, $\rho calc=1.411$ gcm-3, $\mu=0.878$ mm-1, empirical absorption correction ($0.843 \le T \le 0.974$), Z=8, monoclinic, space group C2/c (No. 15), $\lambda=1.54178$ Å, T=223(2) K, ω and ϕ scans, 22682 reflections collected (\pm h, \pm k, \pm l), $[(\sin\theta)/\lambda]=0.60$ Å-1, 4541 independent ($R_{int}=0.064$) and 3141 observed reflections [$I > 2\sigma(I)$], 390 refined parameters, R=0.061, wR2=0.157, max. (min.) residual electron density 0.18 (-0.26) e Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Compound 14: M.p. 210 °C; ¹H NMR (500 MHz, CD₂Cl₂, 299 K): δ=8.01 (m, 1H, 19^N-H), 7.92 (dm, ${}^{3}J=8.5$ Hz, 1H, 4^N-H), 7.91 (dm, ${}^{3}J=8.6$ Hz, 1 H, 6^{N} -H), 7.89 (m, 1 H, 16^{N} -H), 7.88 (m, 1 H, 14^{N} -H), 7.79 (dm, ${}^{3}J =$ 7.1 Hz, 1 H, 2^{N} -H), 7.73 (dm, ${}^{3}J = 8.1$ Hz, 1 H, 9^{N} -H), 7.54 (m, 1 H, 3^{N} -H), 7.53 (m, 1H, 12^N-H), 7.51 (m, 1H, 13^N-H), 7.50 (m, 3H, 7^N,17^N,18^N-H), 7.41 (ddd, ${}^{3}J = 8.1$, 6.9 Hz, ${}^{4}J = 1.4$ Hz, 1 H, 8^N-H), 7.25 (s, 1 H, 9-H), 7.04 (s, 1H, 1-H), 6.82 (s, 1H, 4-H), 2.23 (s, 3H, 3-Me), 2.03 ppm (s, 3H, 2-Me); ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 299 K): $\delta = 143.8$ (C-7), 143.1 (C-8), 140.9 (C-5), 137.5 (C-3), 134.7 (C-2), 134.6 (C-9), 134.1, 133.98, 133.96, 132.1 (C-1^N,5^N,11^N,15^N), 133.3 (C-20^N), 132.2 (C-10), 131.8 (C-10^N), 129.4 (C-4^N), 128.9 (C-14^N), 128.81 (C-6^N), 128.77 (d, J = 1.1 Hz, C-12^N), 128.5 (C-16^N), 128.1 (m, C-6), 127.7 (C-2^N), 126.72 (C-8^N), 126.68 (d, J =1.5 Hz, C-19^N), 126.6 (C-7^N), 126.5 (C-18^N), 126.3 (C-17^N), 125.6 (C-3^N), 125.5 (C-13^N), 125.2 (C-9^N), 125.2 (C-1), 120.9 (C-4), 20.23 (3-Me), 20.15 ppm (2-Me). [n.o. (C_6F_5) ; ^t tentatively assigned]; ¹⁹F NMR (470 MHz, CD₂Cl₂, 299 K): $\delta = -137.9$, -138.0 (each m, each 1F, o-C₆F₅), -155.6 (t, ${}^{3}J=20.9$ Hz, 1F, $p-C_{6}F_{5}$), -162.8, -162.9 ppm (each m, each 1F, $m-C_6F_5$), $[\Delta\delta^{19}F_{mp}=7.2, 7.3]$; HRMS (ESI): m/z calcd for $[C_{38}H_{23}F_5+Na^+]$: 597.1612 [*M*+Na⁺]; found: 597.1618.

X-ray crystal structure analysis of compound 14

Single crystals suitable for the X-ray crystal structure analysis were obtained by slow evaporation of a solution of **14** in CH₂Cl₂. Formula $C_{38}H_{23}F_5 \cdot 0.5$ CH₂Cl₂, M = 617.03, colorless crystal, $0.30 \times 0.05 \times 0.01$ mm, a = 12.0940(6), b = 31.8452(12), c = 7.5845(2) Å, V = 2921.1(2) Å³, $\rho_{calc} = 1.403$ gcm⁻³, $\mu = 1.672$ mm⁻¹, empirical absorption correction ($0.634 \le T \le 0.983$), Z = 4, orthorhombic, space group *P*nc2 (No. 30), $\lambda = 1.54178$ Å, T = 223(2) K, ω and ϕ scans, 12101 reflections collected $(\pm h, \pm k, \pm l)$, $[(\sin\theta)/\lambda] = 0.60$ Å⁻¹, 4295 independent ($R_{int} = 0.060$) and 3354 observed reflections [$I > 2\sigma(I)$], 413 refined parameters, R = 0.052, $wR^2 = 0.135$, max. (min.) residual electron density 0.16 (-0.22) eÅ⁻³, hydrogen atoms calculated and refined as riding atoms.

Reaction of 12 with $MeB(C_6F_5)_2$: Preparation of compounds 13 and 15

MeB(C₆F₅)₂ (183 mg, 0.5 mmol, 1 equiv) was dissolved in cold CH₂Cl₂ (-20°C, 5 mL) and added to a solution of diyne 12 (202 mg, 0.5 mmol, 1 equiv) in cold CH₂Cl₂ (-20°C, 5 mL). The dark red reaction solution was then allowed to warm to room temperature and stirred for 2 days before diethyl ether (p.a., 5 mL) was added. Subsequently, all volatiles were removed in vacuo. The obtained residue was purified by column chromatography (cyclohexane: $CH_2Cl_2=20:1$) to give the products 13 (48 mg, 0.08 mmol, 17%) and 15 (58 mg, 0.10 mmol, 20%), each as a dark red solid. Compound 15: M.p. 212°C; ¹H NMR (500 MHz, CD_2Cl_2 , 298 K): $\delta = 8.27$ (d, ${}^{3}J = 7.8$ Hz, 1 H, 9-H), 8.12 (d, ${}^{3}J = 8.3$ Hz, 4^N-H), 8.03 (d, ${}^{3}J=8.2$ Hz, 1H, 6^N-H), 7.83 (d, ${}^{3}J=7.8$ Hz, 1H, 11-H), 7.79 (d, ${}^{3}J=8.0$ Hz, 1H, 13-H), 7.73 (t, ${}^{3}J=7.8$ Hz, 1H, 10-H), 7.72 (dd, ${}^{3}J=$ 8.3 Hz, 6.9 Hz, 1 H, 3^{N} -H), 7.63 (d, ${}^{3}J$ =8.6 Hz, 1 H, 9^{N} -H), 7.58 (dd, ${}^{3}J$ = 6.9 Hz, ${}^{4}J = 1.1$ Hz, 1 H, 2^N-H), 7.50 (ddd, ${}^{3}J = 8.2$ Hz, 6.7 Hz, ${}^{4}J = 1.0$ Hz, 1 H, 7^N-H), 7.30 (dd, ${}^{3}J=8.0$, 7.3 Hz, 1 H, 14-H), 7.26 (ddd, ${}^{3}J=8.6$ Hz, 6.7 Hz, ${}^{4}J = 1.1$ Hz, 1H, 8^N-H), 7.20 (s, 1H, 4-H), 7.02 (d, ${}^{3}J = 7.3$ Hz, 1H, 15-H), 5.64 (s, 1H,1-H), 2.68 (s, 3H, 6-Me), 2.22 (s, 3H, 3-Me), 1.81 ppm (s, 3H, 2-Me); ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 298 K): $\delta = 143.7$ (C-5), 138.4 (C-18), 136.4 (C-3), 136.2 (C-1^N), 135.4 (C-17), 134.9 (C-6), 134.3 (C-5^N), 134.0 (C-16), 133.8 (C-12), 133.4 (C-2), 132.9 (C-10^N), 131.9 (C-19), 131.1 (C-8), 129.5 (C-13), 128.71 (C-7), 128.68 (C-4^N), 128.63 (C-6^N), 128.0 (C-2^N), 127.5 (C-15), 127.3 (C-10), 127.0 (C-11), 126.9 (C-20), 126.7 (C-8^N), 126.6 (C-14), 126.5 (C-7^N), 126.3 (C-3^N), 126.1 (C-9^N), 125.4 (C-9), 125.0 (C-1), 120.6 (C-4), 20.3 (3-Me), 20.2 (2-Me), 14.1 ppm (6-Me); UV/ Vis (CH₃CN): λ_{max} (log ε)=342 nm (4.11), 417 nm (3.94), 510 nm (3.74); HRMS (ESI): m/z calcd for $[C_{33}H_{24}+Na^+]$: 443.1770 $[M+Na^+]$; found: 443.1770.

Reaction of 1,2-bis(phenylethynyl)benzene (8*a*) with $MeB(C_6F_5)_2$: Preparation of compounds 10*a*^(7,20) and 16

MeB(C₆F₅)₂ (360 mg, 1.0 mmol, 1 equiv) was dissolved in cold CH₂Cl₂ (-20°C, 5 mL) and added to a solution of the diyne 8a (278 mg, 1.0 mmol, 1 equiv) in cold CH₂Cl₂ (-20°C, 5 mL). The resulting dark red solution was allowed to warm to room temperature and then stirred for 2 days before diethyl ether (p.a., 5 mL) was added. Subsequently, all volatiles were removed in vacuo, and the obtained residue was purified by column chromatography (cyclohexane:dichloromethane=20:1) to give the products 16 (71 mg, 0.24 mmol, 24%) and 10a (65 mg, 0.15 mmol, 15%), each as a yellow solid. Compound 16: M.p. 146°C.; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ=7.64 (m, 2H, o-Ph), 7.51 (m, 2H, m-Ph), 7.44 (m, 1 H, p-Ph), 7.26 (dm, ${}^{3}J = 7.4$ Hz, 1 H, 9-H), 7.12 (dm, ${}^{3}J = 7.4$ Hz, 1 H, 1-H), 7.05 (dm, ${}^{3}J = 7.4$ Hz, 1 H, 12-H), 6.98 (m, 1 H, 10-H), 6.93 (m, 3H, 3,4,11-H), 6.82 (m, 1H, 2-H), 2.25 ppm (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CD_2Cl_2 , 298 K): $\delta = 151.6$ (C-5), 149.6 (C-13), 143.4 (C-7), 143.3 (C-15), 139.1 (C-14), 138.9 (C-6), 135.9 (C-8), 135.3 (C-16), 134.3 (i-Ph), 128.99 (m-Ph), 128.96 (p-Ph), 128.9 (o-Ph), 128.3 (C-3), 127.7 (C-2), 127.45, 127.42 (C-10,11), 122.6 (C-12), 122.4 (C-9), 121.7 (C-1), 121.2 (C-4), 12.1 ppm (Me); UV/Vis (CH₃CN): λ_{max} (log ϵ) = 406 nm (3.88), 514 nm (1.80); HRMS (ESI): m/z calcd for $C_{23}H_{16}+Ag^+$: 399.0298 [*M*+Ag⁺]; found: 399.0298.

Preparation of compound 23

The diyne **21** (60.0 mg, 211 μ mol, 1 equiv) was mixed with dry *n*-pentane (5 mL). Then B(C₆F₅)₃ (108 mg, 211 μ mol, 1 equiv) dissolved in dry *n*-

pentane (5 mL) was added at room temperature. The reaction mixture turned dark red-brown immediately, and the obtained suspension was stirred overnight. Then the supernatant was removed with a pipette, and the solid residue was washed with *n*-pentane $(3 \times 2 \text{ mL})$. After drying in vacuo, the product was isolated as a brown solid (67.2 mg, 84.3 µmol, 40 %). Decomp. 147 °C; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): $\delta = 7.86$ (dm, ³J=7.6 Hz, 1 H, 1-H), 7.77 (m, 2 H, o-Ph), 7.60 (m, 2 H, m-Ph), 7.56 (m, 1H, p-Ph), 7.31 (td, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.1$ Hz, 1H, 3-H), 7.18 (td, ${}^{3}J=$ 7.6 Hz, ${}^{4}J = 1.1$ Hz, 1H, 2-H), 6.94 (ddm, ${}^{3}J = 7.6$ Hz, $J_{FH} = 4.1$ Hz, 1H, 4-H), 5.43 (dd, ${}^{3}J=3.8$ Hz, 2.3 Hz, 1H, 11-H), 4.09 (dd, ${}^{2}J=17.0$ Hz, ${}^{3}J=$ 3.8 Hz, 1 H, 10-H^a), 3.59 (dd, ${}^{2}J = 17.0$ Hz, ${}^{3}J = 2.3$ Hz, 1 H, 10-H^b); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 298 K): $\delta = 160.1$ (m, C-12), 149.7 (C-14), 147.0 (C-5), 146.4 (C-7), 143.0 (d, J=1.8 Hz, C-13), 133.1 (i-Ph), 130.49 (p-Ph), 130.45 (C-15), 129.7 (C-3), 129.4 (m-Ph), 129.3 (o-Ph), 125.7 (C-2), 124.1 (C-1), 120.7 (d, J=3.5 Hz, C-4), 113.5 (br, C-6), 111.5 (C-11), 75.7 (br, C-8), 46.5 ppm (C-10), $[C_6F_5 \mbox{ not listed}];\ ^{11}B\{^1H\}\ NMR$ (192 MHz, CD₂Cl₂, 298 K): $\delta = -6.9 \text{ ppm} (v_{1/2} \sim 300 \text{ Hz});$ ¹⁹F NMR (564 MHz, CD₂Cl₂, 298 K): $\delta = -129.1$ (m, o), -132.8 (m, o'), -154.5 (t, ${}^{3}J_{\rm FF} = 20.0 \text{ Hz}, p$, -162.1 (m, m'), -162.6 (m, m) (each 1F, BC₆F₅), $[\Delta \delta^{19}F_{pm} = 7.6, 8.1]; -130.8, -132.1$ (each br m, o), -155.5 (t, ${}^{3}J_{FF} =$ 19.9 Hz, p), -162.57, -162.62 (each m, m') (each 1F, BC₆F₅), $[\Delta \delta^{19}F_{pm} =$ 7.1]; -135.0, -136.3 (each m, o), -154.9 (t, ${}^{3}J_{FF}=20.4$ Hz, p), -161.5, -162.8 ppm (each m, m) (each 1F, C₆F₅), [$\Delta \delta^{19}F_{pm} = 6.6$, 7.9]; HRMS (ESI): *m*/*z* calcd for C₃₈H₁₂BF₁₅S-H⁺: 795.0447 [*M*-H]; found: 795.0448.

X-ray crystal structure analysis of compound 23

Crystals suitable for the X-ray crystal structure analysis were obtained by diffusion method of a layered CH₂Cl₂/*n*-heptane solution at room temperature. Formula $C_{38}H_{12}BF_{15}S$, M=796.35, orange crystal, $0.37 \times 0.15 \times 0.10$ mm, a=16.9719(7), b=8.8408(3), c=21.3311(5) Å, $\beta=102.748(2)^{\circ}$, V=3121.73(18) Å³, $\rho_{calc}=1.694$ gcm⁻³, $\mu=2.038$ mm⁻¹, empirical absorption correction ($0.519 \le T \le 0.822$), Z=4, monoclinic, space group P_{2_1}/c (No. 14), $\lambda=1.54178$ Å, T=223(2) K, ω and ϕ scans, 26907 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 5423 independent ($R_{int}=0.041$) and 4904 observed reflections [$I > 2\sigma(I)$], 497 refined parameters, R=0.036, $wR^2=0.112$, max. (min.) residual electron density 0.22 (-0.21) e Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of compound 26

The diyne 24 (50.0 mg, 194 µmol, 1 equiv) and tri(o-tolyl)phosphane (59.1 mg, 194 µmol, 1 equiv) were dissolved in dry n-pentane (5 mL). Then a solution of $B(C_6F_5)_3$ (99.6 mg, 194 µmol, 1 equiv) in dry *n*-pentane (5 mL) was added at room temperature. The reaction mixture turned dark red-brown immediately. The obtained suspension was stirred overnight. Subsequently, the supernatant was removed with a pipette, and the solid residue was washed with *n*-pentane $(3 \times 2 \text{ mL})$. After drying in vacuo, the product was isolated as a brown solid (188 mg, 175 µmol, 90%). M.p. 213°C; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ = pentalene anion: 7.00 (dm, ${}^{3}J=7.4$ Hz, 1H, 1-H), 6.92 (dm, ${}^{3}J=7.4$ Hz, 1H, 4-H), 6.68 (tm, ${}^{3}J=7.4$, 7.4 Hz, 1 H, 2-H), 6.64 (m, 1 H, 12-H), 6.63 (tm, ${}^{3}J=7.4$, 7.4 Hz, 1H, 3-H), 6.33 (d, ${}^{3}J=7.7$ Hz, 1H, 10-H), 5.36 (dd, ${}^{3}J=7.7$ Hz, J_{FH}=4.5 Hz, 1H, 9-H), 2.51 (m, 2H, 14-CH₂), 2.15 (s, 3H, 11-Me), 1.61 (m, 2H, CH₂), 1.00 (t, ³J=7.4 Hz, 3H, CH₃). [HP(o-tol)₃] cation: 8.37 (d, ${}^{1}J_{\rm PH} = 482.5$ Hz, 1 H, PH), 7.79 (m, 3 H, p-°tol), 7.57 (m, 3 H, m'-°tol), 7.45 (m, 3H, *m*-°tol), 7.14 (dd, ${}^{3}J_{PH} = 16.0$ Hz, ${}^{3}J = 7.9$ Hz, 3H, *o*-°tol), 2.38 ppm (s, 9H, Me); ${}^{13}C{}^{1}H$ NMR (151 MHz, CD₂Cl₂, 298 K): δ = pentalene anion: 157.8 (m, C-5), 151.5 (C-13), 146.9 (C-7), 146.5 (C-15), 136.98 (C-14), 136.0 (C-16), 135.9 (C-8), 135.2 (C-11), 126.8 (C-3), 126.2 (C-10), 124.9 (C-2), 123.8 (d, J=6.1 Hz, C-9), 123.2 (dm, J=8.1 Hz, C-4), 121.0 (C-12), 120.5 (C-1), 28.5 (14-CH₂), 22.6 (CH₂), 21.3 (11-Me), 14.7 (CH₃), n.o. (C-6), [C₆F₅ not listed]. [HP(o-tol)₃] cation: 143.8 (d, ${}^{2}J_{PC} =$ 9.0 Hz, o'-°tol), 137.00 (p-°tol), 135.0 (d, $^2\!J_{\rm PC}\!=\!12.8$ Hz, o-°tol), 133.5 (d, ${}^{3}J_{PC} = 10.8 \text{ Hz}, m' \cdot {}^{\circ}\text{tol}), 128.8 \text{ (d, } {}^{3}J_{PC} = 13.9 \text{ Hz}, m \cdot {}^{\circ}\text{tol}), 111.9 \text{ (d, } {}^{1}J_{PC} =$ 87.8 Hz, *i*-°tol), 21.1 ppm (d, ${}^{3}J_{PC}$ =8.6 Hz, Me); ${}^{11}B{}^{1}H$ NMR (192 MHz, 298 K, CD₂Cl₂): $\delta = -16.1 \text{ ppm}$ ($v_{1/2} \approx 50 \text{ Hz}$); ¹⁹F NMR (564 MHz, CD₂Cl₂, 298 K): $\delta = -127.2$ (*o*), -129.8 (*o'*), -163.9 (t, ${}^{3}J_{FF} = 20.4$ Hz, *p*), -166.7 (m'), -168.1 (m) (each m, each 1F, BC₆F₅), [$\Delta \delta^{19}F_{pm} = 2.8, 4.2$]; -127.3 (o), -133.0 (o'), -164.1 (t, ${}^{3}J_{FF}=20.5$ Hz, p), -167.1 (m), -167.3(*m'*) (each m, each 1F, BC₆F₅), $[\Delta \delta^{19}F_{pm} = 3.0, 3.2]$; -127.8 (*o*), -133.6

(o'), -163.8 (t, ${}^{3}J_{\rm FF}$ =20.4 Hz, p), -166.0 (m), -166.9 ppm (m') (each m, each 1F, BC₆F₅), [$\Delta \delta^{19}F_{\rm pm}$ =2.2, 3.1]. ${}^{31}P$ NMR (243 MHz, 298 K, CD₂Cl₂): δ =-13.2 ppm (dm, ${}^{1}J_{\rm PH}$ ≈482 Hz); HRMS (ESI): m/z calcd for (C₂₁H₂₁P)₂+Ag⁺: 717.1807 [M₂+Ag⁺]; found: 717.1809; m/z calcd for C₃₈H₁₇BF₁₅⁻: 769.1184 [M⁻]; found: 769.1218.

X-ray analysis of compound 26

Crystals suitable for X-ray crystal structure analysis were obtained by the diffusion method of a layered CH₂Cl₂/*n*-heptane solution at room temperature. Formula C₅₉H₃₉BF₁₅P, M=1074.68, orange crystal, 0.40×0.20×0.15 mm, *a*=12.6006(3), *b*=20.7988(3), *c*=19.4554(6) Å, *β*=104.734(2)°, *V*=4933.3(2) Å³, ρ_{calc} =1.447 gcm⁻³, μ =1.356 mm⁻¹, empirical absorption correction (0.613 $\leq T \leq 0.822$), *Z*=4, monoclinic, space group *P*2₁/*n* (No. 14), λ =1.54178 Å, *T*=223(2) K, ω and ϕ scans, 48272 reflections collected (±*h*, ±*k*, ±*l*), [(sinθ)/ λ]=0.60 Å⁻¹, 8606 independent (*R*_{int}=0.043) and 7850 observed reflections [*I*>2*a*(*I*)], 693 refined parameters, *R*=0.047, *wR*²=0.125, max. (min.) residual electron density 1.06 (-0.45) eÅ⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of compound 27 a

Compound 8a^[20] (25.0 mg, 89.8 µmol, 1 equiv) and tri(o-tolyl)phosphane (27.3 mg, 89.8 µmol, 1 equiv) were dissolved in dry n-pentane (5 mL). Then a solution of B(C₆F₅)₃ (46.0 mg, 89.8 µmol, 1 equiv) in dry n-pentane (5 mL) was added at room temperature. The mixture turned dark red-brown immediately. The obtained suspension was stirred overnight. Subsequently, the supernatant was removed with a pipette, and the solid residue was washed with *n*-pentane $(3 \times 2 \text{ mL})$. After drying in vacuo, the product was obtained as a brown solid (95 mg, 86.8 µmol, 97%). M.p. 116°C; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = pentalene anion: 7.50 (m, 2H, o-Ph), 7.42 (m, 2H, m-Ph), 7.37 (m, 1H, p-Ph), 7.00 (dm, ${}^{3}J =$ 7.5 Hz, 1 H, 4-H), 6.94 (dm, ${}^{3}J = 7.5$ Hz, 1 H, 1-H), 6.85 (dm, ${}^{3}J = 7.5$ Hz, 1H, 12-H), 6.72 (td, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.1$ Hz, 1H, 11-H), 6.66 (td, ${}^{3}J=$ 7.5 Hz, ${}^{4}J$ = 1.3 Hz, 1 H, 3-H), 6.58 (td, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.2 Hz, 1 H, 10-H), 6.57 (td, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.1$ Hz, 1 H, 2-H), 5.63 (dd, ${}^{3}J=7.5$ Hz, $J_{FH}=$ 4.5 Hz, 1H, 9-H). [HP(o-tol)₃] cation: 8.31 (br d, ${}^{1}J_{PH} = 483.3$ Hz, 1H, PH), 7.74 (m, 3H, p-°tol), 7.52 (m, 3H, m'-°tol), 7.40 (m, 3H, m-°tol), 7.10 (dd, ${}^{3}J_{PH} = 16.0 \text{ Hz}$, ${}^{3}J = 7.8 \text{ Hz}$, 3 H, o-otol), 2.32 ppm (s, 9 H, Me); ¹³C[¹H] NMR (126 MHz, CD₂Cl₂, 298 K): δ = pentalene anion: 160.4 (br, C-6), 157.8 (d, J_{FC}=4.4 Hz, C-5), 150.2 (C-13), 147.0 (C-7), 146.5 (C-15), 138.4 (C-8), 135.35 (C-14), 135.32 (C-16), 135.1 (i-Ph), 129.2 (o-Ph), 128.69 (m-Ph), 128.1 (p-Ph), 127.8 (C-3), 126.1 (C-10), 125.6 (C-11), 125.5 (C-2), 124.5 (d, J_{FC}=6.4 Hz, C-9), 123.7 (d, J_{FC}=7.7 Hz, C-4), 121.1 (C-12), 120.3 (C-1), [C₆F₅ not listed]. [HP(*o*-tol)₃] cation: 143.8 (d, ${}^{2}J_{PC} =$ 9.0 Hz, o'-°tol), 136.9 (d, ${}^{4}J_{PC}$ =2.8 Hz, p-°tol), 134.9 (d, ${}^{2}J_{PC}$ =12.8 Hz, o-°tol), 133.4 (d, ${}^{3}J_{PC} = 10.7$ Hz, m'-°tol), 128.67 (d, ${}^{3}J_{PC} = 13.8$ Hz, m-°tol), 111.9 (d, ${}^{1}J_{PC} = 87.8 \text{ Hz}$, *i*-°tol), 21.0 ppm (d, ${}^{3}J_{PC} = 8.6 \text{ Hz}$, Me); ${}^{11}B{}^{1}H{}$ NMR (160 MHz, CD₂Cl₂, 298 K): $\delta = -16.0$ ppm ($v_{1/2} \approx 50$ Hz). ¹⁹F NMR (470 MHz, CD₂Cl₂, 298 K): $\delta = -127.0$ (*o*), -129.6 (*o'*), -163.4 (t, ${}^{3}J_{FF} = -127.0$) 20.6 Hz, p), -166.5 (m), -167.8 (m') (each m, each 1F, BC₆F₅), $[\Delta \delta^{19}F_{pm}=3.1, 4.4]; -127.1 (o), -132.7 (o'), -163.5 (t, {}^{3}J_{FF}=20.4 \text{ Hz}, p),$ -166.7 (m'), -167.1 (m) (each m, each 1F, BC₆F₅), [$\Delta \delta^{19}F_{pm} = 3.2, 3.6$]; -127.8 (*o*), -133.5 (*o'*), -163.3 (t, ${}^{3}J_{FF}=20.3$ Hz, *p*), -165.6 (*m'*), -166.6 ppm (m) (each m, each 1F, BC₆F₅), [$\Delta \delta^{19}F_{pm} = 2.3, 3.3$]; ³¹P NMR (202 MHz, CD₂Cl₂, 298 K): $\delta = -13.0$ ppm (br d, ${}^{1}J_{PH} \approx 483$ Hz); elemental analysis calcd (%) for C₆₁H₃₅BF₁₅P: C 66.93, H 3.22; found: C 67.21, H 3.18.

Preparation of compound 27b

Compound **8b**^[20] (25.0 mg, 81.3 µmol, 1 equiv) and tri(*o*-tolyl)phosphane (24.7 mg, 81.3 µmol, 1 equiv) were dissolved in dry *n*-pentane (5 mL). Then a solution of B(C_6F_5)₃ (41.7 mg, 81.3 µmol, 1 equiv) in dry *n*-pentane (5 mL) was added at room temperature. The reaction mixture turned dark red-brown immediately. After stirring the suspension overnight, the supernatant was removed with a pipette, and the solid residue was washed with *n*-pentane (3×2 mL). After drying in vacuo, the product was obtained as a brown solid (85 mg, 75.7 µmol, 93%). M.p. 124 °C. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ =pentalene anion: 7.52 (m, 2H, *o*-Ph),7.42 (m, 2H, *m*-Ph), 7.35 (m, 1H, *p*-Ph), 6.83 (dm, ³*J*=7.5 Hz, 1H,

12-H), 6.77 (s, 1H, 4-H), 6.73 (s, 1H, 1-H), 6.69 (td, ${}^{3}J = 7.5$ Hz, ${}^{4}J =$ 1.0 Hz, 1H, 11-H), 6.53 (td, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.0$ Hz, 1H, 10-H), 5.58 (dd, ${}^{3}J=7.5$ Hz, $J_{\rm FH}=4.5$ Hz, 1H, 9-H), 1.94 (s, 6H, 2,3-Me). [HP(o-tol)_3] cation: 8.33 (br d, ${}^{1}J_{PH} = 482.3$ Hz, 1 H, PH), 7.76 (m, 3 H, p-°tol), 7.54 (m, 3H, m'-°tol), 7.42 (m, 3H, m-°tol), 7.11 (dd, ${}^{3}J_{PH} = 16.0$ Hz, ${}^{3}J = 7.8$ Hz, 3H, o-°tol), 2.33 ppm (s, 9H, Me); ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ = pentalene anion: 160.7 (br, C-6), 155.9 (d, J_{FC} = 4.7 Hz, C-5), 150.2 (C-13), 146.9 (C-15), 146.5 (C-7), 138.4 (C-8), 135.6 (C-3),135.4 (i-Ph), 134.0 (C-14), 133.2 (C-2), 133.1 (C-16), 129.2 (o-Ph), 128.6 (m-Ph), 127.9 (p-Ph), 125.8 (C-10), 125.4 (dm, J_{FC}=8.1 Hz, C-4),125.3 (C-11), 124.2 (d, $J_{\rm FC}$ = 6.3 Hz, C-9), 121.9 (C-1), 120.8 (C-12), 20.1 (3-Me), 19.7 (2-Me), $[C_6F_5 \text{ not listed}]$. $[HP(o-tol)_3]$ cation: 143.8 (d, ${}^2J_{PC}=9.1$ Hz, o'-°tol), 136.9 (br, p-°tol), 134.9 (br d, ${}^{2}J_{PC}$ =12.8 Hz, o-°tol), 133.4 (br d, ${}^{3}J_{PC} = 10.7$ Hz, m'-otol), 128.7 (br d, ${}^{3}J_{PC} = 13.5$ Hz, m-otol), 111.9 (br d, ${}^{1}J_{PC} = 88.1 \text{ Hz}, i \cdot {}^{\circ}\text{tol}), 21.0 \text{ ppm} (d, {}^{3}J_{PC} = 8.9 \text{ Hz}, \text{ Me}); {}^{11}\text{B}{}^{1}\text{H} \text{NMR}$ (160 MHz, CD₂Cl₂, 298 K): $\delta = -16.1$ ($v_{1/2} \approx 50$ Hz). ¹⁹F NMR (470 MHz, CD_2Cl_2 , 298 K): $\delta = -126.9$ (*o*), -129.8 (*o'*), -163.5 (t, ${}^{3}J_{FF} = 20.2$ Hz, *p*), -166.7 (m), -167.9 (m') (each m, each 1F, BC₆F₅), [$\Delta\delta^{19}F_{pm}=3.2, 4.4$]; $-127.2 (o), -132.5 (o'), -163.7 (t, {}^{3}J_{FF} = 20.8 \text{ Hz}, p), -166.9 (m'), -167.2$ (m) (each m, each 1F, BC₆F₅), $[\Delta \delta^{19}F_{pm}=3.2, 3.5]$; -127.8 (o), -133.5 (o'), -163.4 (t, ${}^{3}J_{FF}=20.2$ Hz, p), -165.7 (m'), -166.7 ppm (m) (each m, each 1F, BC₆F₅), [$\Delta \delta^{19}F_{pm}$ =2.3, 3.3]; ³¹P NMR (202 MHz, CD₂Cl₂, 298 K): $\delta = -13.0$ ppm (br d, ${}^{1}J_{\rm PH} \approx 482$ Hz); elemental analysis calcd (%) for C₆₃H₃₉BF₁₅P: C 67.40, H 3.50; found: C 67.02, H 3.34.

Photophysical properties

UV/VIS spectra were recorded using a Shimadzu UV-3150 UV-VIS-NIR spectrophotometer with a resolution of 0.5 nm. Dilute solutions in spectral grade solvents in a 1 cm square quartz cuvette were used for the measurements.

Electrochemical properties

Cyclic voltammograms were recorded on an ALS/CHI-617A electrochemical analyzer (BAS). The CV cell consisted of a glassy carbon electrode, a Pt counter electrode, and an Ag/AgNO₃ reference electrode. The measurements were carried out under an argon atmosphere using CH₂Cl₂ solutions of samples with a concentration of 1 mM and 0.1 M tetrabutylammonium hexafluorophosphate as a supporting electrolyte. Redox potentials were calibrated with the ferrocene/ferrocenium couple as an internal standard.

Computational method

Geometry optimization of a series of dibenzopentalene derivatives were performed with the B3LYP theory and 6-31G(d) basis set, implemented in the Gaussian 09 Program.^[25] All stationary points were optimized without any symmetry assumptions and characterized by normal coordinate analysis at the same level of theory (the number of imaginary frequencies, NIMAG, was 0). Time-dependent density functional theory (TD-DFT) vertical excitation calculations were performed using the B3LYP theory and 6-31G(d) basis set as implemented in the Gaussian 09 program.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged. g) M. D. Watson, A. Fechtenkötter, K. Müllen, *Chem. Rev.* 2001, 101, 1267–1300; h) M. Bendikov, F. Wudl, D. F. Perepichka, *Chem. Rev.* 2004, 104, 4891–4945; i) J. E. Anthony, *Chem. Rev.* 2006, 106, 5028–5048; j) S. Sergeyev, W. Pisula, Y. H. Geerts, *Chem. Soc. Rev.* 2007, 36, 1902–1929; k) A. R. Murphy, J. M. Fréchet, *Chem. Rev.* 2007, 107, 1066–1096; l) T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Müllen, *Angew. Chem.* 2010, 122, 9252–9278; *Angew. Chem. Int. Ed.* 2010, 49, 9068–9093.

- [2] a) M. Ballester, J. Castaner, J. Riera, O. Armet, J. Org. Chem. 1986, 51, 1100-1105; b) R. F. C. Brown, F. W. Eastwood, N. R. Wong, Tetrahedron Lett. 1993, 34, 3607-3608; c) M. Saito, Symmetry 2010, 2, 950-969; d) H. Hopf, Angew. Chem. Int. Ed. 2013, 52, 12224-12226; Angew. Chem. 2013, 125, 12446-12449; See also: e) D. Hellwinkel, H.-J. Hasselbach, F. Lämmerzahl, Angew. Chem. Int. Ed. Engl. 1984, 23, 705-706; Angew. Chem. 1984, 96, 713-714; f) J. Blum, W. Baidossi, Y. Badrieb, R. E. Hoffman, J. Org. Chem. 1995, 60, 4738-4742; g) M. Chakraborty, C. A. Tessier, W. J. Youngs, J. Org. Chem. 1999, 64, 2947-2949; h) G. Babu, A. Orita, J. Otera, Chem. Lett. 2008, 37, 1296-1297; i) J. L. Jeffrey, R. Sarpong, Tetrahedron Lett. 2009, 50, 1969-1972; j) H. Zhang, T. Karasawa, H. Yamada, A. Wakamiya, S. Yamaguchi, Org. Lett. 2009, 11, 3076-3079; k) H. Li, B. Wei, L. Xu, W.-X. Zhang, Z. Xi, Angew. Chem. Int. Ed. 2013, 52, 10822-10825; Angew. Chem. 2013, 125, 11022-11025; l) T. Maekawa, Y. Segawa, K. Itami, Chem. Sci. 2013, 4, 2369-2373; m) J. Zhao, K. Oniwa, N. Asao, Y. Yamamoto, T. Jin, J. Am. Chem. Soc. 2013, 135, 10222-10225.
- [3] a) Z. U. Levi, T. D. Tilley, J. Am. Chem. Soc. 2009, 131, 2796-2797;
 b) Z. U. Levi, T. D. Tilley, J. Am. Chem. Soc. 2010, 132, 11012-11014.
- [4] a) T. Kawase, A. Konishi, Y. Hirao, K. Matsumoto, H. Kurata, T. Kubo, *Chem. Eur. J.* 2009, *15*, 2653–2661; b) T. Kawase, T. Fujiwara, C. Kitamura, A. Konishi, Y. Hirao, K. Matsumoto, H. Kurata, T. Kubo, S. Shinamura, H. Mori, E. Miyazaki, K. Takimiya, *Angew. Chem. Int. Ed.* 2010, *49*, 7728–7732; Angew. Chem. 2010, 122, 7894–7898.
- [5] a) M. Saito, M. Nakamura, T. Tajima, M. Yoshiko, Angew. Chem. Int. Ed. 2007, 46, 1504–1507; Angew. Chem. 2007, 119, 1526–1529;
 b) F. Xu, L. Peng, A. Orita, J. Otera, Org. Lett. 2012, 14, 3970–3973.
- [6] M. Saito, Y. Hashimoto, T. Tajima, K. Ishimura, S. Nagase, M. Minoura, *Chem. Asian J.* 2012, 7, 480–483.
- [7] a) C. Chen, M. Harhausen, R. Liedtke, K. Bussmann, A. Fukazawa, S. Yamaguchi, J. L. Petersen, C. G. Daniliuc, R. Fröhlich, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2013, 52, 5992–5996; Angew. Chem. 2013, 125, 6108–6112; See also: b) A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555–562.
- [8] a) B.-H. Xu, G. Kehr, R. Fröhlich, G. Erker, *Chem. Eur. J.* 2010, *16*, 12538–12540; b) B.-H. Xu, G. Kehr, R. Fröhlich, S. Grimme, G. Erker, *J. Am. Chem. Soc.* 2011, *133*, 3480–3491; c) B.-H. Xu, G. Kehr, R. Fröhlich, G. Erker, *Organometallics* 2011, *30*, 5080–5083.
- [9] a) A. G. Massey, A. J. Park, F. G. A. Stone, *Proc. Chem. Soc.* 1963, 212–213; b) A. G. Massey, A. J. Park, *J. Organomet. Chem.* 1964, 2, 245–250; c) A. G. Massey, A. J. Park, *Organometallic Syntheses* (Eds.: R. B. King, J. J. Eisch), Elsevier, New York, 1986, 3, pp. 461–462; d) D. J. Parks, W. E. Piers, G. A. P. Yap, *Organometallics* 1998, 17, 5492–5503; e) J. M. Blackwell, W. E. Piers, M. Parvez, R. McDonald, *Organometallics* 2002, 21, 1400–1407.
- [10] a) R. E. v. H. Spence, W. E. Piers, Y. Sun, M. Parvez, L. R. MacGillivray, M. J. Zaworotko, *Organometallics* **1998**, *17*, 2459–2469; b) C. Chen, G. Kehr, R. Fröhlich, G. Erker, *J. Am. Chem. Soc.* **2010**, *132*, 13594–13595.
- [11] H. Suzuki, K. Nakamura, R. Goto, Bull. Chem. Soc. Jpn. 1966, 39, 128–131.
- [12] a) K. Sonogashira, Y. Thoda, N. Hagihara, *Tetrahedron Lett.* 1975, 16, 4467–4470; b) S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, *Synthesis* 1980, 627–630; c) J. W. Grissom, G. U. Gunawardena, *Tetrahedron Lett.* 1995, 36, 4951–4954.
- [13] J. C. Hanekamp, P. A. A. Klusener, Synth. Commun. 1989, 19, 2677– 2682.

a) J. Yang, M. V. Lakshmikantham, M. P. Cava, J. Org. Chem. 2000, 65, 6739-6742; b) S. Song, Y. Jin, S. H. Kim, J. Moon, K. Kim, J. Y. Kim, S. H. Park, K. Lee, H. Suh, Macromolecules 2008, 41, 7296-7305; c) D. Wang, T. Michinobu, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 72-81; d) S. Ito, T. Miniami, M. Nakano, J. Phys. Chem. C 2012, 116, 19729-19736; e) M. Nakano, I. Osaka, K. Takimiya, T. Koganezawa, J. Mater. Chem. C 2014, 2, 64-70; See also: f) A. J. Berresheim, K. Müllen, Chem. Rev. 1999, 99, 1747-1786;

CHEMISTRY

AN ASIAN JOURNAL

- [14] a) C. Chen, F. Eweiner, B. Wibbeling, R. Fröhlich, S. Senda, Y. Ohki, K. Tatsumi, S. Grimme, G. Kehr, G. Erker, *Chem. Asian J.* 2010, *5*, 2199–2208; b) C. Chen, T. Voss, R. Fröhlich, G. Kehr, G. Erker, *Org. Lett.* 2011, *13*, 62–65; c) R. Liedtke, M. Harhausen, R. Fröhlich, G. Kehr, G. Erker, *Org. Lett.* 2012, *14*, 1448–1451.
- [15] Reviews: a) B. Wrackmeyer, Coord. Chem. Rev. 1995, 145, 125–156;
 b) B. Wrackmeyer, Heteroat. Chem. 2006, 17, 188–208; c) G. Kehr, G. Erker, Chem. Commun. 2012, 48, 1839–1850.
- [16] Reviews: a) D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535–1539;
 b) D. W. Stephan, Dalton Trans. 2009, 3129–3136; c) D. W. Stephan,
 G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46–76; Angew. Chem.
 2010, 122, 50–81; d) D. W. Stephan, Chem. Commun. 2010, 46, 8526–8533; e) G. Erker, C. R. Chim. 2011, 14, 831–841; f) G. Erker,
 Dalton Trans. 2011, 40, 7475–7483; g) G. Erker, Organometallics 2011, 30, 358–368.
- [17] A. Konishi, T. Fujiwara, N. Ogawa, Y. Hirao, K. Matsumoto, H. Kurata, T. Kubo, C. Kitamura, T. Kawase, *Chem. Lett.* **2010**, *39*, 300–301.
- [18] See for comparison: C.-C. Ko, W. H. Lam, V. W.-W. Yam, Chem. Commun. 2008, 5203–5205.
- [19] C. Chen, R. Fröhlich, G. Kehr, G. Erker, Chem. Commun. 2010, 46, 3580–3582.

- [20] S. V. Kovalenko, S. Peabody, M. Manoharan, R. J. Clark, I. V. Alabugin, Org. Lett. 2004, 6, 2457–2460.
- [21] L. R. Letsinger, E. T. Feare, T. J. Savereide, J. R. Nazy, J. Org. Chem. 1961, 26, 1271–1273.
- [22] H.-R. Zhang, K. K. Wang, J. Org. Chem. 1999, 64, 7996-7999.
- [23] a) I. Nakamura, T. Sato, M. Terada, Y. Yamamoto, Org. Lett. 2007, 9, 4081–4083; b) M. Kuhn, F. C. Falk, J. Paradies, Org. Lett. 2011, 13, 4100–4103.
- [24] a) R. H. Grubbs, D. Katz, *Chem. Ber.* **1993**, *126*, 149–162; b) M. Schmittel, M. Strittmatter, *Tetrahedron* **1998**, *54*, 13751–13760.
- [25] Gaussian 09, Revision A.02, M. J. Frisch et al. Gaussian, Inc., Wallingford CT, 2009. For the complete list of authors, see the Supporting Information.
- [26] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326.
- [27] Z. Otwinowski, D. Borek, W. Majewski, W. Minor, *Acta Crystallogr.* 2003, *A59*, 228–234.
- [28] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473.
- [29] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.

Received: January 20, 2014 Revised: February 13, 2014 Published online: March 28, 2014