Synthesis and ¹³C NMR spectra of 2,3-di-*O*-glycosyl derivatives of methyl α -L-rhamnopyranoside and methyl α -D-mannopyranoside *

Nikolay E. Nifant'ev, Alexander S. Shashkov, Grigory M. Lipkind and Nikolay K. Kochetkov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation) (Received December 28th, 1991; accepted April 9th, 1992)

ABSTRACT

The syntheses are described of 2,3-di-O-glycosyl derivatives of methyl α -L-rhamnopyranoside (1–5) and α -D-mannopyranoside (6–9).

X-(1 - Y-(1 -	$\rightarrow 2)$ $\rightarrow 3)$ α -L-Rha p-Q	ЭМе	X-(1 Y-(1	$\rightarrow 2)$ α -D-Man p-C	OMe
	X	Y		X	Y
1	α-L-Rhap	α -D-Glc p	6	α -L-Rha p	α -D-Glc p
2	α -D-Glc p	α -L-Rha p	7	α -D-Man p	α -D-Glc p
3	α -L-Rha p	β -d-Glc p	8	β -L-Fuc p	β -L-Fuc p
4	α -L-Rha p	β -L-Fuc p	9	α -L-Fuc p	β -L-Fuc p
5	β -D-Glc p	β -D-Gal p			

The deviation from additivity in 13 C NMR spectra calculated for 1–9 were similar for stereochemically related trisaccharides.

INTRODUCTION

As part of the development of a computerised approach to the elucidation of the structure of polysaccharides², sixteen 2,3-di-O-glycosyl derivatives of methyl α -L-rhamnopyranoside that had monosaccharide substituents with the α -D, β -D, α -L, and β -L configurations were synthesised³⁻⁵ and the deviations from additivity ($\Delta \Delta$) in their ¹³C NMR spectra were calculated^{6,7}. The values of the deviations for

Correspondence to: Dr. N.E. Nifant'ev, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.

^{*} Synthesis, NMR, and Conformational Studies of Branched Oligosaccharides, Part 7. For Part 6, see ref. 1.

the resonances of C-1/6 of the disubstituted rhamnose residue and for C-1' and C-1" of the 2- and 3-substituents, respectively, were included in a computer program for the analysis of ¹³C NMR spectra of regular branched polysaccharides containing 2,3-di-O-glycosyl- α -L-rhamnose units⁷. This program was validated⁸ on the basis of the ¹³C NMR spectra of polysaccharides whose structures had been elucidated by traditional methods.

Although the $\Delta\Delta$ values in the computer program were related to the absolute and anomeric configurations of substituents, the most essential parameters for determining the spectral and conformational properties of oligo- and poly-saccharides^{7,9}, namely, the effects of the stereochemistry at C-2,3,4, were not considered. Therefore, for the correct use of the computer program for the elucidation of the structure of unknown polysaccharides, it was necessary to assess the dependence of the $\Delta\Delta$ values on the configuration of C-2,3,4 in the monosaccharide substituents.

Moreover, in order to broaden the use of the program, it was necessary to prove experimentally the proposal⁷ about the applicability of the compiled $\Delta\Delta$ matrix also for the analysis of polysaccharides with 2,3-di-*O*-glycosyl- α -D-mannopyranose moieties.

In order to answer these questions, the model trisaccharide methyl glycosides 1-9 were synthesised and their ¹³C NMR spectra examined.

$\rightarrow 2)$ $\rightarrow 3)$ α -L-Rha	<i>p</i> -OMe	X-(1 Y-(1	$\rightarrow 2)$ $\rightarrow 3)$ α -D-Man	<i>p</i> -OMe
Х	Y		Х	Y
α -L-Rha p α -D-Glc p	α -D-Glc p α -L-Rha p	6 7	α-L-Rhap α-D-Manp	α -D-Glc p α -D-Glc p
α -L-Rha p α -L-Rha p β -D-Glc p	β -D-Glc p β -L-Fuc p β -D-Gal p	8 9	β -L-Fuc p α -L-Fuc p	β-L-Fuc <i>p</i> β-L-Fuc <i>p</i>
	$\rightarrow 2)$ $\rightarrow 3)$ α -L-Rhap α -D-Glcp α -L-Rhap α -L-Rhap α -L-Rhap β -D-Glcp	$\rightarrow 2) \qquad $	$\rightarrow 2) \qquad \qquad X-(1) \qquad \qquad Y-(1) \qquad \qquad X-(1) \qquad \qquad Y-(1) \qquad \qquad X-1-Rha p \qquad \qquad Y-(1) \qquad Y-(1) \qquad \qquad$	$ \rightarrow 2) \qquad $

RESULTS AND DISCUSSION

Synthesis of 1–9.—The trisaccharide methyl glycosides 1, 2, 6, and 7 were synthesised using the corresponding selectively substituted disaccharide precursors 18, 25, and 32, each of which contained a 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl residue. Thus, 18 was prepared by the reaction¹⁰ of 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl bromide (12) with methyl 2-O-acetyl-4-O-benzyl- α -L-rhamnopyranoside^{4,5} (10) in dichloromethane in the presence of mercuric cyanide. When this reaction was carried out at -50° C, and not at room temperature¹⁰, there was an increase in the α -stereoselectivity. The resulting mixture of disaccharide deriva-

tives (17 and 20) was O-deacetylated to give 18 (73%) and 21 (16.5%) with HO-2 unsubstituted. The α,β -ratio was 4.5:1 (cf. 2.3:1 in ref. 10).

Compound 25 was obtained by the reaction of methyl 4-O-benzyl-3-O-(4-methoxybenzyl)- α -L-rhamnopyranoside^{4,5} (11) with 12 at room temperature, which gave almost equal proportions of the α (24) and β derivative (27). Selective removal of the 4-methoxybenzyl groups then gave 25 (48%) and its β isomer 28 (42%), respectively, with HO-3 unsubstituted. The glycosylation of 11 with 12 at -50° C was more α -stereoselective and gave 25 and 28 in yields of 62 and 27%, respectively. The α -stereoselectivity was not increased by reaction at -78° C and the efficiency of the glycosylation was reduced.

Attempts to synthesise 25 by the reaction of 11 with 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl trichloroacetimidate¹¹ (13) under catalysis with trimethylsilyl triflate or with (2-pyridyl) 2,3,4,6-tetra-*O*-benzyl-1-thio-D-glucopyranoside¹² (14) in the presence of methyl iodide were unsuccessful, probably because of the instability of the 4-methoxybenzyl group in 11 in the presence of trimethylsilyl triflate (cf. ref. 13) and the low reactivity of 11 in the second reaction. The reaction of 11 with 14 in the presence of 0.3 mol¹² of methyl iodide proceeded slowly and increase in the amount of the promoter caused decomposition of 14. In contrast to the reported¹² stereospecific α -glucosylation with 14, the reaction of 11 with 14 gave both the α (24) and the β derivative (27), and the α , β -ratio was $\sim 2-3:1$ (TLC).

Compound 32 was prepared by the reaction of methyl 3-O-benzoyl-4,6-O-benzylidene- α -D-mannopyranoside¹⁴ (29) with 12 with subsequent O-debenzoylation. Even at room temperature, mainly α -glucosylation of 12 occurred and ~ 80% of 32 was obtained.

The structures of Glc residues in the disaccharide derivatives 25, 28, and 32 were proved by ¹H NMR spectroscopy (Table I), in particular, $J_{1',2'}$ values (3.5 Hz for α -Glc in 25 and 32, and 7.5 Hz for β -Glc in 28).

The reaction of 18, 22^{4,5}, 25, 32, and 35^{4,5} severally with 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl bromide (37) under Helferich conditions gave the trisaccharide derivatives 19, 23, 26, 33, and 36, respectively, in yields of 82–94%, which were converted by the usual methods into the respective target trisaccharide methyl glycosides 1, 3, 2, 6, and 4, the structures of which were established, as previously^{1,3-5}, after removal of protecting groups, by ¹H and ¹³C NMR spectroscopy (Tables II and III). The ¹H NMR spectra were assigned using a combination of ¹H–¹H COSY and RCT 2D experiments, and the ¹³C NMR spectra by 2D ¹H–¹³C correlated spectroscopy. In the analysis of NMR spectra, the anomeric configurations of the D-Gal *p*, D-Glc *p*, and L-Fuc *p* units were determined on the basis of the $J_{1',2'}$ values. The α configuration of the D-Man *p* and L-Rha *p* residues was proved by the characteristic chemical shifts of their C-5 resonances.

The reaction of **32** with 2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl bromide (**38**) under Helferich conditions and *O*-debenzoylation of the resulting trisaccharide derivative gave the diol **34** (82%). Removal of remaining protective groups from **34** gave the target trisaccharide methyl glycoside **7**.

Attempted syntheses of 5 by the reaction of 28 with ethyl 2,3,4,6-tetra-O-acetyl-1-thio- β -D-galactopyranoside (39) in the presence of nitrosyl tetrafluoro-

¹ H NMR dat	a ^a (δ in ppm	, J in Hz	() for 25, 2	28, 32, 43	, 45 , and	64									
Compound	Residue	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6a}$	$J_{5,6\mathrm{b}}$	$J_{6a,6b}$
25	Glc	5.04	3.72	4.13	3.69	4.18			3.5	9.4	9.4	9.4			
	Rha	4.87	3.91	4.07	3.40	3.81	1.47		1.6	3.2	9.5	9.5	6.2		
28	Glc	4.62			3.64	3.51			7.5		9.2	9.2			
	Rha	4.60	3.92	3.93	3.15	3.65	1.35		1.6		9.0	9.0	6.2		
32	Glc	5.56	3.63	4.10	3.66	4.02	3.77	3.82	3.5	9.4	9.4	9.4	3.9	2.0	10.5
	Man	4.78	4.17	4.30					1.2	3.5	5.1				
43	Gal	4.64	5.21	5.01	5.36	3.92	4.03	4.10	7.8	10.2	3.4	1.1	6.5	6.5	10.7
	Rha	4.61	5.08	3.86	3.60	-3.72	1.32		1.6	3.5	9.0		5.8		
45	Gal	5.13	5.88	5.60	5.96	4.38	4.50	4.61	7.8	10.6	3.5	1.0	4.5	7.5	11.0
	Rha	4.43	4.07	4.03	3.45	3.60	1.16		1.7	3.5	9.0	9.0	6.3		
64	Rha	5.12	5.66	5.83	5.57	4.23	0.87		1.7	3.5	10.0	10.0	6.2		
	Man	4.88	4.38	5.47	4.42	3.78	3.99	3.99	1.7	3.5	10.0	10.0	3.8	3.8	0
a Other signs	als: aromatic,	<u>8 6.90–8.</u>	.15; OMe,	3.18-3.4	7; AcO, 1	.95-2.16	(for 43);]	PhC <i>H</i> , 5.6	3 (for 32	0; PhCH	2, 4.20-5	.10.			

Π	
3LE	
TAE	

¹H NMR data ^a (δ in ppm, J in Hz) for trisaccharides 1–9 and disaccharides 57 and 59–63

Compound	Residue	H-1	-H-2	H-3	H-4	H-5	H-6a	q9-H	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	J _{4,5}	$J_{6,6a}$	J _{5,6b}	$J_{6a,6b}$
-	α -L-Rha-(1 \rightarrow 2)	5.10	4.05	3.81	3.45	3.74	1.28		1.7	3.4	9.6	9.6	6.4		
	α -D-Glc- $(1 \rightarrow 3)$	5.06	3.60	3.77	3.46	3.91	3.70	-3.82	3.6	10.0	10.0	9.0	4.8	2.5	
	α -L-Rha-OMe	4.80	4.14	3.88	3.60	3.71	1.33		1.8	3.0	9.4	9.4	6.0		
7	α -D-Glc- $(1 \rightarrow 2)$	5.05	3.53	3.77	3.48	3.86	3.75	-3.90	3.6	10.0	9.0	9.0	5.0	2.0	
	α -L-Rha-(1 \rightarrow 3)	5.15	4.06	3.74	3.46	3.76	1.30		1.6	3.4	9.6	9.6	6.2		
	α -L-Rha-OMe	4.86	4.01	3.93	3.68	3.75	1.32		1.7	3.1	9.5	9.5	5.6		
6	α -L-Rha- $(1 \rightarrow 2)$	5.14	4.05	3.79	3.43	3.72	1.27		1.6	3.4	9.6	9.6	6.1		
	β -D-Glc-(1 \rightarrow 3)	4.62	3.33	3.49	3.38	-3.45	3.74	3.90	7.6	9.1	9.1		5.0	2.0	12.0
	a-L-Rha-OMe	4.73	4.21	3.91	3.61	3.73	1.32		1.8	3.2	9.5	9.5	6.1		
4	α -L-Rha-(1 \rightarrow 2)	5.07	4.05	3.79	3.44	3.73	1.28		1.8	3.1	9.7	9.7	6.0		
	β -L-Fuc-(1 \rightarrow 3)	4.46	3.51	3.65	3.76	3.78	1.25		7.8	9.8	3.3	\sim	6.3		
	α -L-Rha-OMe	4.79	4.11	3.99	3.57	3.71	1.33		1.8	3.3	9.6	9.6	6.1		

TABLE I

5.6 6.2 5.5 5.5 7.5 12.2 5.5 5.5 5.5 5.5 5.5 5.5	5.0 5.0 4.9	5.0 5.5 5.5 5.1 5.1 6.1 6.1	5.0 5.5 5.5 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1
 9.1 9.5 6.2 9.6 9.1 9.1 	9.2 1.1 5.0 1.1 4.1	9.2 1.1 9.6 9.6 9.4 9.4 9.4 9.0 9.0 6. 6.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9.5 9.5 9.7 9.5 9.5 9.5 9.6 9.6 9.1 9.2 9.1 9.2 9.1 9.2 9.2	10.0 3.4 9.9 3.5	10.0 3.4 9.9 3.5 9.5 3.5 9.9 3.6 9.9 2.7 9.9 2.7 9.9 2.7 9.2 3.0 3.1 9.0 3.1 9.0 3.1 9.0 3.1 9.0 3.1 9.0	10.0 3.4 9.9 3.5 9.9 3.5 9.9 3.6 9.9 9.4 9.1 9.0 9.2 9.0 9.1 9.0 9.2 9.0 9.1 9.0 9.2 9.0 9.1 9.0 9.2 9.0 9.1 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.2 9.0 9.1 9.1 9.1 9.1 9.1 9.1
7.2 1.7 3.6 1.5 1.6 1.5 1.6	7.8	7.8 1.7 3.8 3.8 1.7 1.7 1.7	2.2.2 2.2.2 2.2.5 2.1.7 2.1.5 2.1.7 2.1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
4 2 7 3.89 8 3.89	् र र	4 9 3.89 6 3.91 8 - 3.91 3 3 - 3.81	4 9 3.89 6 3.81 8
3.73 3.73 3.97 3.73 3.73 3.75 3.75 3.75 3.75 3.77 3.76 3.77 3.76 3.77 3.76 3.76 3.76	3.78 1.2	3.78 1.2 3.67 3.77 3.67 3.77 3.76 1.27 3.65 3.77 3.67 1.23 3.67 1.21 3.67 1.21 3.77 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1	3,78 1.2 3,67 3,77 3,76 1.2 3,76 1.2 3,67 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
3.95 3.45 3.45 3.45 3.45 3.95 3.91 3.73	3.72	3.72 3.90 3.97 3.97 3.93 3.93 3.45	3.72 3.97 3.97 3.9.93 3.9.93 3.9.94 3.9.35 3.9.35 3.9.35 3.9.45 3.9.75 3.3.75 3.3.75 3.75 3.75 3.75 3.75 3.
3.97 3.97 3.97 3.97 3.97 3.98 3.98 3.68 3.99 3.66	3.65	3.65 3.95 3.95 3.65 3.65 3.87 3.87 3.87	3.65 3.95 3.95 3.95 3.95 3.95 3.93 3.93 3.9
2 3.50 3 3.97 3 3.97 3 3.97 4 04 8 4.03 3 3.97 4 04 8 4.11 8 4.11 3 3.49 3 3.49 4 11	4 3.52	14 3.52 00 4.31 07 3.76 33 3.53 35 3.53 35 4.08 35 3.53 36 3.59 376 3.59	44 3.52 00 4.31 3.76 3.76 3.75 3.76 3.75 3.76 3.75 3.76 3.75 3.76 3.75 3.75 3.76 3.76 3.75 3.73 3.75 3.79 3.75 3.79 3.75 3.79 3.75 3.79 3.75 3.79 3.75 3.79 3.75 3.79 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75
$\begin{array}{llllllllllllllllllllllllllllllllllll$	÷ 3) 4.5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} + 3 \\ \text{Me} \\ + 2 \\ \text{Me} \\ + 2 \\ \text{Me} \\ + 3 \\ \text{Me} \\ + 2 \\ \text{Me} \\ + 2 \\ + 2 \\ \text{Me} \\ + 2 \\ + 2 \\ \text{Me} \\ + 2$
$\begin{array}{l} \begin{array}{l} \rho^{-1} - \nabla \cdot \nabla$	β-L-Fuc-(1 –	$\beta_{-1}\text{-Fuc-}(1 \rightarrow \alpha_{-}\text{D}\text{-Man-ON} \rightarrow \alpha_{-}\text{D}\text{-Man-ON} \rightarrow \alpha_{-}\text{D}\text{-Fuc-}(1 \rightarrow \alpha_{-}\text{D}\text{-Man-ON} \rightarrow \alpha_{-}\text{D}\text{-Man-ON} \beta_{-}\text{D}\text{-Gal-}(1 - \alpha_{-}\text{L}\text{-Rha-ON} \rightarrow \alpha_{-}\text{L} \rightarrow$	β -L-Fuc-(1 \rightarrow α -D-Man-ON α -L-Fuc-(1 \rightarrow β -L-Fuc-(1 \rightarrow β -L-Fuc-(1 \rightarrow α -L-Rua-ON β -D-Gal-(1 $-$ α -L-Rua-ON α -L-Rua-ON α -L-Fuc-(1 $-$ α -D-Man-ON β -L-Fuc-(1 $-$ β -L-Fuc
n 9 r	œ	s 9 8 59	8 6 23 21 <i>6</i> 8

^{*a*} Signals for OMe at δ 3.40–3.43.

TABLE III

¹³C NMR data for trisaccharides 1–9, disaccharides 50–63, and methyl α -L-rhamnopyranoside (68) and methyl α -D-mannopyranoside (69) (D₂O; δ in ppm)

Compound	Residue	C-1	C-2	C-3	C-4	C-5	C-6	ОМе
1	α -L-Rha-(1 \rightarrow 2)	102.9	71.5	71.5	73.4	70.3	18.1	
	α -D-Glc- $(1 \rightarrow 3)$	96.4	72.5	74.2	70.9	73.1	61.9	
	α -L-Rha-OMe	101.0	75.3	76.8	72.0	69.9	17.9	56.1
2	α -D-Glc-(1 \rightarrow 2)	98.6	72.5	73.7	70.7	73.4	61.7	
	α -L-Rha-(1 \rightarrow 3)	102.9	71.2	71.4	73.3	70.3	17.8	
	α -L-Rha-OMe	99.1	76.4	76.2	73.4	70.3	17.6	56.1
3	α -L-Rha-(1 \rightarrow 3)	102.7	71.4	71.5	73.4	69.8	18.0	
	β -D-Glc- $(1 \rightarrow 3)$	105.1	74.9	77.1	70.9	77.1	62.2	
	α-L-Rha-OMe	101.1	78.0	81.3	72.5	70.3	17.9	56.1
4	α -L-Rha-(1 \rightarrow 2)	103.2	71.4	71.4	73.4	70.5	18.1	
	β -L-Fuc- $(1 \rightarrow 3)$	102.0	71.8	74.5	72.7	72.3	16.7	
	α -L-Rha-OMe	101.0	76.5	78.8	72.0	70.0	18.0	56.2
5	β -D-Glc- $(1 \rightarrow 2)$	104.6	74.8	77.1	71.0	77.1	62.2 ^a	
	β -p-Gal-(1 \rightarrow 3)	105.8	72.5	74.0	70.0	76.4	61.7 ^a	
	α-L-Rha-OMe	101.4	79.5	80.9	72.5	70.5	17.9	56.1
6	α -L-Rha-(1 \rightarrow 2)	99.4	71.7	71.1	73.6	70.3	18.7	
	α -D-Glc-(1 \rightarrow 3)	101.6	72.9	74.1	70.8	73.6	61.8	
	α-D-Man-OMe	99.1	76.3	77.0	68.2	74.4	61.9	56.2
7	α -D-Man-(1 \rightarrow 2)	102.5	71.2	71.5	67.9	74.3	62.1	
	α -D-Glc-(1 \rightarrow 3)	101.7	72.7	74.0	70.7	73.8	61.9	
	α-D-Man-OMe	100.5	78.4	79.3	67.7	73.9	61.7	55.9
8	β -L-Fuc-(1 \rightarrow 2)	104.6	72.3	74.2	72.6	72.0	16.7	
7	β -L-Fuc- $(1 \rightarrow 3)$	105.8	72.3	74.2	72.6	72.0	16.6	
	α-D-Man-OMe	101.4	78.4	81.5	67.1	73.8	62.1	56.2
9	α -L-Fuc-(1 \rightarrow 2)	99.3	69.4	70.5	73.2	68.3	16.7	
	β -L-Fuc-(1 \rightarrow 3)	105.6	72.4	74.3	72.6	72.1	16.6	
	α-D-Man-OMe	99.9	77.5	79.1	67.6	74.0	61.5	56.1
50	α -L-Rha-(1 \rightarrow 2)	103.4	71.4	71.4	73.4	70.3	18.1	
	α -L-Rha-OMe	100.9	79.6	71.4	73.6	69.8	17.8	56.2
51	β -D-Glc-(1 \rightarrow 2)	105.5	74.8	77.0	70.7	77.2	62.1	
	α-L-Rha-OMe	101.2	81.0	71.6	73.7	69.7	17.9	56.1
52	α -D-Glc-(1 \rightarrow 2)	98.9	72.7	74.1	70.9	73.3	61.8	
	α -L-Rha-OMe	99.6	77.4	71.1	73.4	70.0	17.9	56.1
53	α -D-Glc-(1 \rightarrow 3)	97.0	72.7	74.3	70.9	73.1	61.8	
	α -L-Rha-OMe	101.8	68.0	77.2	71.7	69.8	18.0	56.0
54	β -D-Glc-(1 \rightarrow 3)	105.0	74.9	77.3	71.1	77.2	62.2	
	α -L-Rha-OMe	102.0	71.2	81.5	72.5	69.7	18.2	56.1
55	α -L-Rha-(1 \rightarrow 3)	103.3	71.1	71.1	73.0	70.0	17.6	
	α -L-Rha-OMe	101.8	70.8	79.0	72.4	69.6	17.6	56.1
56	β -L-Fuc-(1 \rightarrow 3)	102.35	71.9	74.2	72.7	72.4	16.8	
	α-l-Rha-OMe	101.95	69.2	79.7	71.9	69.65	18.15	56.15
57	β -D-Gal-(1 \rightarrow 3)	105.5	72.3	73.8	69.8	76.3	62.2	
	α -L-Rha-OMe	101.8	71.1	81.2	72.3	69.5	17.8	55.9
58	α -D-Man-(1 \rightarrow 2)	103.0	71.7	71.7	67.8	74.1 ^a	61.8 ^b	
	α -D-Man-OMe	100.1	79.3	70.8	67.8	73.4 ^a	61.9 ^b	55.7
59	α -L-Rha-(1 \rightarrow 2)	99.7	70.2	71.5	73.4	71.8	17.8	
	α -D-Man-OMe	99.3	76.2	71.2	68.3	74.3	62.3	56.2
60	α -L-Fuc-(1 \rightarrow 2)	99.2	69.4	71.4	73.2	68.3	16.4	
	α-D-Man-OMe	99.9	77.4	70.8	68.1	74.1	62.0	56.1

Compound	Residue	C-1	C-2	C-3	C-4	C-5	C-6	OMe
61	β -L-Fuc-(1 \rightarrow 2)	105.9	72.2 ^{<i>a</i>}	74.3	72.4 ^a	72.6	16.7	
	α-D-Man-OMe	101.4	80.6	72.0	68.5	73.9	62.2	56.2
62	α -D-Glc- $(1 \rightarrow 3)$	102.0	73.0	74.2	71.0	73.6	62.0	
	α-D-Man-OMe	101.6	71.0	79.9	67.4	73.9	62.2	55.9
63	β -L-Fuc(1 \rightarrow 3)	105.4	72.3	74.2	72.6	72.0	16.7	
	α-D-Man-OMe	101.9	71.0	81.6	67.2	73.7	62.3	56.0
68	α-L-Rha-OMe	102.1	71.3	71.6	73.3	69.6	17.8	55.9
69	α-D-Man-OMe	102.1	71.2	71.9	68.1	73.6	62.3	55.9

TABLE III (continued)

 $\overline{a,b}$ Assignments may be interchanged.

Bz

овz

borate^{1,15-17} or with 2,3,4,6-tetra-O-acetyl- α -D-galactopyranosyl trichloroacetimidate (40) under catalysis with trimethylsilyl triflate^{1,18} were unsuccessful, probably due to the low reactivity of 28. In contrast, the reaction of 39 with the rhamnoside 10 gave 83% of the disaccharide 42.

A successful route to 5 involved the following reactions. Glycosylation of 10 with ethyl 2,3,4,6-tetra-O-benzoyl-1-thio- β -D-galactopyranoside¹ (41) in the presence of nitrosyl tetrafluoroborate gave the β -linked disaccharide derivative 44 (83%),

TABLE IV

Deviations from additivity ($\Delta\Delta$ values in ppm) in the ¹³C NMR spectra of trisaccharides 1–9 and 68–74

Compound	Stereo-	Devia	tions fr	om add	litivity				
	chemical code ^a	C-1	C-2	C-3	C-4	C-5	C-6	C-1′ ^b	C-1" b
$\frac{\alpha}{\alpha-L-Rha-(1 \rightarrow 2)} \sim \alpha-L-Rha-OMe$ $\alpha-D-Glc-(1 \rightarrow 3) \sim \alpha-L-Rha-OMe$ 1	LDL, aa	0.2	-1.0	-0.2	0	-0.1	0	-0.5	0
α -L-Fuc- $(1 \rightarrow 2)$ α -D-Man- $(1 \rightarrow 3)$ α -L-Rha-OMe 68	LDL,αα	0.5	-0.6	0.4	-0.2	0	0	-0.2	0.4
α -D-Glc- $(1 \rightarrow 2)$ α -L-Rha- $(1 \rightarrow 3)$ α -L-Rha-OMe 2	DLL, $\alpha \alpha$	-0.2	-0.2	-2.3	0.9	0.3	-0.1	-0.3	-0.4
α -L-Rha- $(1 \rightarrow 2)$ α -D-Glc- $(1 \rightarrow 3)$ α -D-Man-OMe 6	LDD, $\alpha \alpha$	0.2	0.6	- 1.9	1.0	0.3	0.3	-0.5	-0.3
α -D-Man- $(1 \rightarrow 2)$ α -L-Rha- $(1 \rightarrow 3)$ α -L-Rha-OMe 69	DLL,αα	0.3	0.3	-2.0	1.2	0.2	0.3	-0.5	-0.3
α -L-Rha- $(1 \rightarrow 2)$ β -D-Glc- $(1 \rightarrow 3)$ α -L-Rha-OMe 3	ldl., $lphaeta$	0.3	-1.5	0	-0.3	0.4	-0.2	-0.7	0.1
α -L-Fuc- $(1 \rightarrow 2)$ β -D-Glc $(1 \rightarrow 3)$ α -L-Rha-OMe 70	LDL, $lphaeta$	0.5	-1.7	-0.1	- 0.5	0	-0.2	- 1.0	0.3
α -L-Rha- $(1 \rightarrow 2)$ β -L-Fuc- $(1 \rightarrow 3)$ α -L-Rha-OMe 4	LLL, $lphaeta$	0.6	-0.9	-0.5	-0.2	-0.1	-0.2	-0.3	-0.4
α -L-Fuc- $(1 \rightarrow 2)$ β -L-Fuc- $(1 \rightarrow 3)$ α -L-Rha-OMe 71	LLL, $lphaeta$	0.6	-1.1	-0.4	-0.3	0.1	0.1	-0.7	-0.2
β -D-Glc- $(1 \rightarrow 2)$ β -D-Gal- $(1 \rightarrow 3)$ $\sim \alpha$ -L-Rha-OMe 5	ddl, $etaeta$	-0.5	-1.3	-0.4	-0.3	0.3	0	-0.9	0
β -L-Fuc- $(1 \rightarrow 2) \ \beta$ -L-Fuc- $(1 \rightarrow 3)^{\alpha}$ -D-Man-OMe 8	lld, $\beta\beta$	0.2	-1.9	-0.1	-0.5	-0.2	-0.2	-1.2	0.6
β -D-Glc- $(1 \rightarrow 2)$ β -D-Glc- $(1 \rightarrow 3)$ α -L-Rha-OMe 72	ddl, $etaeta$	0.6	-0.5	-0.2	-0.4	0.1	0	-0.2	0.1
α -D-Man- $(1 \rightarrow 2)$ α -D-Glc- $(1 \rightarrow 3)$ α -D-Man-OMc 7	DDD, $\alpha \alpha$	0.5	-0.7	0.5	0.6	0.2	0.3	-0.5	0.1
α -L-Rha- $(1 \rightarrow 2)$ α -L-Rha- $(1 \rightarrow 3)$ $\sim \alpha$ -L-Rha-OMe 73	llD,αα	0.6	-0.2	0.2	0.6	0.3	0.6	-0.5	0.3

TABLE IV (co	ntinued	j
--------------	---------	---

Compound	Stereo-	Devia	tions f	from ad	ditivit	у			
	chemical code ^a	C-1	C-2	C-3	C-4	C-5	C-6	C-1' b	C-1" b
α -L-Fuc- $(1 \rightarrow 2)$ β -L-Fuc- $(1 \rightarrow 3)$ α -D-Man-OMe 9	LLD, $\alpha\beta$	-0.6	0.3	1.4	0.4	-0.2	- 0.5	0.1	0.2
α -D-Man- $(1 \rightarrow 2)$ β -D-Glc- $(1 \rightarrow 3)$ α -L-Rha-OMe 74	ddl, $lphaeta$	0.6	0.5	-1.3	0.2	-0.1	0.1	-0.1	0.4

^{*a*} Absolute configurations of the substituents at O-2 and O-3 and of the bis-glycosylated unit, and the anomeric configurations of the substituents at O-2 and O-3, respectively. ^{*b*} C-1' and C-1" refer to the $(1 \rightarrow 2)$ - and $(1 \rightarrow 3)$ -linked residues, respectively.

methanolysis of which yielded **45** (88%). Reaction of **45** with 2,3,4,6-tetra-*O*-benzoyl- α -D-glucopyranosyl bromide (**15**), under promotion with silver triflate in nitromethane^{4,5}, gave the trisaccharide derivative **46** (92%). Hydrogenolysis of **46** and then *O*-debenzoylation gave the target trisaccharide methyl glycoside **5**.

The isomeric di-O-fucosylmannosides 8 and 9 were prepared by O-debenzoylation of the trisaccharide derivatives 48 and 49, respectively, the syntheses of which will be described elsewhere.

In addition to the trisaccharide methyl glycosides 1–9, the disaccharide methyl glycosides 57 and 59–63 were also synthesised, since their ¹³C NMR data were necessary for the calculation of the $\Delta\Delta$ values for 1–9. Other fragments of 1–9, namely, the disaccharide methyl glycosides 50–56 and 58, have been described^{7,20}.

R-(1 → 2)-α-L-Rha p-OMe	R-(1 → 3)- α -L-Rhap-OMe
50 R = α -L-Rha p	53 R = α -D-Glc p
51 R = β -D-Glc p	54 R = β -D-Glc p
52 R = α -D-Glc p	55 R = α -L-Rha p
	56 R = β -L-Fuc p
	57 R = β -D-Gal p
R -(1 → 2)- α -D-Man p -OMe	$R-(1 \rightarrow 3)-\alpha$ -D-Man <i>p</i> -OMe
58 R = α -D-Man p	62 R = α -D-Glc p
59 R = α -L-Rha p	63 R = β -L-Fuc p
60 R = α -L-Fuc p	
61 R = β -L-Fuc p	
p	

Compounds 57 and 59-63 were prepared by the usual methods from substituted derivatives 43, 64-66, 32, and 67, respectively. The rhamnosyl-mannoside 64 was obtained by glycosylation of 30 with 37 and subsequent acidic hydrolysis. The syntheses of the di- (65-67) and tri-saccharide (48 and 49) derivatives will be described elsewhere.

The deviations from additivity ($\Delta\Delta$ values) in ¹³C NMR spectra of 1–9.—The $\Delta\Delta$ values for 1–9 are listed in Table IV, which also contains data for the trisaccharide methyl glycosides **68–74** studied previously^{6,7}.

$Y-(1 \rightarrow 3)$ α -L-Rha <i>p</i> -OMe		
	Х	Y
68	α -L-Fuc p	α-D-Man p
69	α -D-Man p	α -L-Rha p
70	α -L-Fuc p	β -D-Glc p
71	α -L-Fuc p	β -L-Fuc p
72	β -D-Glc p	β -D-Glc p
73	α -L-Rha p	α -L-Rha p
74	α -D-Man p	β -D-Glc p

 $X-(1 \rightarrow 2)$

The $\Delta\Delta$ value for the resonance of each carbon atom (Ci) in the methyl α -L-rhamnoryranoside fragment was calculated^{6,7} using equation 1, and for those of C-1' and C-1" using equations 2 and 3, respectively.

$$\Delta\Delta \text{Ci} = \delta \text{Ci}_{\text{TS}} - \delta \text{Ci}_{(1 \to 2)} - \delta \text{Ci}_{(1 \to 3)} + \delta \text{Ci}_{\alpha - L - \text{Rha}p - \text{OMc}}$$
(1)

$$\Delta\Delta C-1' = \delta C-1'_{TS} - \delta C-1'_{(1 \to 2)}$$
⁽²⁾

$$\Delta\Delta C-1'' = \delta C-1'_{TS} - \delta C-1'_{(1 \to 3)} \tag{3}$$

In equation 1, $\delta \text{Ci}_{\text{TS}}$, $\delta \text{Ci}_{(1 \rightarrow 2)}$, $\delta \text{Ci}_{(1 \rightarrow 3)}$, and $\delta \text{Ci}_{\alpha-L-\text{Rhap-OMe}}$ are the chemical shifts of the resonances of Ci in the trisaccharide, the corresponding $(1 \rightarrow 2)$ - and $(1 \rightarrow 3)$ -linked disaccharides, and methyl α -L-rhamnopyranoside, respectively.

In the following discussion, the five-component code used for the branched trisaccharide methyl glycosides is made up of the absolute configurations of the 2and 3-O-glycosyl substituents and the 2,3-di-O-glycosylated residue, and the anomeric configurations of the former two substituents.

It was found^{6,7} for the 2,3-di-O-glycosylated methyl α -L-rhamnopyranosides that the $\Delta\Delta$ values varied within the range -2 to +1.5 ppm. As can be seen from the data in Table IV, the $\Delta\Delta$ values for 1–4 were not greatly different from those of the stereochemically similar⁹ trisaccharides **68**–**71**. For example, for **1** and **68**, the deviations from additivity are small and even the larger ones for C-2 differ by only 0.4 ppm (-0.6 and -1.0 ppm) in spite of the difference in configurations of C-2', C-2", and C-4'.

Likewise, there are similarities in the $\Delta\Delta$ values for the pairs 2 and 69 (DLL, $\alpha\alpha$) and for 3 and 70 (LDL, $\alpha\alpha$), for which large values were found, namely, $\Delta\Delta$ C-3 (-2.3 and -2.0 ppm) for 2 and 69 and $\Delta\Delta$ C-2 (-1.5 and -1.7 ppm) for 3 and 70. For 3 and 70, the $\Delta\Delta$ values for C-1' were also substantial (-0.7 and -1.0 ppm).

Comparison of the data for 4 and 71 also demonstrates the similarity of the $\Delta\Delta$ values for the stereochemically related trisaccharides. The components of the pairs 2 and 69, 3 and 70, and 4 and 71 differ in the configurations of C-2' and C-4', and the data in Table IV indicate that the $\Delta\Delta$ values depend to a smaller extent on the configuration of C-2,3,4 in the substituent residues than the respective chemical shifts taken into account in equations 1-3. For example, the chemical shifts of the C-2 resonances for 2 and 69 on one hand, and those for their disaccharide fragments α -D-Glc p-(1 \rightarrow 2)- α -L-Rha p-OMe (52) and α -D-Man p-(1 \rightarrow 2)- α -L-Rha p-OMe ^{6,7} on the other, differ by 0.9 and 1.4 ppm, respectively, but, the $\Delta\Delta$ C-2 values for 2 and 69 are approximately equal (-0.2 and 0.3 ppm).

Similar $\Delta\Delta$ values were found for the 2,3-di-*O*-glycosyl- α -D-mannopyranosides 6, 7, and 9 on one hand, and 2 and 69 (both refer to 6), 73, and 74, respectively, on the other. The trisaccharides in the pairs 7 and 73, 9 and 74, 2 and 6, and 6 and 69 are distinguished from each other not only by the absolute configurations of the monosaccharide constituents but also by the configurations of C-2' and C-2" (2 and 6) or C-2', C-4', and C-4" (9 and 74).

Another situation was observed for 8 (LLD, $\beta\beta$) and 72 (DDL, $\beta\beta$). In the earlier work^{6,7}, no noticeable $\Delta\Delta$ values were found for 2,3-di-O-glucosyl- α -L-rhamnoside (72), whereas, for 2,3-di-O- β -L-fucosyl- α -D-mannoside (8), they were -1.9 and -1.2 ppm for the C-2 and C-1' resonances, respectively. The lack of similarity in the $\Delta\Delta$ values for 8 and 72 may be due to the different orientations of HO-4". Indeed, molecular models of 8 and 72 show that the inversion of configuration at C-4" may alter the non-bonded interactions of the monosaccharide substituents, which could be reflected in ¹³C NMR spectra.

In order to assess this proposal, the trisaccharide methyl glycoside 5, which differs from 72 only in the configuration of C-4", was studied. Compound 5, like 8 and unlike 72, had the predicted $\Delta\Delta$ values for the C-2 and C-1' signals (-1.3 and -0.9 ppm).

Thus, for oligosaccharides branched at vicinal positions and in which non-bonded monosaccharide residues are in close proximity, inversion of configuration in the region C-2,3,4 of the substituent residues may affect the chemical shifts of the ¹³C resonances of other monosaccharide residues. The possibility of such effects should be taken into account in considerations of the results of computer-based calculations of the spectra of branched polysaccharides, in particular, in the choice of the admissible value of the deviation between experimental and calculated spectra.

It is concluded that, in the ¹³C NMR spectra of branched oligosaccharides with 2,3-di-O-glycosylated α -L-rhamnopyranose residues, the $\Delta\Delta$ values for stereochemically similar compounds are usually similar. In general, the $\Delta\Delta$ values for 2,3-di-O-glycosyl- α -L-rhamnopyranosides can be used to calculate the spectra of corresponding α -D-mannopyranose derivatives, provided the absolute configurations are inverted. These facts allow the reliable application of the $\Delta\Delta$ values reported here and earlier⁷ for the analysis of the structure of unknown polysaccharides with 2,3-di-O-glycosylated residues of α -rhamnopyranose and α -mannopyranose.

EXPERIMENTAL

General.—The reagents, solvents, and NMR instruments used in this work have been described elsewhere^{3,5,7}. Optical rotations for substituted compounds were determined on solutions in CHCl₃ and for oligosaccharides **1–9**, **57**, and **59–63** on solutions in water with a JASCO DIP-360 digital polarimeter at $26-30^{\circ}$ C.

TLC was performed on Kieselgel-60 (Merck) with EtOAc-toluene (A, 1:7; B, 1:2) and detection by charring with sulphuric acid. Column chromatography was performed on Silica Gel L 40/100 μ m (C.S.F.R.) by gradient elution with benzene-EtOAc.

Methyl 4-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl- α - (18) and- β -D-glucopyranosyl)- α -L-rhamnopyranoside (21).—A mixture of methyl 2-O-acetyl-4-O-benzyl- α -L-rhamnopyranoside^{4,5} (10; 310 mg, 1.0 mmol), Hg(CN)₂ (380 mg, 1.5 mmol), and

molecular sieves 4A in CH₂Cl₂ (10 mL) was stirred for 1 h under Ar. A solution of the glucosyl bromide **12** [prepared¹⁰ from the nitrobenzoate **16** (1.03 g, 1.5 mmol)] in CH₂Cl₂ (10 mL) was added dropwise during 30 min at -50° C. The mixture was stirred for 30 min at -50° C, then diluted with CHCl₃ (50 mL), filtered through Celite, washed with satd aq KBr and water, filtered through cotton, and concentrated. Column chromatography of the residue gave a fraction (~ 1 g) with $R_{\rm F}$ 0.40–0.50 (solvent A) that contained **17** and **20**. A solution of **17** and **20** in dry CH₂Cl₂ (5 mL) was treated with 0.1 M MeONa in MeOH (10 mL) for 20 min at room temperature and then concentrated. A solution of the residue in CHCl₃ (50 mL) was washed with water (2 × 50 mL) and concentrated. Column chromatography of the residue gave **18** (580 mg, 73%) and **21** (130 mg, 16.5%).

Compound 18 was amorphous and had $[\alpha]_D + 33^\circ$ (c 2), $R_F = 0.25$ (solvent A); lit.¹⁰ $[\alpha]_D + 33^\circ$ (c 1.2, CHCl₃).

Compound **21** was amorphous and had $[\alpha]_D - 7^\circ$ (*c* 2), R_F 0.16 (solvent *A*); lit.¹⁰ $[\alpha]_D - 11.1^\circ$ (*c* 1.1, CHCl₃).

The ¹H NMR data for 18 and 21 are listed in Table I.

Methyl 4-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzoyl- α -L-rhamnopyranosyl)- α -L-rhamnopyranoside (19).—A mixture of 18 (158 mg, 0.2 mmol), Hg(CN)₂ (100 mg, 0.4 mmol), HgBr₂ (30 mg), and molecular sieves 4A in MeCN (3 mL) was stirred for 45 min at 20°C under Ar, and a solution of 37 [prepared² from tetra-O-benzoyl-L-rhamnopyranose (230 mg, 0.4 mmol)] in 3:2 MeCN–CH₂Cl₂ (5 mL) was added dropwise during 1 h. The mixture was stirred for 1 h, then diluted with CHCl₃ (50 mL) and satd aq KBr, filtered through Celite, washed with aq KBr and water, and concentrated. Column chromatography of the residue gave amorphous 19 (210 mg, 84%), $[\alpha]_D + 130.5^\circ$ (c 2), R_F 0.70 (solvent A).

Methyl 4-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzoyl- α -L-rhamnopyranosyl)- α -L-rhamnopyranoside (23).—Glycosylation of 22^{4,5} (187 mg, 0.22 mmol) with 37 [prepared² from tetra-O-benzoyl-L-rhamnopyranose (232 mg, 0.4 mmol)], as for the synthesis of 19, gave amorphous 23 (270 mg, 94%), $[\alpha]_{\rm D}$ + 56° (*c* 2), $R_{\rm F}$ 0.51 (solvent *A*).

Methyl 4-O-benzyl-2-O-(2,3,4,6-tetra-O-benzyl- α - (25) and - β -D-glucopyranosyl)- α -L-rhamnopyranoside (28).— (a) Glycosylation of 11^{4,5} (97 mg, 0.25 mmol) with 12 [prepared¹⁰ from 16 (340 mg, 0.5 mmol)], as for the synthesis of 17 and 20, but at room temperature, gave a mixture (205 mg, 90%) of 24 and 27, $R_{\rm F}$ 0.52 and 0.46 (solvent A). To a solution of the mixture in 9:1 MeCN–water (10 mL) was added (NH₄)₂Ce(NO₃)₆ (275 mg, 0.5 mmol). The mixture was stirred for 20 min at 20°C, then diluted with CHCl₃ (50 mL), washed with water, aq NaHCO₃, and water, and concentrated. Column chromatography of the residue gave 25 (85 mg, 48%) and 28 (75 mg, 42%).

Compound 25 was amorphous and had $[\alpha]_D + 37^\circ$ (c 2), $R_F 0.27$ (solvent A). Compound 28 was amorphous and had $[\alpha]_D - 5^\circ$ (c 2), $R_F 0.18$ (solvent A). The ¹H NMR data for 25 and 28 are listed in Table I. (b) Glycosylation of 11 (388 mg, 1.0 mmol) with 12 [prepared¹⁰ from 16 (340 mg, 0.5 mmol)], as described above, but at -50° C (as in the synthesis of 17 and 20), and subsequent treatment with (NH₄)₂Ce(NO₃)₆ gave 25 (490 mg, 62%) and 28 (210 mg, 27%).

Methyl 4-O-benzoyl-2-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-3-O-(2,3,4tri-O-benzoyl- α -L-rhamnopyranosyl)- α -L-rhamnopyranoside (26).—Glycosylation of 25 (158 mg, 0.2 mmol) with 37 [prepared² from tetra-O-benzoyl-L-rhamnopyranose (232 mg, 0.4 mmol)], as for the synthesis of 19, gave amorphous 26 (206 mg, 82%), $[\alpha]_{\rm D}$ + 74° (*c* 2), $R_{\rm F}$ 0.70 (solvent *A*).

Methyl 4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)- α -D-mannopyranoside (32).—Glycosylation of 29¹⁸ (386 mg, 1.0 mmol) with 12 [prepared¹⁰ from 16 (1.03 g, 1.5 mmol)], as for the synthesis of 17 and 20, but at room temperature, gave, after column chromatography, methyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)- α -D-mannopyranoside [31; 680 mg, 75%; $R_{\rm F}$ 0.70 (solvent A)] and 105 mg of a mixture (~1:1) that contained 31 and an impurity with $R_{\rm F}$ 0.53 (solvent A), probably the product of β -glucosylation. O-Debenzoylation of 31 (680 mg), as for the synthesis of 18 and 21, gave amorphous 32 (524 mg 87%), $[\alpha]_{\rm D}$ + 64° (c 1), $R_{\rm F}$ 0.10 (solvent A).

The ¹H NMR data are listed in Table I.

Methyl 3-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl- α -L-rhamnopyranosyl)- α -D-mannopyranoside (33). —Glycosylation of 32 (120 mg, 0.15 mmol) with 37 [prepared² from tetra-O-benzoyl-L-rhamnopyranose (174 mg, 0.3 mmol)] was performed as for the synthesis of 19. The reaction mixture was filtered, washed with aq KBr and water, and concentrated as described above. To a solution of the residue in CHCl₃ (3 mL) was added aq 90% trifluoroacetic acid (1 mL). The mixture was stirred for 40 min, diluted with CHCl₃ (20 mL), washed with water, aq NaHCO₃, and water, filtered through cotton, and concentrated. Column chromatography of the residue gave amorphous 33 (154 mg, 89%), $[\alpha]_D + 73^\circ$ (c 1), R_F 0.30 (solvent B).

Methyl 3-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-2-O-(2,3,4,6-tetra-Obenzoyl- α -D-mannopyranosyl)- α -D-mannopyranoside (34).—Glycosylation of 32 (200 mg, 0.25 mmol) with 38 [prepared² from penta-O-benzoyl-D-mannopyranose (420 mg, 0.6 mmol)] as for the synthesis of 33, with subsequent acid hydrolysis, gave amorphous 34 (265 mg, 82%), $[\alpha]_{\rm D} - 20^{\circ}$ (c 1), $R_{\rm F}$ 0.32 (solvent B).

Methyl 4-O-benzoyl-3-O-(2,3,4-tri-O-benzoyl- β -L-fucopyranosyl)-2-O-(2,3,4-tri-Obenzoyl- α -L-rhamnopyranosyl)- α -L-rhamnopyranoside (**36**).—Glycosylation of **35**^{4,5} (300 mg, 0.41 mmol) with **37** [prepared² from tetra-O-benzoyl-L-rhamnopyranose (490 mg, 0.85 mmol)], as for the synthesis of **19**, gave amorphous **36** (430 mg, 87%), $R_{\rm F}$ 0.37 (solvent A), $[\alpha]_{\rm D} - 38^{\circ}$ (c 2).

Methyl 2-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -L-rhamnopyranoside (43).—A mixture of $10^{4,5}$ (174 mg, 0.56 mmol), 39^1 (285 mg, 0.73 mmol), and molecular sieves 4A in CH₂Cl₂ (2 mL) was stirred for 30 min at 20°C under Ar, and NOBF₄ (85 mg, 0.73 mmol) was added. The mixture was stirred for 40 min at 20°C, then diluted with CHCl₃ (30 mL), filtered through Celite, and washed with aq NaHCO₃ and water, and the solvent was evaporated. Column chromatography of the residue gave methyl 2-*O*-acetyl-4-*O*-benzyl-3-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl)- α -L-rhamnopyranoside (**42**; 298 mg, 83%), $R_{\rm F}$ 0.80 (solvent *B*). A solution of **42** in EtOAc (10 mL) and EtOH (5 mL) was shaken with 10% Pd/C at 40–42°C under H₂ (1 atm) for 2 h, then filtered, and the solvent was evaporated in vacuo. Column chromatography of the residue gave amorphous **43** (234 mg, 91%), $[\alpha]_{\rm D}$ + 11.5° (*c* 2), $R_{\rm F}$ 0.10 (solvent *B*).

The ¹H NMR data are listed in Table I.

Methyl 4-O-benzyl-3-O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)- α -L-rhamnopyranoside (45).—Glycosylation of 10^{4,5} (140 mg, 0.45 mmol) with 41¹ (375 mg, 0.59 mmol), as for the synthesis of 42, gave methyl 2-O-acetyl-4-O-benzyl-3-O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)- α -L-rhamnopyranoside (44; 332 mg, 83%) $R_{\rm F}$ 0.34 (solvent A). A solution of 44 (230 mg, 0.26 mmol) in CHCl₃ (2 mL) was treated with methanolic HCl (prepared at 0°C from AcCl (0.2 mL) and MeOH (5 mL)]. The mixture was kept for 4 h at 20°C, diluted with CHCl₃ (30 mL), washed with aq NaHCO₃ and water, and concentrated. Column chromatography of the residue gave amorphous 45 (193 mg, 88%), $[\alpha]_{\rm D}$ +73° (c 2), $R_{\rm F}$ 0.21 (solvent A).

The ¹H NMR data are listed in Table I.

Methyl 3-O-(2,3,4,6-tetra-O-benzyl- β -D-galactopyranosyl)-2-O-(2,3,4,6-tetra-Obenzoyl- β -D-glucopyranosyl)- α -L-rhamnopyranoside (47). —A mixture of 45 (175 mg, 0.21 mmol), 15 [prepared from penta-O-benzoyl-D-glucopyranose (280 mg, 0.4 mmol)], and molecular sieves 4A in MeNO₂ (6 mL) was stirred for 45 min at 20°C under Ar. Using a syringe, a solution of silver triflate (103 mg, 0.4 mmol) in MeNO₂ (2.6 mL) was introduced portionwise during 30 min at -20 to -30°C. The cooling bath was removed, CHCl₃ (30 mL) and satd aq Na₂S₂O₃ (5 mL) were added, and the mixture was stirred for 20 min, filtered through Celite, washed with aq Na₂S₂O₃ and water, and concentrated. The residue was treated with Ac₂O (3 mL) in pyridine (5 mL) for 16 h at 20°C, then concentrated. Column chromatography of the residue yielded amorphous 46 [272 mg, 92%; R_F 0.35 (solvent A)] which was then subjected to catalytic hydrogenolysis, as for the preparation of 43, to give amorphous 47 (244 mg, 96%), $[\alpha]_D + 90^\circ$ (c 2), R_F 0.15 (solvent A).

Methyl 3-O-benzoyl-2-O-(2,3,4-tri-O-benzoyl- α -L-rhamnopyranosyl)- α -D-mannopyranoside (64).—Glycosylation of 30¹⁸ (77 mg, 0.2 mmol) with 37 [prepared² from tetra-O-benzoyl-L-rhamnopyranose (290 mg, 0.5 mmol)] as for the synthesis of 33, with subsequent acid hydrolysis, gave amorphous 64 (113 mg, 75%), $[\alpha]_{\rm D}$ +49° (*c* 2), $R_{\rm F}$ 0.27 (solvent *B*).

The ¹H NMR data are listed in Table I.

Preparation of di- and tri-saccharide glycosides 1-9, 57, and 59-63.—(a) Procedure A. The acylated precursor (100–300 mg) was treated with 0.1 M MeONa in MeOH (10 mL) for 16–20 h at 20°C. The solution was neutralised with KU-2 (H⁺) resin, filtered, and concentrated. The residue was partitioned between water (10 mL) and CHCl₃ (10 mL). The aqueous layer was washed with CHCl₃ (4 × 10 mL), then concentrated, and the residue was subjected to gel filtration on fracto-gel TSK HW-40(S) (25–40 μ m, V_o 50 mL) in deionised water to give the product as an amorphous powder.

(b) Procedure B. The substituted compound was subjected to catalytic hydrogenolysis over Pd/C, as for the preparation of 43, and then treated with McONa and purified as in procedure A.

The ¹H and ¹³C NMR data for 1-9, 57, and 59-63 are listed in Tables II and III.

Methyl 3-O- α -D-glucopyranosyl-2-O- α -L-rhamnopyranosyl- α -L-rhamnopyranoside (1).—Removal of protecting groups from **19** (210 mg) (procedure B) gave **1** (73 mg, 89%), $[\alpha]_D$ + 57° (*c* 1.6); lit.¹⁰ $[\alpha]_D$ + 21.8° (*c* 1.6). The ¹³C NMR spectrum of **1** is identical to that in ref. 10.

Methyl 2-O- α -D-glucopyranosyl-3-O- α -L-rhamnopyranosyl- α -L-rhamnopyranoside (2).—Removal of protecting groups from **26** (206 mg) (procedure B) gave **2** (70 mg, 87%), $[\alpha]_{\rm D}$ + 28° (*c* 2).

Methyl 3-O- β -D-glucopyranosyl-2-O- α -L-rhamnopyranosyl- α -L-rhamnopyranoside (3).—Debenzoylation of 23 (270 mg) (procedure A) gave 3 (92 mg, 92%), $[\alpha]_D - 41^\circ$ (c 1.8).

Methyl 3-O- β -L-fucopyranosyl-2-O- α -L-rhamnopyranosyl- α -L-rhamnopyranoside (4).—Debenzoylation of 36 (370 mg) (procedure A) gave 4 (123 mg, 85%), $[\alpha]_D$ -19° (c 2).

Methyl 3-O- β -D-galactopyranosyl-2-O- β -D-glucopyranosyl- α -L-rhamnopyranoside (5).—Debenzoylation of 51 (244 mg) (procedure A) gave 5 (79 mg, 86%), $[\alpha]_{\rm D} - 5^{\circ}$ (c 1).

Methyl 3-O- α -D-glucopyranosyl-2-O- α -L-rhamnopyranosyl- α -D-mannopyranoside (6).—Removal of protecting groups from 33 (154 mg) (procedure B) gave 6 (55 mg, 83%), $[\alpha]_{\rm D}$ + 48° (c 1).

Methyl 3-O- α -D-glucopyranosyl-2-O- α -D-mannopyranosyl- α -D-mannopyranoside (7).—Removal of protecting groups from 34 (265 mg) (procedure B) gave 7 (98 mg, 92%), $[\alpha]_{\rm D}$ + 101° (*c* 2).

Methyl 2,3-*di*-O- β -L-*fucopyranosyl*- α -D-*mannopyranoside* (8).—Debenzoylation of 48 (313 mg) (procedure A) gave 8 (115 mg, 84%), $[\alpha]_{\rm D}$ + 12° (*c* 2).

Methyl 2-O- α -L-*fucopyranosyl-3*-O- β -L-*fucopyranosyl-\alpha-D-mannopyranoside* (9). —Debenzoylation of **49** (239 mg) (procedure A) gave **9** (87 mg, 83%), $[\alpha]_{\rm D} - 47^{\circ}$ (*c* 2).

Methyl 3-O-β-D-galactopyranosyl-α-L-rhamnopyranoside (57).—Removal of protecting groups from **43** (230 mg) (procedure A) gave **57** (116 mg, 82%), $[\alpha]_D - 28^\circ$ (*c* 2.3).

Methyl 2-O- α -L-*rhamnopyranosyl*- α -D-*mannopyranoside* (**59**).—Debenzoylation of **64** (100 mg) (procedure A) gave **59** (38 mg, 85%), $[\alpha]_D - 34^\circ$ (*c* 1).

Methyl 2-O- α -L-*fucopyranosyl*- α -D-*mannopyranoside* (**60**).—Debenzoylation of **65** (175 mg) (procedure A) gave **60** (62 mg, 87%), $[\alpha]_D - 96^\circ$ (*c* 1).

Methyl 2-O- β -L-*fucopyranosyl*- α -D-*mannopyranoside* (61).—Debenzoylation of 66 (38 mg) (procedure A) gave 61 (13 mg, 82%), $[\alpha]_{\rm D} + 2^{\circ}$ (*c* 2).

Methyl 3-O- α -D-glucopyranosyl- α -D-mannopyranoside (62).—Removal of protecting groups from 32 (50 mg) (procedure B, but without the *O*-deacylation step) gave 62 (18 mg, 84%), $[\alpha]_{\rm D}$ +148° (*c* 1).

Methyl 3-O- β -L-*fucopyranosyl*- α -D-*mannopyranoside* (63).—Removal of the benzylidene group in 67 (150 mg) by acidic hydrolysis (as for the preparation of 33 and 34), with subsequent debenzoylation (procedure A), gave 63 (55 mg, 91%), $[\alpha]_D$ + 48° (*c* 1).

REFERENCES

- 1 N.E. Nifant'ev, V.Y. Amochaeva, A.S. Shashkov, and N.K. Kochetkov, *Bioorg. Khim.*, 18 (1992) 699–715.
- 2 G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, *Carbohydr. Res.*, 175 (1988) 59–75.
- 3 N.E. Nifant'ev, L.V. Backinowsky, G.M. Lipkind, A.S. Shashkov, and N.K. Kochetkov, *Bioorg. Khim.*, 16 (1991) 517–530.
- 4 N.E. Nifant'ev, G.M. Lipkind, A.S. Shashkov, and N.K. Kochetkov, *Bioorg. Khim.*, 16 (1991) 1229–1250.
- 5 N.E. Nifant'ev, G.M. Lipkind, A.S. Shashkov, and N.K. Kochetkov, *Carbohydr. Res.*, 223 (1991) 109–128.
- 6 G.M. Lipkind, N.E. Nifant'ev, A.S. Shashkov, and N.K. Kochetkov, *Can. J. Chem.*, 68 (1990) 1238–1250.
- 7 N.K. Kochetkov, G.M. Lipkind, A.S. Shashkov, and N.E. Nifant'ev, Carbohydr. Res., 221 (1991) 145-168.
- 8 G.M. Lipkind, A.S. Shashkov, N.E. Nifant'ev, and N.K. Kochetkov, *Carbohydr. Res.*, 237 (1992) 11-22.
- 9 G.M. Lipkind, A.S. Shashkov, S.S. Mamyan, and N.K. Kochetkov, Carbohydr. Res., 181 (1988) 1-12.
- 10 L.V. Backinowsky, A.R. Gomtsyan, N.E. Byramova, and N.K. Kochetkov, *Bioorg. Khim.*, 10 (1984) 79–87.
- 11 B. Wegmann and R.R. Schmidt, J. Carbohydr. Chem., 6 (1987) 357-375.
- 12 G.V. Reddy, V.R. Kulkarni, and H.B. Mereyala, Tetrahedron Lett., 30 (1989) 4283-4286.
- 13 F. Yamazaki, T. Kitajima, T. Nukada, Y. Ito, and T. Ogawa, Carbohydr. Res., 201 (1990) 15-30.
- 14 S.A. Abbas and A.H. Haines, Carbohydr. Res., 39 (1975) 358-363.
- 15 V. Pozsgay and H.J. Jennings, J. Org. Chem., 52 (1987) 4635-4637.
- 16 N.E. Nifant'ev, V.Y. Amochaeva, and A.S. Shashkov, Bioorg. Khim., 18 (1992) 562-569.
- 17 N.E. NIfant'ev, A.S. Shashkov, and N.K. Kochetkov, Carbohydr. Res., 226 (1992) 331-336.
- 18 T.C. Wong, W. Haque, S.Z. Abbas, and A. Noujaim, J. Carbohydr. Chem., 9 (1990) 745-753.
- 19 N.E. Byramova, M.V. Ovchinnikov, L.V. Backinowsky, and N.K. Kochetkov, *Carbohydr. Res.*, 124 (1983) c8-c11.
- 20 K. Bock, C. Pedersen, and H. Pedersen, Adv. Carbohydr. Chem. Biochem., 42 (1984) 193-225.