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The discovery and development of effective therapeutic 

regimens that target cancer metastasis remains an urgent and 

largely unmet need. Metastasis is a significant contributing factor 

in over ninety percent of deaths attributed to cancer.
1
 The 

sequence of steps involved in the metastatic process associated 

with tumor cells includes invasion of these cells from the primary 

tumor into the surrounding tissue, intravasation into the 
circulatory system, extravasation from the circulatory system, 

and establishment of a secondary tumor.
1–3

 One promising 

strategy towards the development of anti-metastatic agents 

involves targeting one or more members of the papain family of 

cysteine protease cathepsins (comprised of 11 members: B, C, F, 

H, K, L, O, S, V, W, and X/Z) with small-molecule inhibitors.
4–8

 
Cathepsins aid in the invasion and migration of tumor cells 

through the degradation of proteins comprising the extracellular 

matrix including collagen,
9–15

 fibronectin,
9,10,16,17

 and 

laminin.
9,10,17

 Elevated levels of cathepsins L, B, H, X, and S 

have been detected in several cancer types including breast, 

prostate, brain, colorectal, and lung cancers.
18,19

 Moreover, 
increased expression of these cathepsins correlates to poor 

prognosis in breast, ovarian, colorectal, brain, lung, and head and 

——— 

Abbreviations: CatL, cathepsin L; HUVECs, human umbilical vein 

endothelial cells; SAR, structure-activity relationship; MMP, matrix 

metalloprotease; ALP, alkaline phosphatase. 
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neck cancers.
18,19

 Decreased tumor volume and increased survival 
rates were observed in a mouse model upon treatment with the 

pan-cathepsin inhibitor JPM-OEt in combination with 

cyclophosphamide, an established chemotherapeutic agent.
20

  

In addition to the role that these enzymes play in metastasis 

and migration of cancer cells through degradation of components 

of the extracellular matrix, cysteine cathepsin proteases have 
been implicated as targets for osteoporosis,

21
 rheumatoid 

arthritis,
22

 atherosclerosis,
23

 and diseases of the immune system.
24

 

Cathepsin inhibitors as drug candidates that have advanced in the 

pharmaceutical pipeline for the treatment of various diseases 

include VBY-825 (Virobay),
25,26

 Odanacatib (Merck),
27–29

 

LY3000328 (Eli Lilly),
30,31

 (Figure 1). 

 

 

 

 

 

 

 

 

 

Figure 1. Sampling of cathepsin inhibitors recently described in the pharma-

ceutical pipeline 

ART ICLE  INFO ABST RACT  

Article history: 

Received 

Revised 

Accepted 

Available online 

The magnitude of expression of cathepsin L, often upregulated in the tumor microenvironment, 

correlates with the invasive and metastatic nature of certain tumors. Inhibition of cathepsin L 

represents an emerging strategy for the treatment of metastatic cancer. A potent, small-molecule 

inhibitor (referred to as KGP94) of cathepsin L, and new KGP94 analogues were synthesized. 

(3,5-Dibromophenyl)-(3-hydroxyphenyl) ketone thiosemicarbazone (22), with an IC50 value of 

202 nM, exhibited similar inhibitory activity against cathepsin L compared to KGP94 (IC50 = 

189 nM). Due to limited aqueous solubility of KGP94, a water-soluble phosphate salt (KGP420) 

was prepared in order to facilitate future in vivo studies. Enzymatic hydrolysis with alkaline 

phosphatase (ALP) demonstrated that the phosphate prodrug, KGP420, was readily converted to 

the parent compound, KGP94. 

2016 Elsevier Ltd. All rights reserved. 
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VBY-825 (Virobay), a pan cysteine protease inhibitor 

targeting the treatment of liver fibrosis, incorporates a carbonyl 
warhead into a peptide-like backbone allowing for reversible 

inhibition of targeted cathepsins.
25,26

 Odanacatib (Merck), a 

nitrile based inhibitor, targets cathepsin K for suppression of 

bone resorption in osteoporosis.
27–29

 LY3000328 (Eli Lilly), a 

noncovalent cathepsin S inhibitor, targets the treatment of 

abdominal aortic aneurysm. 
30,31

 Although significant progress 
has been achieved towards the development of cathepsin 

inhibitors as therapeutic treatment options, no FDA approved 

drugs currently exist in this area. Additionally, small-molecule 

agents that specifically target the inhibition of cathepsin L for the 

treatment of pathological processes currently in clinical trials 

remains an unmapped frontier open to exploration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representative potent covalent inhibitors of CatL. 

Small-molecule inhibitors of cathepsin L have been 

synthesized that incorporate a variety of electrophilic moieties 

(warheads) capable of interacting with the catalytic site residue 

Cys25 (Figure 2). Warheads which undergo covalent bonding 
with the Cys25 thiolate of cathepsin L include the epoxide in 

Clik 148 (I),
32

 the carbonyl of thiocarbazate II,
33

 the epoxide in 

JPM-OEt III,
34,35

 the nitrile in the triazine analogue IV,
36

 the 

cyclic carbonyl in azepanone V,
37

 the α,β-unsaturated amide of 

gallinamide A (VI),
38,39

  and the aldehyde of the N-(1-

naphthalenylsulfonyl) peptide derivative VII
40

 (Figure 2). 
Cruzain, a cathepsin L-like cysteine protease found in 

Trypanosoma cruzi, is targeted for the treatment of Chagas’ 

disease. Initial studies towards the development of  cruzain
41,42

 

inhibitors led to the discovery of cathepsin L inhibitors bearing 

the thiosemicarbazone moiety which contain an electrophilic 

thiocarbonyl warhead. Building on these results, we embarked on 
a structure-activity relationship (SAR) guided program designed 

to incorporate the thiosemicarbazone moiety within appropriately 

functionalized benzophenone, pyridine, thiophene, fluorene, 

thiochromanone, benzothiepine, and dihydroquinoline molecular 

scaffolds. A focused small library of cathepsin inhibitors resulted 

from these studies,
43–51

  from which a sub-set of 42 molecules 
demonstrated IC50 values below 500 nM (Figure 3). 

 

 

 

 

 

 

 

 

 

Figure 3. Representative examples of previously described 

thiosemicarbazone based inhibitors of CatL. 

A lead compound (referred to as KGP94), which is a slowly 

reversible, time-dependent inhibitor of cathepsin L, emerged 
from this small library of structurally diverse thiosemicarbazone 

analogues.
43,46,47

 Low cytotoxicity against human umbilical vein 

endothelial cells (HUVECs), the ability to inhibit the invasive 

and migratory potential of both PC-3ML (prostate cancer cell 

line) and MDA-MB-231 (breast cancer cell line) in vitro, and the 

ability to reduce metastatic tumor burden and increase survival 
rate in PC-3ML tumor bearing mice has led to the identification 

of KGP94 as a pre-clinical candidate for potential development 

as an anti-metastatic agent, functioning through a potent 

inhibition of cathepsin L.
43,47,52

 Since KGP94 has limited 

solubility in water, it proved desirable to prepare a water-soluble 

prodrug salt to further the pre-clinical development of this 
promising agent. Fortunately, KGP94 bears a phenolic hydroxyl 

group which provides a convenient molecular handle for the 

introduction of a bioreversible ester linkage in order to improve 

aqueous solubility. Recently, we have reported the synthesis of 

the phosphate prodrug OXi8007, a vascular disrupting agent 

currently in pre-clinical studies for the treatment of cancer.
53

 
Installation of a phosphate prodrug salt for the purpose of 

increasing aqueous solubility of FDA approved drugs intended 

for oral or parental administration has been successfully 

demonstrated by fosfpropofol, fosamprenavir, and 

fosfluconazole.
54

 

In addition to the synthesis of a water-soluble phosphate 
prodrug of KGP94, several analogues of this parent, lead 

compound were also prepared. Previous SAR studies related to 

thiosemicarbazone inhibitors based on the benzophenone 

molecular scaffold highlighted the importance of the 3-

bromophenyl moiety.
45,46

 The extended series of benzophenone-

based thiosemicarbazone inhibitors incorporated both m-hydroxy 
and m-bromo substituents.  Our initial synthetic route

46
 to KGP94 

(Scheme 1) utilized the addition of 3-bromophenylmagnesium 

bromide to the corresponding Weinreb amide XIV to afford (3-

bromophenyl)(3-hydroxyphenyl)methanone (XV), which was 

condensed with thiosemicarbazide followed by deprotection of 

silyl ether XVI. However, HPLC analysis of the final product 
revealed the presence of a trace amount of an impurity in which 

the bromine atom had been replaced by a hydrogen atom.
46

 

Replacement of bromine by hydrogen likely occurred during the 

halogen-metal exchange reaction since excess magnesium was 

used to prepare benzophenone (3-bromophenyl)-(3-

hydroxyphenyl)-methanone (XV).
  

 

 

 

 

 

 

 

 

 

 

Scheme 1. Previously reported synthetic route towards KGP94
46

 

In an effort to avoid impurities in which the Br atom was 
replaced by a hydrogen atom, KGP94 and analogues were 

synthesized through a revised route (Scheme 2). Instead of using 

1,3-dibromobenzene as the precursor to the organometallic 



  

 

Scheme 2. Improved synthetic route towards KGP94 and analogues 20, 22, 23-26

reagent for the synthesis of KGP94 (18), a protected m-

bromophenol 1 was reacted with n-butyllithium to form the 

intermediate organolithium reagent, which was reacted with 

Weinreb amide 5 to afford the desired functionalized 

benzophenone 9. Benzophenone intermediates 10 and 12 were 

synthesized in a similar manner by reacting the appropriately 
substituted aromatic ring with n-butyllithium followed by the 

addition of Weinreb amide 6 to afford ketone 10 or the addition 

of aldehyde 7 followed by oxidation with PCC to afford ketone 

12. Condensation of benzophenone intermediates 9, 10, and 12 

(separately) with thiosemicarbazide followed by desilylation with 

TBAF afforded target thiosemicarbazone analogues KGP94 (18), 
20, and 22. HPLC analysis indicated no trace amount of the 

impurity in which bromine was replaced by hydrogen in the final 

product for KGP94 (18). 

Synthesis of dimethylresorcinol and resorcinol analogues 23-

26 utilized commercially available 1-bromo-3,5-dimethoxy 

benzene as a starting material to form an intermediate 
organolithium reagent which upon reaction with Weinreb 5 or 8 

afforded ketones 13 and 15, respectively (Scheme 2). 

Demethylation of these 3,5-dimethoxybenzophenone 

intermediates 13 and 15 with boron tribromide afforded 3,5-

dihydroxybenzophenones 14 and 16. Subsequent condensation of 

ketones 13-16 with thiosemicarbazide (separately) under 
microwave irradiation generated target thiosemicarbazone 

analogues 23-26. 

In order to increase the aqueous solubility and possibly the 

bioavailability of KGP94 (18), a water-soluble phosphate 

prodrug salt was prepared through phosphorylation of the 

phenolic moiety (Scheme 3). Initial attempts to incorporate the 
dual thiosemicarbazone and phosphate moieties were met with 

difficulty and included phosphorylation of (3-

hydroxyphenyl)(phenyl)ketone thiosemicarbazone (used as a 

model system) which led to multiple products including 

benzylated and debenzylated side products. Attempts to deprotect 

dibenzyl(3-(3-bromobenzoyl)phenyl) phosphate using catalytic 

hydrogenation led to multiple products and with longer reaction 

times, in addition to removal of the benzyl groups, the carbonyl 

group was reduced to its corresponding methylene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Prodrug derivatization of KGP94 (18) to form water-soluble salt 

KGP420 (31).      

Successful completion of the phosphate prodrug was 

accomplished through phosphorylation of 3-bromophenyl-3-

hydroxyphenyl methanone 27 with dibenzyl chlorophosphate 
(prepared in situ)

55
 to afford the corresponding dibenzyl 

phosphate ester 28 (Scheme 3). Subsequent deprotection of the 

benzyl groups with 33% HBr in AcOH generated phosphoric 

acid ester 29. Successful completion of the synthesis of the 



  

phosphate salt of benzophenone thiosemicarbazone KGP420 (31) 

was accomplished by the condensation of phosphoric acid ester 
29 with thiosemicarbazide to afford benzophenone 

thiosemicarbazone 30, which upon reaction with sodium 

carbonate generated the desired disodium phosphate salt KGP420 

(31). Interestingly, KGP420 (31) represents the second known 

example of a reported scaffold incorporating both a 

thiosemicarbazone and phosphate moiety.
56

 

One challenge inherent to the synthesis of thiosemicarbazone 

based inhibitors is the propensity for isomerization about the 

imine bond.
57–59

 As a notable example, 2-formylpyridine-4’,4’-

dimethyl thiosemicarbazone, isolated in the Z configuration, 

isomerized in solution generating varying Z/E equilibrium 

isomeric ratios which were dependent on the capability of the 
particular solvent to disrupt the intramolecular hydrogen bonding 

interaction between the pyridine nitrogen and N-H hydrogen of 

the thiosemicarbazone.
60

 The benzophenone thiosemicarbazone 

analogues reported herein, except KGP420 (31) (60:40 isomeric 

mixture in D2O), exist predominately in the E configuration in 

solution (Figure 4). Previous molecular modeling of cathepsin L 
and KGP94 showed the thiosemicarbazone moiety oriented in the 

E configuration
47

 which correlates with the orientation of the 

major isomer found in solution. 

 

 

 

 

 

 

 

 

Figure 4. ROESY and COSY correlations for analogue 22 as a representative 

example of the major isomer observed in DMSO-d6. 

Isomerization of KGP94 (18) and benzophenone 

thiosemicarbazone analogues in DMSO-d6 occurred over a period 

of time (Table 1). Analogue 26 isomerized the least with only 9% 

of the minor isomer present after standing in DMSO-d6 for one 

week. Increasing the number of m-bromo substituents on the ring 
trans to the –NH of the thiosemicarbazone moiety of the major 

isomer, and increasing the number of m-hydroxy substituents on 

the ring cis to the –NH of the thiosemicarbazone moiety in the 

major isomer led to an increase in the concentration of E-isomer 

present at equilibrium.  

Table 1. Isomerization of benzophenone thiosemicarbazone 
analogues in DMSO-d6  

 

Cmpd 

Percent Z isomer present 
a
 

0 hours 48 hours 1 week 

18 3% 23% 23% 

22 1.5% 17% 18% 

23 4% 12% 20% 

24 11% 13% 13% 

25 2% 10% 14% 

26 0.2% 8% 9% 

a
 Isomerization of KGP94 and analogues were monitored by 

1
H NMR in 

DMSO-d6 as solvent. 

The isomer ratio was affected to the greatest degree by the 

replacement of hydrogen with a hydroxyl substituent in the meta 
position as demonstrated by the decrease of Z-isomer present at 

equilibrium as exemplified by the comparison of analogues 18 

(23% Z-isomer) and 24 (13% Z-isomer) as well as analogues 22 

(18% Z-isomer) and 26 (9% Z-isomer). The replacement of a 

hydrogen with a bromo substituent in the meta position on the 

ring trans to the –NH of the thiosemicarbazone moiety of the 
major isomer led to a decrease of Z-isomer present at equilibrium 

as demonstrated by the comparison of analogues 18 and 22, 23 

and 25, 24 and 26. Although this is a limited data set, it is 

interesting to note correlations between isomer ratios and 

substituent effects. For further analysis see supplementary 

material.  

(3,5-Dibromophenyl)-(3-hydroxyphenyl) ketone 

thiosemicarbazone (22) exhibited comparable activity to KGP94 

(18)
47

 against cathepsin L with an IC50 value of 202 nM (Table 

2). Using Morrison's equation for tight binding (or covalent, 

reversible) inhibitors we obtained a Ki
app 

of 8.4 nM (5 min pre-

incubation) compared to a value of 3.7 nM for compound 18. The 
progress curves for compound 22 demonstrated the time 

dependence of inhibition (see supplementary material). With 

cathepsin L inhibition of 40% - 52% at 10 μM, activity of the 

symmetrical, dimethylresorcinol, and resorcinol 

thiosemicarbazone analogues 20, 23, 25, 26 bordered the internal 

cutoff threshold in our laboratory (percent inhibition ≤ 50% at 10 
μM). While the presence of one m-hydroxyl group on the 

aromatic ring opposing the 3-bromophenyl substituent in the 

thiosemicarbazone analogues was important for activity against 

cathepsin L, for this group of compounds, the presence of two m-

hydroxyl or two m-dimethoxy substituents diminished inhibitory 

activity against cathepsin L. KGP94 (18) did not display 
significant activity against other proteases such as matrix 

metalloprotease MMP-9 or the cysteine protease caspase-3 (See 

supplementary material).  

Table 2. Inhibitory activity of benzophenone thiosemicarbazone 

analogues. 

 

  IC50
a
 Values (nM) 

Cmpd R
1

 R
2

 R
3

 R
4

 CatL CatB 

18 H Br H OH 189
b 

>10000
 b
 

20 Br OH Br OH >10000 >10000
 

22 Br
 c
 Br

 c
 H

 c
 OH

c 
202 >10000 

23 H Br OCH3 OCH3 >10000 >10000 

24 H Br OH OH ~10000 >10000 

25 Br Br OCH3 OCH3 >10000 >10000 

26 Br Br OH OH >10000 >10000 

31 H Br H O-P(O)O2Na2 >10000 ND
d 

a 
These values are averages of a minimum of a triplicate of experiments. 

Each assay utilized 2% DMSO with a 5 min pre-incubation period. Standard 

error values can be found in the supplementary material. b Previously reported 

by us.
47

 
c 

Assigned R groups in Table 2 do not correspond to assigned R 

groups in Scheme 2. R groups were arranged in this manner to provide clarity 

for the SAR study.
 d 

Not Determined. 



  

The phosphate prodrug KGP420 (31) demonstrated aqueous 

solubility greater than 400 mg per mL in comparison to the anti-
cancer agent KGP94 (18) which demonstrated aqueous solubility 

less than 0.67 mg per mL (see supplementary material). The 

stability of phosphate prodrug KGP420 (31) was evaluated in 

aqueous solution. KGP420 (31) underwent very minor 

spontaneous hydrolysis over 48 h incubation at 37 °C in 10 mM 

glycine buffer solution (pH 8.6) without alkaline phosphatase 
(ALP) (Figure 5A). Additionally, it was not hydrolyzed when 

stored in water at 4 °C for one week. Enzymatic cleavage of 

prodrug KGP420 (31) occurred with nearly 100% conversion to 

the anticipated parent drug KGP94 (18) when treated with 1 unit 

of ALP over the course of 48 hours (Figure 5B). Enzymatic 

cleavage of KGP420 (31) yielded the active product KGP94 (18) 
which inhibited cathepsin L by 88% at 10 µM. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cleavage of KGP420 (31) with alkaline phosphatase (ALP) 

analyzed by HPLC. (A) Control, 31 (tR = 1.6 min) was incubated for 48 h 

without ALP; (B) 31 was treated with 1 unit of ALP for 48 h, with a single 

product peak 18 (tR = 5.4 min) observed. 

KGP94 (18) and the corresponding prodrug KGP420 (31) 

were evaluated for cytotoxicity toward normal primary cells. 
HUVECs were used a model for normal primary cells. Both 

KGP94 (18) and KGP420 (31) did not exhibit significant 

cytotoxicity against HUVECs especially compared to FDA 

approved cancer therapeutics doxorubicin and paclitaxel (Table 

3). Aggressive cell migration is associated with a metastatic 

phenotype, and compounds 22, 18, and 31 significantly inhibited 
the migration of MDA-MB-231 breast cancer cells compared to 

the vehicle treated control cells in a scratch assay (see 

supplementary material). 

Table 3. Cytotoxicity against HUVECs 

Compound Doxorubicin Paclitaxel KGP94 (18) KGP420 (31) 

Cytotoxicity 

GI50 (µM) 
0.0268

a 
0.00148

a 
26.9

 
20.2 

a
 Previously reported

51
  

b
 For additional data see reference

47
  

 
Improved methodology resulted in an alternative synthesis of 

KGP94, which successfully circumvented unwanted byproduct 

formation. Benzophenone thiosemicarbazone-based analogues 

which exhibited a lower threshold for isomerization compared to 

KGP94 were prepared and evaluated for inhibitory activity 

against cathepsin L. The most potent of these, [(3,5-
dibromophenyl)(3-hydroxyphenyl) ketone] thiosemicarbazone 

exhibited comparable activity to KGP94 with an IC50 value of 

202 nM. Advancement of the pre-clinical candidate, KGP94, 

through phosphate prodrug derivatization to generate KGP420 

resulted in a desirable water soluble analogue. In vitro studies 

demonstrated that KGP420 was hydrolyzed to the parent 
compound, KGP94, in the presence of alkaline phosphatase. 

Additionally, KGP420 favorably displayed low cytotoxicity to 

HUVECs, which were used as a model for normal cells. The in 

vitro cleavage studies coupled with the desirable property of low 

cytotoxicity positions KGP420 for future in vivo studies and pre-

clinical evaluation as a prodrug. 
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