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Abstract A series of N4-aryl-substituted 5-fluoroisatin-3-

thiosemicarbazones 3a–3l was synthesized and evaluated

for selected biological activities. The brine shrimp lethality

bioassay was carried out to study their in vitro cytotoxicity

potential and besides, their antifungal, phytotoxic and

urease inhibitory effects were also investigated. Seven

compounds i.e. 3a, 3d, 3f, 3g, 3h, 3j and 3k proved to be

active in the brine shrimp assay, displaying promising

cytotoxicity (LD50 = 6.89 9 10-5–2.79 9 10-4 M).

Amongst these, 3a and 3h were found to be the most active

ones (LD50 = 6.89 9 10-5 and 9.79 9 10-5 M, respec-

tively). Compounds 3i, 3j and 3 k displayed moderate

(40 %) antifungal activity against one or two fungal strains

i.e. A. flavus and/or M. canis. In phytotoxicity assay, all the

synthesized compounds, including the reference point 2m

showed weak-to-moderate (15–70 %) activity at the high-

est tested concentration (500 lg/mL). In urease inhibition

assay, compounds 3f, 3g and 3j proved to be the most

potent inhibitors, demonstrating relatively a higher degree

of enzymatic inhibition with IC50 values ranging from 37.7

to 47.3 lM.

Keywords: Antifungal � Cytotoxicity � 5-Fluoroisatin �
Phytotoxicity � Thiosemicarbazones � Urease inhibitors

Introduction

It is evident from the literature that isatin and its derivatives

are associated with a wide variety of biological activities like

analgesic, anticonvulsant, antimicrobial, anti-inflammatory,

antiglycation, antineoplastic, antiplasmodial, antituberculo-

sis and antiviral (Aboul-Fadl and Bin-Jubair, 2010; Bal et al.,

2005; Banerjee et al., 2011; Beauchard et al., 2006; Chen

et al., 2005; Chiyanzu et al., 2005, 2003; Da Silva et al., 2001;

Guzel et al., 2008; Hall et al., 2011, 2009; Hyatt et al., 2007;

Jarrahpour et al., 2007; Karali et al., 2007; Khan et al., 2009;

Pandeya et al., 2005; Patel et al., 2006; Pirrung et al., 2005;

Quenelle et al., 2006; Ravichandran et al., 2007; Singh

et al., 2010; Smitha et al., 2008; Terzioglu et al., 2006; Vine

et al., 2009). Among isatin derivatives, isatin-derived

thiosemicarbazones have been reported to exhibit diverse

chemotherapeutic activities, including antimicrobial, anti-

tuberculosis, antiulcer, cytotoxicity and enzymatic inhibi-

tion (Aboul-Fadl and Bin-Jubair, 2010; Bal et al., 2005;

Chiyanzu et al., 2005, 2003; Da Silva et al., 2001; Hall et al.,

2011, 2009; Karali et al., 2007; Pandeya et al., 2005; Pirrung

et al., 2005; Quenelle et al., 2006; Terzioglu et al., 2006;

Vine et al., 2009). In view of these facts and as a part of our

synthetic work on the potential biologically active isatin

derivatives, we have recently synthesized a number of

5-(un)-substituted N4-aryl-substituted isatin-3-thiosemi-

carbazones as antibacterial, antifungal, cytotoxic, phyto-

toxic and antiurease compounds (Pervez et al., 2007, 2008,

2009, 2010, 2011a, b, 2012a, b). Structure–activity rela-

tionship (SAR) studies revealed that in certain cases, the

nature and position of the substituents about phenyl ring
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attached to N4 of the thiosemicarbazone moiety and the

presence of inductively electron-withdrawing groups (nitro,

trifluoromethoxy, chloro) at position-5 of the isatin scaffold

played an important role in the inducement and/or

enhancement of different activities. Moreover, it has been

reported by some other workers that certain N4-aryl-substi-

tuted 5-bromo- and 5-chloro-isatin 3-thiosemicarbazones

were found to exhibit favourable cytotoxic and antifungal

activities (Karali et al., 2002; Pandeya et al., 1999). In view

of this and in continuation of our work in search of new

isatin-based bioactive compounds with improved efficacy,

the study of the combination of halogen substitution at

position-5 of the isatin scaffold with attachment of a variety

of aryl substituents to N4 of the thiosemicarbazone moiety

was considered worth pursuing. The present work, therefore,

deals with the synthesis and biological evaluation of a series

of twelve N4-aryl-substituted 5-fluoroisatin-3-thiosemica-

bazones. It describes the effects of the type of aryl functions

(modified by placement of one or two substituents about the

phenyl ring) at N4 of the thiosemicarbazone moiety as well as

the presence of fluoro substituent at position-5 of the isatin

scaffold on the cytotoxic, antifungal, phytotoxic and urease

inhibitory properties of these compounds.

Results and discussion

This study illustrates the synthesis and in vitro determi-

nation of the cytotoxic, antifungal, phytotoxic and urease

inhibitory potential of twelve N4-aryl-substituted 5-fluor-

oisatin-3-thiosemicarbazones 3a–3l.

Chemistry

5-Fluoroisatin 1 was reacted with appropriate N-substituted

thiosemicarbazides 2 in aqueous ethanol (50 %) containing

a few drops of glacial acetic acid to give the corresponding

5-fluoroisatin-3-thiosemicarbazones 3a–3l (Scheme 1) in

good-to-excellent yields (72–93 %). The structures of all

the synthesized compounds were confirmed by IR, 1H

NMR, 13C NMR, EIMS and elemental (C, H, N) analyses.

The IR spectra of 3a–3l showed the absorption bands of

NH stretching in the 3460–3200 and 3195–3072 cm-1

regions. The absorption bands of lactam C=O, azomethine

C=N and thioamide C=S stretchings appeared in the

1691–1684, 1619–1539 and 1279–1244 cm-1 regions,

respectively (Karali, 2002; Naumov and Anastasova, 2001;

Omar et al., 1984; Petrov et al., 1986). The 1H NMR

spectra of 3a–3l displayed three separate singlets at d
10.63–11.01, d 11.26–11.31 and d 12.68–12.84 attributed

to thiosemicarbazone N4–H, indole NH and thiosemicar-

bazone N2–H, respectively (Karali, 2002; Laatsch et al.,

1984; Naumov and Anastasova, 2001; Nizamuddin et al.,

1999; Omar et al., 1984; Petrov et al., 1986). The 13C

NMR spectra of 3a–3l supported the IR and 1H NMR

findings (Guzel et al., 2008; Karali et al., 2007). Further-

more, the electron impact mass spectra (EIMS) of the

synthesized thiosemicarbazones 3a–3l demonstrated

molecular ions of different intensities, confirming their

molecular weights. The major fragmentation pathway

involved the rupture of exocyclic N–N, NH–CS and

endocyclic NH–CO bonds. The proposed fragmentation

pattern of 3f is illustrated in Fig. 1.

Biology

In vitro cytotoxicity

All the synthesized thiosemicarbazones 3a–3l were

screened for their cytotoxic activity by a brine shrimp

(Artemia salina) lethality bioassay. Compound 3m

i.e. 2-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-phenyl-1-

hydrazinecarbothioamide, the synthesis of which has been

reported elsewhere (Pervez et al., 2007), served as refer-

ence point (without a substituent in the isatin scaffold as

well as on the phenyl ring) to assess the influence of

RNHCSNHNH2

N
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F
O

O

N
H

F
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Scheme 1 Synthesis of title

compounds 3a–3l
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substituents about the isatin moiety as well as the phenyl

ring attached to N4 of the thiosemicarbazone part of the test

compounds on their cytotoxicity potential. The results

presented in Table 1 revealed that compared with the ref-

erence compound 3m, compound 3a having fluoro group

alone in the isatin scaffold displayed induction of cytotoxic

activity. However, in the rest cases, combined substitution

of fluoro and some other substituents in the aromatic ring

of the isatin scaffold and on the phenyl ring attached to N4

of the thiosemicarbazone moiety, respectively, caused

either elimination or reduction in the activity. This infer-

ence was supported by the results obtained in our earlier

studies (Pervez et al., 2008, 2009). For example, compound

3a having inductively electron-withdrawing fluoro sub-

stituent at position-5 of the isatin scaffold displayed

promising cytotoxic activity (LD50 = 6.89 9 10-5 M),

whereas the corresponding compound 3m i.e. the reference

point possessing no fluoro group in the isatin moiety was

found to be almost inactive (LD50 = [3.38 9 10-4 M)

(Pervez et al., 2008). On the contrary, compounds 3b, 3c,

3e and 3i with 2-trifluoromethyl, 3-trifluoromethyl, 4-tri-

fluoromethoxy and 2,4-difluoro substituents about the

phenyl ring showed almost no cytotoxic effects

(LD50 = [5.24 9 10-5,[5.24 9 10-5,[5.03 9 10-5 and

[5.71 9 10-5 M, respectively), whereas the correspond-

ing compounds without fluoro group at position-5 of the

isatin scaffold gave LD50 values of 1.36 9 10-4,

2.20 9 10-5, 1.80 9 10-5 and 2.00 9 10-5 M, respec-

tively (Pervez et al., 2009). Also, compared with

compound 3f (LD50 = 2.79 9 10-4 M), the dihalogeno-

substituted compound 3l possessing fluoro and bromo

substituents at positions-2 and -4 of the phenyl ring,

respectively, exhibited no cytotoxic effect (LD50 =

[4.91 9 10-5 M) in the present assay. Similarly,
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Fig. 1 The proposed

fragmentation pattern of 3f

Table 1 Brine shrimp bioassay for compounds 3a–3l

Compounds LD50(M)

3a 6.89 9 10-5

3b [5.24 9 10-5

3c [5.24 9 10-5

3d 1.76 9 10-4

3e [5.03 9 10-5

3f 2.79 9 10-4

3g 1.21 9 10-4

3h 9.79 9 10-5

3i [5.71 9 10-5

3j 1.15 9 10-4

3k 1.07 9 10-4

3l [4.91 9 10-5

3m (Pervez et al., 2007, 2008) [3.38 9 10-4
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compounds 3d, 3f, 3g, 3j and 3k with 4-trifluoromethyl,

2-fluoro, 3-fluoro, 2,6-difluoro and 3,5-difluoro substituents

about the phenyl ring showed reduced cytotoxic activity

(LD50 = 1.76 9 10-4, 2.79 9 10-4, 1.21 9 10-4, 1.15 9

10-4 and 1.07 9 10-4 M, respectively) in comparison to

the corresponding compounds (without fluoro group at

position-5 of the isatin moiety), which gave LD50 values of

1.17 9 10-4, 3.10 9 10-5, 4.60 9 10-5, 2.00 9 10-5 and

2.10 9 10-5 M (Pervez et al., 2009). Relatively, much

pronounced reduction in the cytotoxic activity was

observed in the case of 3k (LD50 = 2.10 9 10-5 ?
1.07 9 10-4 M). This showed that the simultaneous pres-

ence of inductively electron-attracting groups in the isatin

scaffold as well as the phenyl ring substituted at N4 of the

thiosemicarbazone moiety caused either elimination or

reduction in the cytotoxicity potential. However, compared

with monofluoro-substituted compounds 3f and 3g, com-

pound 3h having fluoro substituent at position-4 of the

phenyl ring displayed promising activity (LD50 = 9.79 9

10-5 M) in the present assay.

The exact mechanism of cytotoxic activity exhibited by

the test thiosemicarbazones 3a–3l is not known. However, it

is generally accepted that the mode of cytotoxic action of this

class of agents involves the inhibition of ribonucleoside

diphosphate reductase (RDR), an enzyme containing a

diferric centre involved in the rate-limiting step of DNA

synthesis. Notably, it is the capability of these compounds to

act as transition metal chelating agents that escorts to their

cytotoxic activity. The chelation of iron (Fe) from intracel-

lular Fe pools results in the inhibition of RDR. This was

thought to be the major mechanism involved in the inhibition

of RDR by thiosemicarbazones, in which the diferric Fe

centre is required to stabilize the tyrosyl radical and is deemed

essential for the enzymatic activity (Danuta et al., 2009).

On the whole, out of twelve compounds tested for cyto-

toxic activity, seven i.e. 3a, 3d, 3f–3h, 3j and 3k proved to be

active, exhibiting promising cytotoxicity (LD50 = 6.89 9

10-5–2.79 9 10-4 M) against Artemia salina. The remain-

ing compounds i.e. 3b, 3c, 3e, 3i and 3l gave LD50 values

ranging from [4.91 9 10-5 to [5.71 9 10-5 M in the

present assay and, therefore, can be considered as inactive.

These preliminary results indicate that structural modi-

fications may lead to the development of certain novel

cytotoxicants with improved efficacy.

In vitro antifungal activity

The synthetic compounds 3a–3l were also screened for their

antifungal activity against six fungal cultures i.e. Tricho-

phyton longifusus, Candida albicans, Aspergillus flavus,

Microsporum canis, Fusarium solani and Candida glabrata

(Table 2) at 200 lg/mL in DMSO. All the compounds were

found to be active against one or more fungi, exhibiting

varied inhibition (10–40 %). Compound 3a with no sub-

stituent on the phenyl ring attached to N4 of the thiosemi-

carbazone moiety was found to be active against M. canis

only, displaying 20 % inhibition. To the contrary, com-

pounds 3b–3d having trifluoromethyl substituents at differ-

ent positions of the phenyl ring were active against more than

one fungal strains. Of these, compound 3c with a meta sub-

stituent was found to be the most active one, showing 30, 30

and 25 % inhibition of A. flavus, M. canis and F. solani,

respectively. Next active to it was compound 3d having a

para substituent, demonstrating 20, 25 and 5 % inhibition of

the same fungal strains. However, the ortho-substituted

compound 3b was found to be active against A. flavus and

M. canis only, exhibiting 15 and 20 % inhibition. Similarly,

compound 3e having trifluoromethoxy substituent at para

position of the phenyl ring was found to be active against

these two fungi, showing 10 and 30 % inhibition, respec-

tively. Amongst the mono-halogenated compounds 3f–3h,

compound 3f possessing fluoro substituent at ortho position

of the phenyl ring was found to be active against two fungal

strains i.e. M. canis and F. solani, demonstrating 30 and

20 % inhibition, respectively. Also, the para-substituted

compound 3h was found to be active against these fungi,

displaying 15 and 10 % inhibition. However, the meta-

substituted compound 3g was found to be the most active

one, exhibiting 10, 25 and 15 % inhibition of three fungal

strains i.e. A. flavus, M. canis and F. solani, respectively.

Similarly, in the cases of di-halogenated compounds 3i–3l,

compound 3i having fluoro substituents at the ortho and para

positions was found to be the most active one, showing

inhibitory activity (40, 35 and 15 %, respectively) against A.

flavus, M. canis and F. solani. Compared to this, compound

Table 2 In vitro antifungal activity of compounds 3a–3l* (%

inhibition)

Compounds Microbial species

T.
longifusus

C.
albicans

A.
flavus

M.
canis

F.
solani

C.
glabrata

3a 00 00 00 20 00 00

3b 00 00 15 20 00 00

3c 00 00 30 30 25 00

3d 00 00 20 25 05 00

3e 00 00 10 30 00 00

3f 00 00 00 30 20 00

3g 00 00 10 25 15 00

3h 00 00 00 15 10 00

3i 00 00 40 35 15 00

3j 00 00 40 40 00 00

3k 00 00 00 40 00 00

3l 00 00 00 20 10 00

* Concentration used 200 lg/mL of DMSO
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3j with fluoro substituents at ortho positions was active

against A. flavus and M. canis, displaying 40 % inhibition,

whereas compound 3k possessing fluoro substituents at meta

positions showed 40 % inhibition against M. canis only. The

remainder di-halogenated compound 3l with fluoro and

bromo substituents at ortho and para positions of the phenyl

ring, respectively, exhibited 20 and 10 % inhibition of

M. canis and F. solani. Although there is no ready explana-

tion for this variation in activity, it may be related to the

ability of the compounds to enter the cell or their ability to

react at the unknown target site(s) in the microorganisms.

According to Overtone’s concept of cell permeability, the

lipid membrane that surrounds the cell favours the perme-

ation of only lipid-soluble compounds. So, liposolubility/

lipophilicity is an important factor controlling the antifungal

activity. Delocalization of electrons over the whole molecule

increased the lipophilicity. The increased lipophilicity in

turn enhanced penetration of the compounds into the cell

membranes, thus further restricting proliferation of the

microorganisms (Al-Amiery et al., 2012). Furthermore, like

cytotoxicity, antifungal activity of the present compounds

could be based on the deactivation of ribonucleoside

diphosphate reductase (RDR). Importantly, it is the ability of

the test thiosemicarbazones 3a–3l to act as transition metal

chelators coordinating with ferrous ions of the RDR, thus

inhibiting its activity (Pandeya et al., 1999).

Conclusively, compound 3a having no substituent about

its phenyl ring displayed 20 % inhibition of M. canis only,

whereas the remainder compounds displayed relatively

better activity profile in terms of percentage of inhibition

and/or the number of fungal strains inhibited. This clearly

indicates that the effects of different substituents about the

phenyl ring attached to N4 of the thiosemicarbazone moiety

played an important role in enhancing the capability of the

compounds to exhibit either induced or increased inhibi-

tory activity. Notably, three of the six fungi tested i.e.

T. longifusus, C. albicans and C. glabrata were resistant to

all the tested compounds, while the two others i.e. A. flavus

and F. solani showed resistance to some of them. Fur-

thermore, none of the compounds of the present series

exhibited significant antifungal activity; however, the

negative findings or display of weak or moderate activities

against certain selected fungal strains in the present assay

do not prevent from further investigation of these com-

pounds against other fungal strains. Also, further investi-

gations on the SAR and appropriate chemical modifications

among the synthesized thiosemicarbazones is likely to

provide more effective compounds with improved efficacy.

In vitro phytotoxicity

The synthesized thiosemicarbazones 3a–3l were further

screened for their phytotoxic effects at 500, 50 and 5 lg/

mL concentrations. Here too, compound 3m i.e. 2-(2-oxo-

1,2-dihydro-3H-indol-3-ylidene)-N-phenyl-1-hydrazine-

carbothioamide served as reference point to evaluate the

effects of fluoro function at position-5 of the isatin scaffold

as well as other substituents about the phenyl ring attached

to N4 of the thiosemicarbazone moiety on the plant growth

inhibitory potential of these compounds. All compounds

except 3a displayed weak or non-significant (15–35 %)

plant growth inhibition at the highest tested concentration

(500 lg/mL). Compound 3a having flluoro substituent at

position-5 of the isatin scaffold, however, exhibited mod-

erate (70 %) inhibition at this concentration (Table 3). On

the other hand, three compounds i.e. 3c, 3j and 3k, out of

twelve compounds tested, showed no plant growth inhibi-

tion, whereas the rest, including reference point displayed

non-significant (5–20 %) inhibition at the lowest tested

concentration (5 lg/mL).

From the results obtained in this assay, it may be con-

cluded that our compounds, in general, exhibited either no

or non-significant plant growth inhibition at much higher

levels of concentration compared with the standard para-

quat, which displayed 100 % inhibition at a concentration

of 0.015 lg/mL. Furthermore, compared with the reference

compound 3m having no substituent in the isatin scaffold

as well as about the phenyl ring attached to N4 of the

thiosemicarbazone moiety and displaying moderate (40 %)

plant growth inhibition at the highest tested concentration

(500 lg/mL), the percent inhibition values exhibited by our

test compounds revealed that the nature, number and

Table 3 Percentage growth inhibition of Lemna aequinocitalis by

compounds 3a–3l at different concentrations

Compounds 500 (lg/mL)

(% G.I.)

50 (lg/mL)

(% G.I.)

5 (lg/mL)

(% G.I.)

3a 70 15 10

3b 25 10 05

3c 30 10 00

3d 25 15 10

3e 35 20 10

3f 35 25 20

3g 30 25 15

3h 35 25 10

3i 30 20 10

3j 30 10 00

3k 15 10 00

3l 30 25 10

3m (Pervez et al., 2007,

2012b)

40 25 15

The reference compound paraquat shows 100 % growth inhibition at

a concentration of 0.015 g/mL

G.I. growth inhibition
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position of the substituents did not affect the phytotoxic

inhibitory potential to a great extent.

In vitro urease inhibitory activity

All the synthetic thiosemicarbazones 3a–3l were also sub-

jected to urease inhibition studies. Thiourea and compound

3m i.e. 2-(2-oxo-1,2-dihydro-3H-indole-3-ylidine)-N-phe-

nyl-1-hydrazinecarbothioamide served as reference points in

this assay. The results given in Table 4 demonstrated that

compared with compound 3 m having no substituent in the

isatin part as well as on the phenyl ring, substitution of fluoro

function at position-5 of the isatin scaffold alone or in

combination with different aryl groups (possessing one or

two substituents about the phenyl ring) at N4 of the thio-

semicarbazone moiety caused either induction or enhance-

ment of enzymatic activity in certain cases at the tested

concentrations (200 or 500 lM). This inference receives

support from the results obtained by us in early investigations

(Pervez et al., 2008, 2009). For example, compound 3a

bearing fluoro substituent at position-5 of the isatin scaffold

displayed induced activity (53 % with IC50 value 342.93) at

500 lM concentration as compared to the corresponding

compound 3m having no fluoro substituent at position-5 of

the isatin moiety, which showed no inhibitory activity at the

tested concentration(100 lM). Furthermore, compounds 3d,

3g and 3k possessing 4-trifluoromethyl, 3-fluoro and 3,5-

difluoro substituents about the phenyl ring exhibited

enhanced activity (53.4 % with IC50 value 90.40, 79.8 %

with IC50 value 45.3 and 80.2 % with IC50 value 150.70,

respectively) as compared to the corresponding compounds

bearing no fluoro substituent at position-5 of the isatin

scaffold, which exhibited 44.6 %, 57.3 % with IC50 value

50.6 and 38.8 % inhibition at the tested concentration

(100 lM). Much pronounced enhancement in the enzymatic

activity was observed in the cases of 3d and 3k

(44.6 ? 53.4 % with IC50 value 90.40 and 38.8 ? 80.2 %

with IC50 value 150.70, respectively). To the contrary,

compounds 3b, 3c, 3e, 3f, 3i and 3j having 2-trifluoromethyl,

3-trifluoromethyl, 4-trifluoromethoxy, 2-fluoro, 2,4-difluoro

and 2,6-difluoro functions on the phenyl ring were found to

display reduced activity (77.3 % with IC50 value 50.53,

92.6 % with IC50 value 59.86, 18.9 %, 94.6 % with IC50

value 37.7, 22.1 % and 72.5 % with IC50 value 47.3,

respectively), when compared with the respective com-

pounds without fluoro group at position-5 of isatin part, which

demonstrated 63.1 % with IC50 value 33.1, 78.2 % with IC50

value 20.6, 49.6 %, 84.9 % with IC50 value 20.6, 71.9 % with

IC50 value 47.6 and 92.0 % with IC50 value 33.1 inhibition of

the enzyme at the tested concentration (100 lM). Much

pronounced reduction occurred in the cases of 3c, 3f and 3i

(78.2 % with IC50 value 20.6 ? 92.6 % with IC50 value

59.86, 84.9 % with IC50 value 20.6 ? 94.6 % with IC50

value 37.7 and 71.9 % with IC50 value 47.6 ? 22.1 %,

respectively). This indicated that the simultaneous presence

of diverse inductively electron-attracting groups in the isatin

moiety as well as on the phenyl ring attached to N4 of the

thiosemicarbazone part caused the molecules to intermingle

with the enzymatic activity differently, resulting into incre-

ment or decrement in their inhibitory potential. Overall, all

the synthesized compounds 3a–3l tested for their urease

inhibitory potential displayed enzymatic inhibition. Of these,

eight i.e. 3a–3d, 3f, 3g, 3j and 3k were found to be potent

inhibitors. Compounds 3f, 3g and 3j having one or two fluoro

substituents at positions-2, -3 and -2,6 of the phenyl ring were

found to be the most potent ones, showing IC50 values 37.7,

45.3 and 47.3, respectively. The remainder compounds i.e.

3a–3d and 3k exhibited varying degree of activity with IC50

values ranging from 50.53 to 342.93 lM.

All ureases, regardless of their source, contain in addi-

tion to two nickel ions (Benini et al., 1998, 2001, 2004,

2000; Ciurli et al., 1999; Krajewska and Zaborska, 2007a,

2007b), one to three protein subunits present in varying

stoichiometric ratios (Mobley et al., 1995). Thus, an anti-

urease compound can intermingle with the enzymatic

activity by interacting either with the nickel ions or the

protein constituent. b-Mercaptoethanol, hydroxamic acids

and phosphorodiamidates, for example, are the synthetic

inhibitors, which interact with the urease activity by

Table 4 Inhibition of Jack bean urease by compounds 3a–3l

Compounds Percentage (%)

of inhibition at

200 lM

Percentage (%)

of inhibition at

500 lM

IC 50 ± SEM

(lM)

3a 53.00 342.93 ± 1.58

3b 77.3 50.53 ± 0.31

3c 92.6 59.86 ± 0.24

3d 53.4 90.4 ± 0.66

3e 18.9 NA

3f 94.6 37.7 ± 0.16

3g 79.8 45.3 ± 0.16

3h 45.6 NA

3i 22.1 NA

3j 72.5 47.3 ± 0.08

3k 80.2 150.7 ± 1.17

3l 21.9 NA

3m (Pervez

et al., 2007,

2008)a

Thioureab 97.1 99.0 21.0 ± 0.11

NA No inhibitory activity
a Reference thiosemicarbazone screened against human urease at

100 lM concentration
b Reference inhibitor of urease enzyme
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binding to the nickel ions present at its active site [Ciurli

et al., 1999; Kuhler et al., 1995; Nagata et al., 1993;

Zaborska et al., 2007), whereas sulphenamide, quinones

and heavy metal ions have been reported to inhibit its

activity by intermingling with the sulphhydryl (S–H)

functions present in the protein component (Krajewska,

2008; Krajewska and Zaborska, 2007a, 2007b; Krajewska

et al., 2004; Kuhler et al., 1995; Nagata et al., 1993 Kra-

jewska and Zaborska, 2007a). Although the actual mech-

anism of urease inhibitory activity exhibited by our trial

compounds 3a–3l is not documented, it is intriguing to

carry out investigations as regards detailed kinetics of such

interaction. Apparently, these compounds seem to be

mechanism-based urease inhibitors and inhibit the enzyme

through a chelate interaction, which binds to its active site

in a normal substrate-like mode. This process appears to be

similar to charge-transfer transitions, which occur between

thiolate of b-mercaptoethanol and nickel (II) of the

enzyme, suggesting that the thiolate binds directly to the

nickel ion(s). Diverse non-covalent interactions, including

hydrogen bonds and hydrophobic contacts may stabilize

such enzyme-inhibitors chelate interactions and thus con-

tribute towards their inhibitory potential (Amtul et al.,

2002). Detailed kinetic investigations to get an insight into

the mechanism of inhibition are underway, the results of

which will be reported in due course of time.

In summary, a series of twelve 5-fluoroisatin-3-thiose-

micarbazones 3a–3l has been synthesized and character-

ized by analytical and spectral data. The synthesized

thiosemicarbazones were screened for their in vitro cyto-

toxic, antifungal, phytotoxic and urease inhibitory effects.

Seven out of twelve compounds tested proved to be active

in the brine shrimp bioassay, displaying promising cyto-

toxicity. In antifungal assay, all the compounds showed

weak-to-moderate activity against one or more fungi.

However, the negative findings or demonstration of weak

or moderate activity against the selected fungal strains do

not preclude from further investigations of these com-

pounds against some other pathogens. In phytotoxicity

bioassay, the synthesized thiosemicarbazones showed

weak-to-moderate activity at the highest tested concentra-

tion. The urease inhibition screening results have sub-

stantiated that eight out of twelve compounds tested

appeared as potent urease inhibitors; three of these i.e. 3f,

3g and 3j proved to be the most potent ones and may act as

leads for further studies. These compounds, exhibiting no

significant phytotoxic activity at the highest tested con-

centration, invited attention to their usefulness as potent

soil ureases inhibitors, as they could be mixed with fertil-

izers in small quantities to increase the overall efficacy of

nitrogen utilisation. In general, the urease inhibitory

activity was found to be dependent upon electronic effects

of the fluoro function at position-5 of the isatin scaffold as

well as different inductively electron-attracting substituents

about the phenyl ring attached to N4 of the thiosemicar-

bazone moiety.

Experimental section

Chemistry

All chemicals and solvents were purchased from Aldrich,

Fluka and Merck-Schuchatdt. Melting points were deter-

mined on cover slips using a Fisher-Johns melting point

apparatus and are uncorrected. Elemental (C, H, N) anal-

yses were performed on a Leco CHNS-9320 (USA) ele-

mental analyser and were in full agreement with the

proposed structures within ±0.4 % of the theoretical limits,

except where noted otherwise. Infrared (IR) spectra (KBr

discs) were run on Shimadzu Prestige-21 FT-IR spec-

trometer. Proton nuclear magnetic resonance (1H NMR)

spectra were recorded in DMSO-d6 on Bruker (Rhenistet-

ten-Forchheim, Germany) AM 300 spectrometer, operating

at 300 MHz and using TMS as an internal standard. The

chemical shifts (d) are reported in parts per million (ppm)

and coupling constants in Hz. Carbon-13 nuclear magnetic

resonance (13C NMR) spectra were recorded at 75 MHz

with the same internal standard. The electron impact mass

spectra (EI MS) were determined with MAT-312, JEOL

MSRoute and JEOL JMS 600 mass spectrometers. The

progress of the reaction and purity of the products were

checked on TLC plates coated with Merck silica gel 60

GF254, and the spots were visualized under ultraviolet light

at 254 and 366 nm and/or spraying with iodine vapours.

General procedure for the preparation of

5-fluoroisatin-thiosemicarbazons (3a–3l)

To a solution of 5-fluoroisatin 1 (2.5 mmol) in 50 %

aqueous ethanol (10 mL) containing a catalytic amount of

glacial acetic acid, the appropriate thiosemicarbazide 2

(2.5 mmol) dissolved in ethanol (10 mL) was added under

stirring. The reaction mixture was then heated under reflux

for 2 h. The crystalline or amorphous solid formed during

heating was collected by suction filtration. Thorough

washing with hot aqueous ethanol (50 %) furnished the

target compounds 3a–3l in pure form.

N-Phenyl-2-(5-fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-

1-hydrazinecarbothioamide (3a) Yield 93 % as yellow

powder; m.p. 218–220 �C (lit. (Karali et al., 2007)

m.p. 218 �C); IR (KBr, cm-1): 3460, 3195 (NH), 1691

(C=O), 1595 (C=N), 1265 (C=S); 1H NMR (300 MHz,

DMSO-d6) d, ppm, 6.95 (dd, J = 8.7, 4.2 Hz, 1H, indole

C7–H), 7.22 (td, J = 8.7, 2.7 Hz, 1H, indole C6–H), 7.29
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(t, J = 7.5 Hz, 1H, phenyl C4–H), 7.45 (t, J = 7.5 Hz, 2H,

phenyl C3–H, C5–H), 7.61 (d, J = 8.1 Hz, 2H, phenyl C2–

H, C6–H), 7.65 (dd, J = 8.4, 2.7 Hz, 1H, indole C4–H),

10.85 (s, 1H, CSNH), 11.26 (s, 1H, indole NH), 12.68 (s,

1H, NNH); 13C NMR (75 MHz, DMSO-d6) d, ppm,

108.11, 108.46, 112.10, 112.21, 117.47, 117.79, 121.41,

125.63, 126.21, 128.43, 138.27, 138.74, 156.67, 159.82,

162.76, 176.30; EI MS (70 eV) m/z (%), 314 (M?, 34), 286

(100), 254 (3), 221 (14), 197 (6), 179 (40), 163 (15), 162

(29), 151 (17), 15 (20), 149 (23), 136 (53), 135 (71), 122

(36), 108 (25), 96 (6), 95 (7), 91 (16), 77 (48), 65 (14).

Anal calcd. for C15H11FN4OS: C, 57.31; H, 3.53; N, 17.82.

Found: C, 57.20; H, 3.52; N, 17.79.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-[2-

(trifluoromethyl)phenyl]-1-hydrazinecarbothioamide (3b)

Yield 75 % as yellow fluffy crystals; m.p. 247–248 �C; IR

(KBr, cm-1): 3300, 3200 (NH), 1684 (C=O), 1580 (C=N),

1279 (C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.94

(dd, J = 8.7,4.2 Hz, 1H, indole C7–H), 7.22 (td, J = 8.7,

2.7 Hz, 1H, indole C6–H), 7.53 (dd, J = 8.1, 2.7 Hz, 1H,

indole C4–H), 7.56–7.64 (m, 2H, phenyl C3–H, C4–H),

7.77–7.86 (m, 2H, phenyl C5–H, C6–H), 10.85 (s, 1H,

CSNH), 11.29 (s, 1H, indole NH), 12.75 (s, 1H, NNH); 13C

NMR (75 MHz, DMSO-d6) d, ppm, 107.98, 108.32,

112.24, 112.35, 117.67, 117.99, 121.25, 121.38, 121.60,

125.23, 126.54, 126.59, 126.66, 126.94, 128.42,

132.15,133.23, 136.82, 138.95, 156.68, 159.83, 162.79,

178.56; EI MS (70 eV) m/z (%), 382 (M?, 13), 354 (65),

334 (3), 313 (2), 285 (4), 256 (13), 219 (4), 196 (11), 184

(78), 179 (23), 163 (10), 151 (30), 150 (45), 136 (27), 135

(35), 122 (100), 108 (54), 96 (20), 95 (55), 94 (21), 91 (5),

75 (37). Anal calcd. for C16H10F4N4OS: C, 50.26; H, 2.64;

N, 14.65. Found: C, 50.19; H, 2.63; N, 14.60.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-[3-

(trifluoromethyl)phenyl]-1-hydrazinecarbothioamide (3c)

Yield 72 % as orange powder; m.p. 219–220 �C; IR (KBr,

cm-1): 3248, 3202(NH), 1697 (C=O), 1547 (C=N), 1244

(C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.94 (dd,

J = 8.7, 4.2 Hz, 1H, indole C7–H) 7.22 (td, J = 8.7,

2.7 Hz, 1H, indole C6–H), 7.63 (dd, J = 8.1, 2.4 Hz, 1H,

indole C4–H), 7.66–7.71 (m, 2H, phenyl C5–H, C6–H),

8.00–8.06 (m, 2H, phenyl C2–H, C4–H), 11.01 (s, 1H,

CSNH), 11.31 (s, 1H, indole NH), 12.78 (s, 1H, NNH); 13C

NMR (75 MHz, DMSO-d6) d, ppm, 108.13, 108.48,

112.19, 112.30, 117.68, 118.00, 121.12, 121.25, 121.66,

121.71, 121.76, 121.81, 122.13, 122.50, 122.55, 125.74,

128.90, 129.28, 129.57, 132.17, 132.21, 138.88, 138.90,

139.10, 156.68, 159.83, 162.77, 176.43; EI MS (70 eV) m/

z (%), 382 (M?, 20), 354 (100), 218 (4), 204 (19), 184 (10),

179 (21), 168 (30), 163 (9), 151 (19), 150 (35), 145 (48),

136 (16), 135 (20), 122 (50), 108 (8), 96 (9), 95 (23), 94

(8), 75 (17). Anal calcd. for C16H10F4N4OS: C, 50.26; H,

2.64; N, 14.65. Found: C, 50.20; H, 2.63; N, 14.60.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-[4-

(trifluoromethyl)phenyl]-1-hydrazinecarbothioamide (3d)

Yield 82 % as yellow fluffy crystals; m.p. 249–250 �C; IR

(KBr, cm-1): 3285, 3187 (NH), 1694 (C=O), 1608 (C=N),

1271 (C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.94

(dd, J = 8.7, 4.2 Hz, 1H, indole C7–H), 7.25 (td, J = 9.3,

2.7 Hz, 1H, indole C6–H), 7.63 (dd, J = 8.1, 2.7 Hz, 1H,

indole C4–H), 7.81 (d, J = 8.7 Hz, 2H, phenyl C2–H, C6–

H), 7.95 (d, J = 8.4 Hz, 2H, phenyl C3–H, C5–H), 11.01

(s, 1H, CSNH), 11.30 (s, 1H, indole NH), 12.80 (s, 1H,

NNH); 13C NMR (75 MHz, DMSO-d6) d, ppm, 108.28,

108.46. 112.22, 112.27, 117.79, 117.95, 121.14, 121.20,

123.25, 125.47, 125.51, 125.54, 125.93, 126.14, 132.26,

132.28, 138.90, 141.99, 157.46, 159.04, 162.78, 176.28; EI

MS (70 eV) m/z (%), 382 (M?, 32), 354 (100), 218 (5), 204

(19), 179 (22), 168 (28), 163 (9), 151 (17), 150 (34), 145

(49), 136 (23), 135 (25), 122 (61), 108 (31), 96 (12), 95

(31), 94 (12), 75 (18). Anal calcd. for C16H10F4N4OS: C,

50.26; H, 2.64; N, 14.65. Found: C, 50.13; H, 2.63; N,

14.69.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-[4-

(trifluoromethoxy)phenyl]-1-hydrazinecarbothioamide (3e)

Yield 80 % as light orange powder; m.p. 244–245 �C; IR

(KBr, cm-1): 3306, 3183(NH), 1695 (C=O), 1580 (C=N),

1250 (C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, d
6.94 (dd, J = 8.4, 4.2 Hz, 1H, indole C7–H), 7.21 (td,

J = 9.3, 2.7 Hz, 1H, indole C6–H), 7.45 (d, J = 8.4 Hz,

2H, phenyl C2 –H, C6–H), 7.60 (dd, J = 8.1, 2.7 Hz, 1H,

indole C4–H), 7.75 (d, J = 8.7 Hz, 2H, phenyl C3–H, C5–

H), 10.92 (s, 1H, CSNH), 11.28 (s, 1H, indole NH), 12.73

(s, 1H, NNH), 12.73 (s, 1H, NNH); 13C NMR (75 MHz,

DMSO-d6) d, ppm, 108.09, 108.43, 112.16, 112.27, 117.60,

117.92, 121.11, 121.18, 121.31, 127.37, 131.98, 132.02,

137.45, 138.83, 145.89, 145.91, 156.67, 159.82, 162.76,

176.51; EI MS (70 eV) m/z (%), 398 (M?, 26), 370 (100),

313 (3), 235 (3), 220 (18), 179 (19), 163 (9), 151 (19), 150

(38), 136 (16), 135 (20), 122 (58), 108 (36), 96 (13), 95

(42), 94 (9), 75 (11). Anal calcd. for C16H10F4N4O2S: C,

48.24; H, 2.53; N, 14.07. Found: C, 48.22; H, 2.54; N,

14.01.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-(2-

fluorophenyl)-1-hydrazinecarbothioamide (3f) Yield

80 % as yellow fluffy crystals; m.p. 260 �C; IR (KBr,

cm-1): 3300, 3169, 3101 (NH), 1696 (C=O), 1619 (C=N),

1264 (C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.95

(dd, J = 8.4, 4.2 Hz, 1H, indole C7–H), 7.22 (td, J = 9.3,

2.4 Hz, 1H, indole C6–H), 7.29–7.43 (m, 3H, phenyl C4–H,

C5–H, C6–H), 7.48 (d, J = 7.8 Hz, phenyl C3–H), 7.55 (dd,
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J = 8.1, 2.4 Hz, indole C4–H), 10.78 (s, 1H, CSNH), 11.28

(s, 1H, indole NH), 12.74 (s, 1H, NNH); 13C NMR

(75 MHz, DMSO-d6) d, ppm, 107.96, 108.30, 112.18,

112.29, 112.91, 116.17, 117.59, 117.90, 121.25, 121.38,

124.43, 124.47, 126.19, 126.35, 129.13, 129.23, 130.16,

132.06, 132.11, 138.87, 138.88, 155.62, 156.66, 158.91,

159.81, 162.72, 178.00; EI MS (70 eV) m/z (%), 332 (M?,

9), 304 (100), 284 (5), 221 (4), 197 (3), 179 (12), 168 (13),

150 (16), 135 (29), 122 (46), 108 (27), 96 (11), 95 (20), 91

(3), 83 (21), 75 (18). Anal calcd. for C15H10F2N4OS: C,

54.21; H, 3.03; N, 16.86. Found: C, 54.16; H, 3.03; N,

16.84.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-(3-

fluorophenyl)-1-hydrazinecarbothioamide (3g) Yield

74 % as orange fluffy crystals; m.p. 256 �C; IR (KBr,

cm-1): 3304, 3163,3103 (NH), 1697 (C=O), 1595 (C=N),

1261 (C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.93

(dd, J = 8.4, 4.2 Hz, 1H, indole C7–H), 7.11–7.17 (m, 1H,

phenyl C5–H), 7.24 (td, J = 8.7, 4.3 Hz, 1H, indole C6–H),

7.44–7.53 (m, 2H, phenyl C2–H, C6–H), 7.69 (dd, J = 8.4,

4.2 Hz, 2H, indole C4–H, phenyl C2–H), 10.81 (s, 1H,

CSNH), 11.29 (s, 1H, indole NH), 12.73 (s, 1H, NNH); 13C

NMR (75 MHz, DMSO-d6) d, ppm, 108.22, 108.48,

112.10, 112.18, 112.26, 112.35, 112.68, 112.89, 117.67,

117.91, 121.18, 121.22, 121.25, 129.93, 130.02, 132.00,

132.04, 132.85, 139.90, 140.01, 157.07, 159.43, 160.40,

162.77, 162.81, 176.16; EI MS (70 eV) m/z (%), 332 (M?,

4), 304 (26), 197 (14), 179 (14), 168 (20), 163 (4), 153

(27), 151 (14), 150 (18), 136 (27), 135 (22), 122 (66), 111

(34), 108 (40), 96 (32), 95 (100), 94 (20), 84 (22), 83 (77),

75 (63), 69 (15), 57 (49). Anal calcd. for C15H10F2N4OS:

C, 54.21; H, 3.03; N, 16.86 Found: C, 54.17; H, 3.04; N,

16.84.

2-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-N-(4-

fluorophenyl)-1-hydrazinecarbothioamide (3h) Yield

82 % as orange powder; m.p. 265–266 �C (lit. (Karali

et al., 2007) m.p. 246–248 �C); IR (KBr, cm-1): 3355,

3155 (NH), 1692 (C=O), 1540 (C=N), 1258 (C=S); 1H

NMR (300 MHz, DMSO-d6) d, ppm, 6.94 (dd,

J = 8.4,4.2 Hz, 1H, indole C7–H), 7.18–7.31 (m, 3H,

phenyl C2–H, C6–H, indole C6–H), 7.58–7.62 (m, 3H,

phenyl C3–H, C5–H, indole C4–H), 10.87 (s, 1H, CSNH),

11.82 (s, 1H, indole NH), 12.68 (s, 1H, NNH); 13C NMR

(75 MHz, DMSO-d6) d, ppm, 108.14, 108.31. 112.15,

112.21, 115.10, 115.25, 117.58, 117.74, 121.28, 121.34,

127.89, 127.94, 131.74, 131.76, 134.62, 134.64, 138.76,

157.45, 159.03, 159.25, 160.86, 162.75, 176.69; EI MS

(70 eV) m/z (%), 332 (M?, 20), 304 (80), 221 (4), 197 (9),

179 (20), 168 (32), 163 (10), 151 (25), 150 (28), 136 (40),

135 (35), 122 (90), 108 (48), 96 (49), 95 (100), 80 (68), 75

(62). Anal calcd. for C15H10F2N4OS: C, 54.21; H, 3.03; N,

16.86. Found: C, 54.21; H, 3.05; N, 16.84.

N-(2,4-Difluorophenyl)-2-(5-fluoro-2-oxo-1,2-dihydro-3H-

indol-3-ylidene)-1-hydrazinecarbothioamide (3i) Yield

78 % as yellow fluffy crystals; m.p. 259–260 �C; IR (KBr,

cm-1): 3300, 3217(NH), 1694 (C=O), 1539 (C=N), 1263

(C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.95 (dd,

J = 8.4, 4.2 Hz, 1H, indole C7–H), 7.15–7.25 (m, 2H,

indole C6–H, phenyl C6–H), 7.43 (td, J = 9.0, 2.7 Hz, 1H,

phenyl C5–H), 7.50–7.58 (m, 2H, phenyl C3–H, indole C4–

H), 10.72 (s, 1H, CSNH), 11.28 (s, 1H, indole NH), 12.76

(s, 1H, NNH); 13C NMR (75 MHz, DMSO-d6) d, ppm,

104.31, 104.65, 104.98, 107.98, 108.32, 111.39, 111.43,

111.68, 111.73. 112.24, 112.34, 117.68, 118.00, 121.24,

121.36, 122.92, 122.97, 123.09, 123.13, 131.44, 131.57,

132.28, 132.32, 138.96, 155.77, 155.94, 156.86, 159.09,

159.26, 159.34, 159.49, 159.83, 162.61, 162.75, 178.33; EI

MS (70 eV) m/z (%), 350 (M?, 31), 322(100), 179 (6), 172

(9), 163 (30), 151 (5), 150 (8), 136 (5), 135 (5), 122 (11),

108 (9), 95 (3), 75 (3). Anal calcd. for C15H9F3N4OS: C,

51.43; H, 2.59; N, 15.99. Found: C, 51.44; H, 2.58; N,

16.00.

N-(2,6-Difluorophenyl)-2-(5-fluoro-2-oxo-1,2-dihydro-3H-

indol-3-ylidene)-1-hydrazinecarbothioamide (3j) Yield

90 % as orange powder; m.p. 274–275 �C; IR (KBr,

cm-1): 3360, 3194(NH), 1694 (C=O), 1583 (C=N), 1246

(C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.95 (dd,

J = 8.7, 4.2 Hz, 1H, indole C7–H), 7.20–7.30 (m, 3H,

indole C4–H, C6–H, phenyl C4–H), 7.46–7.56 (m, 2H,

phenyl C3–H, C5–H), 10.63 (s, 1H, CSNH), 11.29 (s, 1H,

indole NH), 12.84 (s, 1H, NNH); 13C NMR (75 MHz,

DMSO-d6) d, ppm, 107.94, 108.28, 111.90, 112.13, 112.21,

112.24, 112.35, 115.63, 115.85, 116.06, 117.75, 118.07,

121.16, 121.28, 129.66, 129.79, 129.92, 132.70, 132.74,

139.04, 139.06, 156.64, 156.88, 156.94, 159.79, 160.18,

160.24, 162.69, 178.66; EI MS (70 eV) m/z (%), 350 (M?,

28), 322 (100), 282 (2), 221 (4), 196 (8), 179 (20), 171

(21), 163 (9), 151 (15), 150 (32), 136 (17), 135 (23), 122

(57), 108 (61), 101 (20), 96 (9), 95 (22), 94 (13), 75 (16).

Anal calcd. for C15H9F3N4OS: C, 51.43; H, 2.59; N, 15.99.

Found: C, 51.39; H, 2.60; N, 15.91.

N-(3,5-Difluorophenyl)-2-(5-fluoro-2-oxo-1,2-dihydro-3H-

indol-3-ylidene)-1-hydrazinecarbothioamide (3k) Yield

77 % as orange powder; m.p. 259–260 �C; IR (KBr,

cm-1): 3290, 3072 (NH), 1693 (C=O), 1602 (C=N), 1265

(C=S): 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.93 (dd,

J = 8.7, 4.2 Hz, 1H, indole C7–H), 7.14–7.25 (m, 2H,

indole C6–H, phenyl C4–H), 7.55–7.63 (m, 3H, indole C4 –

H, phenyl C2–H, C6 –H), 10.89 (s, 1H, CSNH), 11.31 (s,

1H, indole NH), 12.78 (s, 1H, NNH); 13C NMR (75 MHz,
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DMSO-d6) d, ppm, 101.01, 101.22, 101.42, 107.81, 107.86,

107.98, 108.04, 108.29, 108.49, 112.22, 112.28, 117.84,

118.03, 121.03, 121.11, 132.36, 132.39, 138.95, 140.72,

140,83, 140.94, 157.29, 159.18, 160.79, 160.91, 162.75,

162.85, 175.93; EI MS (70 eV) m/z (%), 350 (M?, 30), 321

(100), 220 (2), 196 (9), 179 (20), 168 (29), 163 (4), 151

(17), 150 (27), 136 (18), 135 (19), 122 (50), 108 (24), 96

(9), 95 (18), 94 (9), 82 (26). Anal calcd. for C15H9F3N4OS:

C, 51.43; H, 2.59; N, 15.99. Found: C, 51.36; H, 2.61; N,

16.01.

N-(4-Bromo-2-fluorophenyl)-2-(5-fluoro-2-oxo-1,2-dihydro-

3H-indol-3-ylidene)-1-hydrazinecarbothioamide (3l)

Yield 80 % as orange fluffy crystals; mp 209–210 �C; IR

(KBr, cm-1): 3310, 3171(NH), 1691 (C=O),1580 (C=N),

1271 (C=S); 1H NMR (300 MHz, DMSO-d6) d, ppm, 6.94

(dd, J = 8.7, 4.2 Hz, 1H, indole C7–H), 7.22 (td, J = 9.3,

2.7 Hz, 1H, indole C6–H), 7.45–7.54 (m, 3H, phenyl C3–H,

C5–H, C6–H), 7.74 (dd, J = 9.3, 2.7 Hz, 1H, indole C4–H),

10.76 (s, 1H, CSNH), 11.30 (s, 1H, indole NH), 12.78 (s,

1H, NNH); 13C NMR (75 MHz, DMSO-d6) d, ppm,

107.99, 108.20, 112.22, 112.28, 117.73, 117.92, 119.39,

119.58, 120.20, 120.27, 121.16, 121.24, 125.97, 126.06,

127.63, 127.66, 131.64, 132.35, 132.38, 138.92, 156.17,

157.26, 158.18, 159.15, 162.68, 177.96; EI MS (70 eV) m/

z (%), 412/410 (M?, 15/14), 384/382 (100/95), 233/231

(27/26), 214 (27), 191/189 (21/23), 179 (37), 168 (68), 163

(35), 151 (31), 150 (52), 136 (40), 135 (47), 122 (97), 108

(78), 96 (17), 95 (37), 94 (45), 75 (16). Anal calcd. for

C15H9BrF2N4OS: C, 43.81; H, 2.21; N, 13.62. Found: C,

43.72; H, 2.20; N, 13.51.

Biology

Cytotoxicity in vitro

Brine shrimp (Artemia salina leach) eggs were hatched in a

shallow rectangular plastic dish (22 9 32 cm) filled with

artificial sea water, which was prepared with a commercial

salt mixture (Instant Ocean, Aquarium System, Inc.,

Mentor, Ohio, USA) and double-distilled water. An

unequal partition was made in the plastic dish with the help

of a perforated device. Approximately 50 mg of eggs were

sprinkled into the large compartment, which was darkened,

while the smaller compartment was opened to ordinary

light. After 2 days, nauplii were collected by a pipette from

the lighted side. A sample of the test compound was pre-

pared by dissolving 2 mg of each compound in 2 mL of

methanol. From this stock solution, 500, 50 and 5 lL were

transferred to 9 vials, three for each dilution, and one vial

was kept as control having 2 mL of methanol. The solvent

was allowed to evaporate overnight. After 2 days, when

shrimp larvae were ready, 1 mL of sea water and 10

shrimps were added to each vial (30 shrimps/dilution) and

the volume was adjusted with sea water to 5 mL per vial.

After 24 h, the number of survivors was counted

(McLaughlin et al., 1991; Meyer et al., 1982). Data were

analysed by a Finney computer program to determine the

LD50 values (Finney, 1971).

Antifungal activity in vitro

Antifungal activities of all the compounds were studied

against six fungal cultures. Sabouraud dextrose agar

(Oxoid, Hampshire, England) was seeded with 105 (cfu)

mL-1 fungal spore suspensions and transferred to petri

plates. Discs soaked with 20 lL (200 lg/mL in DMSO) of

all the compounds were placed at different positions on the

agar surface. The plates were incubated at 27–29 �C for

seven days. The results were recorded (Hussain et al.,

2003) as zone of inhibition (mm) and compared with

standard drugs, miconazole and amphotericin B.

Phytotoxicity in vitro

This bioassay was performed according to a modified

protocol (McLaughlin et al., 1991). The test compounds

were incorporated into sterilized E-medium at different

concentrations i.e. 5, 50 and 500 lg/mL in methanol.

Sterilized conical flasks were inoculated with compounds

of the desired concentrations prepared from the stock

solution and allowed to evaporate overnight. Each flask

was inoculated with 20 mL of sterilized E-medium and

then ten Lemna aequinocitalis Welv, each containing a

rosette of three fronds, were placed on media. Other flasks

were supplemented with methanol serving as a negative

control and the reference inhibitor i.e. paraquat as the

positive one. Treatments were replicated three times and

the flasks incubated at 30 �C in Fisons Fi-Totron 600 H

growth cabinet for 7 days, 9,000 lux light intensity,

56 ± 10 rh (relative humidity), and 12 h day length.

Growth of Lemna aequinocitalis in compounds-containing

flasks was determined by counting the number of fronds

per dose and growth inhibition was calculated with refer-

ence to negative control.

Urease inhibitory activity in vitro

Reaction mixtures comprising 25 lL of enzyme (Jack bean

urease) solution and 55 lL of buffers containing 100 mM

urea were incubated with 5 lL of test compounds (0.2 and

0.5 mM concentrations) at 30 �C for 15 min in 96-well

plates. Urease inhibitory activity was determined by mea-

suring ammonia production using the indophenol method

as described by Weatherburn (Weatherburn, 1967). In

brief, 45 lL each of phenol reagent (1 % w/v phenol and
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0.005 % w/v sodium nitropruside) and 70 lL of alkali

reagent (0.5 % w/v NaOH and 0.1 % active chloride

NaOCl) were added to each well. The increasing absor-

bance at 630 nm was measured after 50 min, using a

microplate reader (Molecular Device, USA). All reactions

were performed in triplicate in a final volume of 200 lL.

The results (change in absorbance per min) were processed

using SoftMax Pro software (Molecular Device, USA). All

the assays were performed at pH 8.2 (0.01 M K2HPO4.

3H2O, 1 mM EDTA and 0.01 M LiCl). Percentage inhibi-

tions were calculated from the formula 100 - (ODtestwell/

ODcontrol) 9 100. Thiourea was used as the standard

inhibitor of urease.

Conclusions

We have reported the potential of N4-aryl-substituted

5-fluoroisatin-3-thiosemicarbazones to exhibit cytotoxic

and antiurease activities. Based on the preliminary data

presented in Tables 1 and 4, and in terms of further

development and structure–activity relationship (SAR)

studies, simultaneous substitution of different inductively

electron-withdrawing groups at position-5 of the isatin

scaffold and on the phenyl ring attached to N4 of the thi-

osemicarbazone moiety certainly warrants further studies.

Work in this regard along with extended SAR studies will

be reported in the very near future.
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