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Abstract—The discovery, synthesis, potential binding mode, and in vitro kinase profile of several pyrido[1’,2":1,5]pyrazolo[3.4-d]-

pyrimidines as potent kinase inhibitors are discussed.
© 2005 Elsevier Ltd. All rights reserved.

Protein kinases catalyze the phosphorylation of tyrosine
and serine/threonine residues in various proteins in-
volved in the regulation of all functions.! Protein kinases
can be broadly classified as receptor (e.g., EGFr,
c-erbB2, PDGFr, and VEGFR2) or non-receptor (e.g.,
c-src, b-raf, and ZAP70) kinases. Inappropriate or
uncontrolled activation of many of these kinases, by
over-expression, constitutive activation, or mutation,
has been shown to result in uncontrolled cell growth.?
Drug discovery efforts have targeted this aberrant kinase
activity in cancer, asthma, psoriasis, and inflammation,
to name a few.’

Recent advances in the identification of erbB family ki-
nase inhibitors have created hope for the modulation of
uncontrolled cell growth in cancer therapy for solid
tumors.* For example, the compounds shown in
Figure 1, Iressa™ and GW572016, continue to show
promising results in clinical trials on cancer patients.’
Gleevec™s activity in bel-abl or c-kit-mediated malig-
nancies is well-documented and CEP1347 looks promis-
ing for Parkinson’s disease.®” Despite these tremendous
results in the development of signaling inhibitors, there
remains a gap in the understanding of the selectivity
and required inhibition profile of kinase inhibitors to
achieve efficacy without introducing toxicity.?
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Iressa™ (selective EGFr) GW572016 (Dual ErbB1/ErbB2)

Figure 1. Successful examples of kinase inhibitors that have progressed
to clinical trials and patient care.

Herein, we report the generation of a novel scaffold
where the substitution pattern targets different regions
of the ATP-binding site of the protein kinase domain
to create differentially selective molecules. Based on lit-
erature reports, linearly fused tricyclic core systems have
been used as scaffolds for kinase inhibitors.” Our goal
was to develop a novel tricyclic core ring system that
could be decorated with a variety of diverse substituents
to examine their structure—activity relationship (SAR)
against a panel of kinase inhibition assays. Herein, we
report the results of the utility of this approach to gen-
erate useful, selective tool compounds.
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Scheme 1. Synthesis of key intermediate 2-amino-3-cyano-pyrazol-
o[1,5-a]pyridine 1. Reagents: (a) malononitrile, ethanol, potassium
carbonate (25%).
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Scheme 2. Synthesis of N-phenylpyrido[1’,2":1,5]pyrazolo[3,4-d|pyrim-
idin-4-amine derivatives Sa-d. Reagents and conditions: (a) formic
acid, cat. sulfuric acid, 90 °C; (b) POCl; (61%, two steps); (c) anilines,
i-PrOH, reflux.
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Scheme 3. Synthesis of N-phenyl-N'-pyrido[l’,2":1:5]pyrazolo[3,4-
d]pyrimidin-4-yl-urea derivatives 6a—f. Reagents and conditions: (a)
formamide, MW 240 °C (79%); (b) isocyanates, MeCN, 25 °C, 16 h.

The syntheses of two novel classes of kinase inhibitors, V-
phenyl-pyrido[1’,2’:1,5]pyrazolo[3,4-d]-pyrimidin-amine
and N-phenyl-N'-pyrido[1’,2":1,5]pyrazolo [3,4-d]-pyrim-
idin-4-yl-urea derivatives, are shown in Schemes 1-3.

The key aminonitrile intermediate 1 was synthesized by
combining the commercially available N-aminopyridini-
um iodide and malononitrile in ethanol. Heating this
mixture with microwave irradiation in the presence of
2 equiv of potassium carbonate generates the desired
product. This intermediate has been used to prepare
two classes of kinase inhibitors. Preparation of those
derivatives with aniline substituents at the 4-position is
shown in Scheme 2, and a synthetic approach used to
prepare inhibitors with urea substitution at the 4-posi-
tion is shown in Scheme 3.

The synthesis of anilino-substituted analogs was started
by heating the aminonitrile 1 with formic acid in the
presence of catalytic sulfuric acid (Scheme 2). The result-
ing pyrimidinone derivative 2 was converted to the corre-
sponding chloroimidate 3 with phosphorous oxychloride.
The final displacement of the chloride with an appropriate
aniline was accomplished by heating in isopropyl
alcohol to give the desired N-phenylpyrido[1’,2’:1,5]pyr-
azolo[3,4-d]pyrimidin-4-amine compounds (5a—d).

Scheme 3 depicts the sequence of reactions used to pre-
pare urea-substituted derivatives 6a—f. Subjecting the
aminonitrile intermediate 1 to microwave irradiation
in the presence of formamide results in the formation
of tricyclic amine 4. Stirring this product overnight with
an isocyanate in acetonitrile gave the desired N-phenyl-
N'-pyrido[1',2":1,5]-pyrazolo[3,4-d|pyrimidin-4-yl-urea
compounds. The synthetic sequences shown above are
amenable to the production of large number of com-
pounds by scaling up key intermediates 3 and 4, and
adding the final diversity in a parallel array format.'%!!

Compounds 4, 5a-d, and 6a—f are representative exam-
ples of derivatives that can be synthesized by the meth-
ods described above. The compounds were evaluated in
a panel of kinase enzyme assays and the data for erbB2,
EGFR, GSK3, and VEGFR2 are summarized in Tables
1 and 2. The free amino-substituted derivative 4 showed
no activity against EGFR, erbB2, GSK3, or VEGFR.
However, replacement of the amino substituent with
aniline derivatives resulted in potent inhibitors of erbB2
and/or EGFR, with selectivity over GSK3 and VEGFR.
The SAR that confers potency and selectivity to the
quinazoline series for the erbB family. TK inhibition
was evaluated in N-phenylpyrido[1’,2":1,5]pyrazolo[3,4-
d]pyrimidin-4-amines.'?> For example, 5a has a ‘small’
anilino group, and like Iressa™, is selective for EGFR

Table 1. N-Phenylpyrido[1’,2":1,5]pyrazolo[3,4-d]pyrimidin-4-amines
ErbB2'*  EGFRM

Compound Structure
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Kinase enzyme inhibition expressed as ICsy values in micromolar.'
The ICsq values are >10 pM for GSK3 and VEGFR2 for compounds 4
and 5a-d.
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Table 2. N-Pyrido[l’,2":1,5]pyrazolo[3,4-d]pyrimidin-4-yl-ureas

Compound Structure GSK3P VEGFR!®
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Kinase enzyme inhibition expressed as ICs, values in micromolar.
The ICsy values are >10 uM for ErbB2 and EGFR for compounds
6a—f.

over erbB2. While a larger aniline substituent in 5b, like
GW572016, is a potent dual EGFR/erbB kinase inhibi-
tor (Fig. 2). The potency of this dual inhibition is depen-
dent on substitution on the aniline moiety, and a drop in
potency was observed with 5S¢ and d.

To confirm our belief that the novel tricyclic ring system
was able to bind in the ATP-binding site of EGFR so
that it possessed similar SAR to the quinazolines, we
modeled several viable binding modes. The best model
is shown in Figure 2 where Sb is compared with a co-
crystal structure of GW5720168. The aniline portion of
the compounds is overlaid in an identical fashion in
the back-pocket region, allowing the N-1 to interact
with the hinge region. The tricyclic core then extends
down the center of the binding site, which suggests that
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Figure 2. Docking model of 5b (green), compared with a cocrystal of
GW572016 (purple) in EGFR.® Hydrogen bonds are indicated by
dashed lines.

~~c \ Leu753

Na719 - .
" \rieres \(eumzt

¥

Leu820

Asp776 /
b j o

—

Figure 3. Docking model of 6a (yellow), compared with a cocrystal of
GW572016 (purple) in EGFR.® Hydrogen bonds are indicated by
dashed lines.

there is space for 6- and 7-position substitutions for in-
creased interactions.

When the aniline substituent of a pyrido[1’,2":1,5]pyraz-
olo[3,4-d]-pyrimidine scaffold is changed to an aryl urea,
no activity against erbB2 or EGFR is observed. This
lack of erbB2/EGFR inhibition from the urea deriva-
tives may be attributed to the fact that a threonine res-
idue exists in the ATP-binding pocket of EGFR and
erbB2. This threonine (Thr830) forms a water-mediated
hydrogen bond from the quinazoline N-3 nitrogen of
GW572016 to the threonine hydroxyl (see Fig. 2). This
same interaction could exist with the aniline-substituted
pyrido[1’,2’:1,5]pyrazolo[3,4-d]pyrimidines.
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However, interaction with the urea-substituted deriva-
tives is disrupted by the existence of an intramolecular
hydrogen bond between the urea nitrogen and the corre-
sponding nitrogen of the tricyclic core (see Fig. 3).'?
This intramolecular hydrogen bond not only disrupts
the interactions with the threonine of EGFR/erbB2,
but also slightly changes the relative orientation of the
aryl substituents of the aniline and urea derivatives
when superimposed on each other.

Although the urea-substituted pyrido[1’,2":1,5]pyrazol-
0[3,4-d]pyrimidines do not show inhibition of EGFR/
erbB2, they do begin to show moderate inhibition
against GSK3 and/or VEGFR?2 (see Table 2). The range
of potencies within the urea-substituted series provides
SAR which suggests that this template could be used
to develop GSK3 selective compounds (e.g., 6¢) or
VEGFR?2 selective compounds (e.g., 6f).

The facile synthesis and kinase inhibition data for the
pyrido[1’,2":1,5]pyrazolo[3,4-d]-pyrimidine  derivatives
demonstrate the potential of this scaffold to generate di-
verse kinase inhibition profiles. The most obvious trend
observed is that the anilino-substituted derivatives dem-
onstrated inhibition of the erbB family, but not GSK3
or VEGFR2, while the reverse trend is observed for
the urea-substituted derivatives.
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was allowed to proceed for 40 min. Product was detected
using a homogeneous time-resolved fluorescence proce-
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antibody (Wallac, Turku, Finland). The product was
detected using a Victor plate reader (Wallac, Turku,
Finland) with a time delay at 665 nm.

16. Human GSK3b was expressed in Escherichia coli with a
6-His tag at the N-terminus. The protein was purified
using metal-chelate affinity chromatography. The incor-
poration of radioactive phosphate into a biotinylated
synthetic  peptide,  Biotin-Ahx-AAAKRREILSRRP-
S(PO3)YR-amide, was detected using a scintillation
proximity assay (SPA) method as described above. Assay
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