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Abstract: Tetrakis(2-thienyl)allene was synthesized as an acid-sensitive tetraarylallene by dehydration of the
corresponding tetrathienylallyl alcohol with anhydrous copper(Il} sulfate. This electron-rich allene forms a
remarkably stable tetrathienylallyl cation by protonation, undergoes Diels-Alder reaction with tetracyanoethylene,
and is capable of tetrafold lithiation and functionalization. © 1998 Elsevier Science Ltd. Al rights reserved.
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While tetrakis(2-thienyl)-ethene and -butatriene, 1 and 2, have been synthesized recently,
1,1,3,3-tetrakis(2-thienyl)- 1,2-propadiene  (tetrathienylallene: TTA) 3 has remained
unknown.l.2 In view of electron-donating property of 2-thienyl group, 3 would be an
electron-rich allene and form 1,1,3,3-tetrakis(2-thienyl)allyl cation 4 (TTAC) as a
considerably stable allyl cation upon protonation. In addition, possible lithiation and
functionalization of the 2-thienyl groups would make 3 a potential building block for novel
conjugated molecules containing allene moieties. As a part of our studies on novel conjugated
molecules based on thiophene chemistry,2.3 we have synthesized 3 to examine its properties
and synthetic utility. Here we report the synthesis and properties of 3 and 4.
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Tetraaryl-substituted allenes have been synthesized by either acid-catalyzed dehydration of
the corresponding allyl alcohols®> or base-induced dehydrohalogenation of 2-
halogenopropenes.0 We here employed the dehydration procedure for the synthesis of 3
because of short synthetic steps. However, initial attempts of acid-catalyzed dehydration of
allyl alcohol 7, prepared from dithienyl ketone 5 through 6 (Scheme 1), did not give successful
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results: while treatment of 7 with p-toluenesufonic acid in benzene or ethyl acetate at room
temperature for two days afforded TTA 37 in poor yields of about 5%, heating the mixtures
led to decomposition of both 3 and 7 to suggest the acid-sensitive nature of 3. Attempted
dehydration of 7 with phosphoryl chloride or methanesulfonyl chloride in pyridine also failed,
yielding 3 in only trace amount. The most successful result (62% yield) was obtained by
heating of 7 with anhydrous copper(II) sulfate8(10 molar equiv.) in THF at reflux for 3 h.
This procedure was also successful for the preparation of 1,1-diphenyl-3,3-bis(2-thienyl)allene
99 (72% from allyl alcohol 8).
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Reagents and conditions (for 3): a) NaH/benzene, reflux, 1 d, 92%; b) 2-thienyllithium
/THF, 0 °C - r.t., 70% ; c) anhyd. CuSO, (10 molar eq.)/THF, reflux, 3 h, 62%.

TTA 3 is a pale yellow crystalline substance, stable at solid state and in neutral solutions,
but sensitive to acids.10 Upon gradual addition of trifluoroacetic acid (TFA) in
dichloromethane, the pale yellow solution of 3 turned to greenish forming TTAC 4 which
exhibits strong visible absorptions at 456, 525, and 637 nm (Scheme 2 and Figure 1). Aslow as
1% (v/v) concentration of TFA is nearly enough for full spectral change at the UV spectral
concentration (10-5 M). TTAC 4 is significantly stable surviving for a few days in the solution
at room temperature in contrast to much lower stability of 1,1,3,3-tetraphenylallyl cation (due
to intramolecular cyclizationS-11). In our experiment, tetraphenylallene needed more than 5%
(v/v) of TFA for sufficient protonation, and the absorptions of tetraphenylallyl cation (Amax =
399, 473, and 578 nm in TFA-CHCly) disappeared in about 1 h. 1H NMR spectrum!2 of 4 at
30 °C (Figure 2) shows the thienyl protons at 0.53 ppm lower field in average than those of 3
(8ay 7.79 vs. 7.26) in consonant with the monocation structure. The 1H NMR obser vation of
four equivalent thienyl groups instead of two kinds in 4 is suggestive of easy bond rotation of
the carbon-carbon bonds in the allyl cation part around room temperature.13

TTA 3 smoothly reacted with tetracyanoethylene (TCNE) in benzene at room temperature
to form, in good yield, the Diels-Alder adduct 1014 in which one of the thienyl groups takes
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part (Scheme 2). Under the similar condition, diphenyldithienylallene 8 yielded regioselective
adduct 1114, indicating higher reactivity of the diene at the thienyl side than the diene at the
phenyl side.
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Figure 1. UV-vis spectral change of TTA3 upon  Figure 2. IH NMR spectrum of TTAC 4 in

gradual addition of CF3COOH in CH,Cl,. CD,Cl,-TFA at 30 <C.
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Reagents and conditions: a) CF;COOH/CH,Cl,; b) TCNE/benzene, rt, 72% (10), 55% (11);
c) i) 4.4 eq. n-BuL/THF, -78 °C, 30 min, ii) 6 eq. (CH;3);SiCl, -78-0 °C, 1 h, 91%.

In view of ready metallation of thiophene at 2 (5)-position(s) and stabilizing effects of 2-
thienyl group on both carbocations and carbanions,? it is an interesting question whether strong
bases effect selective metallation of 5-position of the thienyl groups or preferentially add to the
sp carbon of TTA 3 to form 1,1,3,3-tetrathienylallyl anions. In fact, treatment of 3 with n-
BuLi (4.4 equiv.) in THF at -78 °C followed by addition of excess chlorotrimethylsilane
afforded tetra-silylated compound 1215 in high yield (Scheme 2). This successful tetrafold
lithiation of 3 should allow the syntheses of novel conjugated systems containing
tetrathienylallene moiety.

Further studies and synthetic application of 3 and 8 are in progress.
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