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AbstractÐFour stereoisomers of muricatacin 1a±d were prepared by the reaction of corresponding aldehydes 4a±d,
which in turn were prepared from d-glucose, with the anion of triethylphosphonoacetate followed by reduction and
cyclization under acidic conditions. Cytotoxicities of four stereoisomers were tested against in vitro A-549 cell line

as well as MCF-7 cell line. Stereochemistry at C4 and C5 position of muricatacin did not a�ect the cytotoxicities
signi®cantly. # 1998 Elsevier Science Ltd. All rights reserved.

Introduction

Muricatacin (1), an acetogenin derivative, which is iso-
lated from the seeds of the tropical fruit Annona muri-
cata L., has received a great deal of attention because it
shows some cytotoxicities against human tumor cell

lines and its congeners show a wide range of biological
activities.1 The natural muricatacin is comprised of
(ÿ)-(4R,5R)-5-hydroxyheptadeca-4-nolide and its (+)-

(4S,5S) enantiomer, with the former predominating.
(+)-Muricatacin and/or (ÿ)-muricatacin was recently
synthesized from various starting materials.2

In connection with our projects to explore the structure-

activity relationship of acetogenin derivatives, we needed

to prepare four stereoisomers of muricatacin to under-
stand the e�ect of stereochemistry at C4 and C5 position

of muricatacin on cytotoxicity. Here, we report a
stereocontrolled synthesis of four enantiomerically pure
stereoisomers of muricatacin, (ÿ)-(4R,5R), (+)-(4S,5R),
(ÿ)-(4R,5S), and (+)-(4S,5S)-enantiomers from d-glu-
cose, as well as their cytotoxicities.

Results and Discussion

Synthesis

According to Scheme 1, the synthesis of (ÿ)-(4R,5R)-
muricatacin (1a) started from 5,6-dideoxy-1,2-iso-

propylidene-5-C-(n-undecanyl)-a-d-glucofuranose (2)
which was available from d-glucose in four steps.3±6

Monoprotection of 2 with benzyl chloride in tetra-
hydrofuran (THF) using NaH as a base, followed by

removal of the isopropylidene group with 9.6 N HCl,
a�orded 1,2-diol compound 3. Oxidative cleavage of 3
with sodium periodate gave (2S,3R)-O-protected 2,3-

dihydroxy aldehyde 4a. Horner±Emmons ole®nation of
the aldehyde 4a with the anion of triethylphosphono-
acetate gave (E)-unsaturated ester 5a in 73% yield.

Hydrogenation of 5a in the presence of 10% Pd-C
under 1 atm of hydrogen followed by treatment of
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tri¯uoroacetic acid a�orded (ÿ)-(4R,5R)-muricatacin
(1a) in 45% overall yield from 4a.7 Therefore, in order
to synthesize the remained three stereoisomers of (ÿ)-
(4R,SR)-murcatacin, we ®rst needed to prepare the
appropriately stereocontrolled 0-protected 2,3-dihy-
droxy aldehydes 4b-4d.

The corresponding (2R,3R)-O-protected 2,3-dihydroxy
aldehyde 4b required for the synthesis of (4S,5R)-mur-
icatacin 1b was prepared from the C-3 unprotected

furanose 2. In order to introduce S con®guration at C3

position, the C3 b-hydroxyl group in 2 was oxidized to
the ketone 6 under Swern oxidation condition,8 and 6

was subsequently reduced with NaBH4 in MeOH at
room temperature9 to a�ord the C3 a-hydroxyl com-
pound 7 as the sole isolated product. After protection of

the hydroxy group in 7 with benzyl group, the iso-
propylidene group was removed with 9.6 N HCl/TFA to

provide the hemiacetal, which was subjected to the oxi-
dative cleavage with sodium periodate to give the
(2R,3R)-2-benzyloxy-3-formyloxy-1-pentadecanal 4b.

The synthesis of (2S,3S)-O-protected 2,3-dihydroxy
aldehyde 4c was ®rst undertaken by changing the C4 b-
oriented dodecyl group in 2 into a-oriented one. For
this purpose, dodeca-3-enofuranose 8 was prepared
by the elimination reaction of the tri¯ate derived
from the O-tri¯ation of the C3 hydroxyfuranose 2

with tri¯uoromethanesulfonic anhydride in pyridine.10

Hydroboration11 of 8 with disiamylborane followed by
oxidation with H2O2/NaOH a�orded the 3-hydroxyl-b-
l-xylofuranose 9 exclusively with 60% yield after
separation by silica gel column (230±400 mesh) chro-
matography. After preparation of 9, the same reaction

conditions for the synthesis of 4a from 2 were used to
convert 9 into 4c.

Scheme 1. Preparation of muricatacin 1a±d. (a) See reference7; (b) NaH, BnCl, THF, rt, 5h; (c) 9,6 N HCl/TFA, DME, rt, 48h; (d)

NaIO4, MeOH, rt, 1h; (e) NaH, (EtO)2POCH2CO2Et, THF, rt 3h; (f) H2, Pd-C, EtOAc, rt, 24h; (g) TFA-H2O (4:1), rt, 3h; (h)

DMSO, (COCl)2, Et3N, CH2Cl2, ÿ60 �C!rt, 2h; (i) NaBH4, MeOH, rt; (j) Tf2O, pyridine, CH2Cl2, ÿ10 �C; (k) DBU, ether, rt; (l)

Sia2BH, THF, 0 �C!rt, then H2O2, aq. NaOH.
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Similar approaches were used to prepare the (2R,3S)-O-

protected 2,3-dihydroxy aldehyde 4d. Thus, after the C3

a-oriented compound 10 was prepared from 9 posses-
sing the C3 b-hydroxyl group by the use of the methods

applied in the synthesis of 7 from 2, it was subsequently
converted into 4d by the same reaction sequences
described for the synthesis of 4b from 7. Finally, the

three remaining (+)-(4S,5R), (ÿ)-(4R,5S) and (+)-
(4S,5S)-enantiomers 1b±d were synthesized from 4b, 4c,
and 4d, respectively, by the methods for the synthesis of

(ÿ)-(4R,5R) muricatacin (1a) from 4a.

Cytotoxicities

The cytotoxicities of 1a±d were tested against in vitro A-
549 cell line as well as MCF-7 cell line by measuring the
inhibition of cell growth.12 As shown in Table 1, the

four stereoisomers generally exhibited weak and similar
inhibition in both cell lines. Although (4R,5R)-com-
pound 1a showed a slightly higher cell growth inhibition

in A-549 cell line compared to the rest of the stereo-
isomers, the di�erence was minimal. This indicates that
the stereochemistry at C4 and C5 position of muri-
catacin might not a�ect the cytotoxicities signi®cantly.

Conclusion

In conclusion, we have established e�cient methods for
the syntheses of four stereoisomers 1a-1d of muricatacin

(1) from d-glucose and found that the stereochemistry
at C4 and C5 position of muricatacin did not a�ect the
cytotoxicities signi®cantly.

Experimental

Chemistry

Melting points were determined on a Fisher±Johns

melting point apparatus and are uncorrected. Optical
rotations were determined at a sodium D line using a
JasCo 370-DIP polarimeter and measured in chloro-

form. 1H NMR and 13C NMR spectra were recorded on
a Varian Gemini 200 spectrometer at 200MHz and

50MHz. Chemical shifts were given in relative tetra-
methylsilane. Infrared spectra were recorded on a

Nicolet FT-IR 550 spectrometer. GC-Mass spectro-
scopy was carried out on a Hewlett Packard (5972 ser-
ies) instrument. Elemental analyses were performed by

Fisons Eager 200 instrument, Italy. Flash column
chromatography was done by using Merck silica gel 60
(15±40 mm). Following abbreviations are used for

reagent and solvents: DBU (1,8-diazabicyclo[5,4,0]
undec-7-ene), DME (1,2-dimethoxyethane), DMSO
(dimethyl sulfoxide), THF (tetrahydrofuran).

5,6-Dideoxy-1,2-isopropylidene-5-C-(n-undecanyl)-�-D-

glucofuranose (2). This was prepared from d-glucose
according to the procedure reported by S-K Kang et al.7

White solid; mp 76±77 �C; [a]20d=ÿ24.8� (c=10.0,
CHCl3);

1H NMR (CDCl3) d 0.87 (t, 3H, J=6.7Hz,
ÿCH3), 1.02±1.45 (m, 22H, ÿ(CH2)11ÿ), 1.32 (s, 3H

acetonide), 1.63 (s, 3H, acetonide), 2.02 (d, 1H J=6.2Hz,
OH), 4.01±4.12 (m, 2H, C3-H and C4-H), 4.52 (d, 1H,
J=3.8Hz, C2-H), 5.86 (d, 1H, J=3.8Hz, C1-H); 13C

NMR (CDCl3) d 4.1, 22.7, 26.1, 26.6, 29.3, 30.7, 31.9,
75.4 (C4), 80.3 (C2), 85.3 (C3), 104.2 (C1), 111.4 (C7).

3-O-Benzyl-5,6-dideoxy-1,2-O-dihydroxy-5-C-(n-undec-

anyl)-�-D-glucofuranose (3). To a suspension of NaH
(610mg of 95% powder, 25.4mmol) in anhydrous
DMSO (30mL) was added 2 (5.1 g, 19.6mmol) in anhy-

drous THF (150mL) under a nitrogen atmosphere. After
the mixture was stirred for 30min at room temperature,
benzyl chloride (3.2 g, 25.4mmol) was added. The reac-

tion mixture was stirred for 5 h at room temperature
and then quenched with saturated aqueous NH4Cl
solution (50mL). The organic solvent was removed and
the aqueous solution was extracted with CH2Cl2
(50mL�3). The organic layer was dried (Na2SO4), ®l-
tered, and concentrated. The crude product was chro-
matographed on a silica gel column (hexane:ethyl

acetate=1:1) to give a 3-O-benzyl-1,2,5,6-diisopropyl-
idene-a-d-glucofuranose (7.3 g, 96%) as slightly yellow
oil: IR (neat) 3060, 3040, 2980, 2890 cmÿ1; 1H NMR

(CDCl3) d 0.88 (t, 3H, J=6.6Hz, ÿCH3), 1.12±1.48 (m
22H, ±(CH2)11±), 1.31 (s, 3H, acetonide), 1.63 (s, 3H,
acetonide), 3.75 (d, 1H, J=3.0Hz, C3-H), 4.05±4.18 (m,

1H, C4-H), 4.43±4.72 (m, 3H, ÿOCH2 and C2-H), 5.90
(d, 1H, J=3.9Hz, C1-H), 7.32 (m, 5H, phenyl). To a
solution of 3-O-benzylated compound (6.3 g, 15.1mmol)
in DME (20mL) was slowly added dropwise 9.6N HCl

(10mL). The reaction mixture was stirred for 48 h at
room temperature and then neutralized with saturated
aqueous NaHCO3 solution. After the evaporation of

DME, the aqueous layer was extracted with CH2Cl2
(30mL�3). The organic layer was dried (Na2SO4), ®ltered,
and concentrated. The residue was chromatographed on

a silica gel column (hexane:ethyl acetate=1:2) to give 3

(3.8 g, 67%) as a white solid mp 52±53 �C; IR (neat)

Table 1. In vitro inhibition of A-549 and MCF-7 cell lines

Compd IC50 (mg/mL)

A-549 MCF-7

1a 18.5 17.6

1b 29.8 16.7

1c 23.7 22.2

1d 24.3 15.9
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3550, 2990, 2850, 1100 cmÿ1; 1H NMR (CDCl3) d 0.86
(t, 3H, J=6.6Hz,ÿCH3), 1.14±1.58 (m, 22H,ÿ(CH2)11-),

1.63 (m, 1H,ÿOH), 3.8 (m, 1H, C3-H), 4.23 (m, 2H, C2-H
& C4-H) 4.53±4.75 (dd, 2H, J=11.9, 49.9Hz, ÿOCH2),
5.45 (d, 1H, J=4.1Hz, C1-H), 7.32 (s, 5H, -phenyl).

(2S,3R)-2-Benzyloxy-3-formyloxy-1-pentadecanal (4a).

To a solution of 3 (3.7 g, 9.8mmol) in MeOH (200mL)

was added 0.6N NaIO4 solution (250mL). The reaction
mixture was stirred for 1 h at room temperature and
then concentrated. After the reaction mixture was diluted
with H2O (50mL), it was extracted with CH2Cl2
(30mL�3). The organic layer was dried (Na2SO4), ®ltered,
and concentrated. The residue was chromatographed on
a silica gel column (hexane:ethyl acetate=1:2) to give 4a

(2.7 g, 73%) as a white solid: mp 30±31 �C, [a]20d
=11.62� (c=11.7, CHCl3); IR (neat) 3050, 2935, 2850,
1737, 1713, 1173 cmÿ1; 1H NMR (CDCl3) d 0.90 (t, 3H,

J=6.6Hz, ±CH3), 1.32 (s, 20H, ±(CH2)10±), 1.69 (m, 2H,
±CH2), 3.88 (dd, 1H, J=0.9, 3.1Hz, C2-H), 4.55±4.86
(dd, 2H, J=11.9, 49.7Hz, ±OCH2), 5.28 (m, 1H, C3-H),

7.34 (s, 5H,-phenyl), 8.05 (s, 1H, ±OCHO), 9.66 (d, 1H,
J=1.0Hz, ±CHO); 13C NMR (CDCl3) d 15.5, 24.0,
26.5, 30.5, 31.3, 33.3, 73.8 (C3), 74.8 (±OCH2), 84.1 (C2),
129.4, 129.5, 129.9, 137.9, 161.6 (±OCHO), 202.4 (±CHO).

Ethyl (4R,5R)-4-benzyloxy-5-hydroxy-(2E)-heptadecan-

oate (5a). To a suspension of NaH (250mg of 95%

powder, 10.4mmol) in anhydrous THF (10mL) was
slowly added a solution of triethyl phosphonoacetate
(1.9 g, 8.5mmol) in anhydrous THF (5mL). The reaction

mixture was stirred for 30min at 0 �C, and compound
4a (2.5 g, 6.6mmol) in THF (10mL) was slowly added
to this mixture. The reaction mixture was stirred for 3 h
at room temperature under a nitrogen atmosphere and

then quenched with NH4Cl solution (30mL). After the
organic solvent was removed, the aqueous layer was
extracted with CH2Cl2 (50mL�3). The combined

organic layer was dried (Na2SO4), ®ltered, and con-
centrated. The residue was chromatographed on a silica
gel column (hexane:ethyl acetate=1:1) to give 5a (2.0 g,

73%) as a slightly yellow oil: IR (neat) 3480 (±OH),
3040, 2930, 2860, 1730 (C=O) cmÿ1; 1H NMR (CDCl3)
d 0.91 (t, 3H, J=6.8Hz, ±CH3), 1.25±1.58 (m, 25H,

±(CH2)11± and ±CH3), 2.62 (d, 1H, J=3.1Hz, ±OH),
3.68 (m, 1H, C5-H), 3.83 (m, 1H, C4-H), 4.23 (q, 2H,
J=4.6Hz, ±CO2CH2±), 4.32±4.69 (dd, 2H, J=11.8,
50.1Hz, ±OCH2), 6.13 (d, 1H, J=14.6Hz, C2-H), 6.87

(dd, 1H, J=14.6, 6.7Hz, C3-H), 7.33 (s, 5H, ±phenyl);
13C NMR (CDCl3) d 14.1, 22.6, 25.5, 29.3, 29.5, 31.8,
32.6, 51.7, 71.4 (C5), 73.3 (±OCH2), 81.9 (C4), 124.0

(C2), 127.9, 128.0, 128.5, 137.4, 144.8 (C3), 166.3.

(ÿ)-(4R,5R)-5-Hydroxyheptadeca-4-nolide (1a). In the

presence of 10% Pd-C (500mg), a solution of 5a (1.2 g,
2.9mmol) in ethyl acetate (100mL) was hydrogenated

under an atmosphere of hydrogen for 24 h at room
temperature. The catalyst was ®ltered and the ®ltrate

was concentrated to give the corresponding saturated
ester as a white solid. The ester was dissolved in H2O-
tri¯uoroacetic acid (4:1) (100mL) and the resulting

solution was stirred for 3 h at room temperature. After
the solution was neutralized with saturated aqueous
NaHCO3 solution, the neutralized aqueous layer was

extracted with chloroform (30mL�3). The organic layer
was dried (Na2SO4), ®ltered, and concentrated. The
residue was chromatographed on a silica gel column
(hexane:ethyl acetate=1:2) to give the product, which

was recrystallized from hexane-ethyl acetate (10:1) to
give 1a (500mg, 61%) as a white solid: mp 71±72 �C,
lit.2c 73±74 �C, lit.1 50 �C, lit.2f 72 �C, [a]20d=ÿ11.62�
(c=11.7, CHCl3), lit.

2c ÿ23.14� (c=2.36, CHCl3), lit.
2a

ÿ22.9� (c=1.1, CHCl3); IR (KBr) 3400 (-OH), 2960,
2920, 1753 (C=O) cmÿ1; 1H NMR (CDCl3) d 0.91 (t,

3H, J=6.8Hz, ±CH3), 1.25±1.56 (s, 22H, ±(CH2)11±),
2.08 (s, 1H, ±OH), 2.12±2.48 (m, 2H, C3-H), 2.61 (m,
2H, C2-H), 3.56 (m, 1H, C5-H), 4.43 (ddd, 1H, J=3.2,

7.3, 10.6Hz, C4-H); 13C NMR (CDCl3) d 13.9, 22.5,
23.9, 25.3, 28.5, 29.2, 29.3, 31.7, 73.5 (C5), 82.78 (C4),
177.05 (C1); Mass (m/e) 285 (MH+), 267, 199, 180, 97,
86 (base peak); Anal. calcd for C17H32O3: C, 71.79; H,

11.34. Found: C, 71.84; H, 11.48.

5,6-Dideoxy-1,2-isopropylidene-3-carbonyl-5-C-(n-undec-

anyl)-�-D-allofuranose (6). A solution of oxaloyl chlor-
ide (0.26mL, 3.1mmol) and DMSO (3mL) in CH2Cl2
(25mL) was stirred for 15min at ÿ60 �C under a nitro-

gen atmosphere. To this solution was added 2 (640mg,
2.0mmol) in CH2Cl2 (15mL). After the reaction mixture
was stirred for 50min at ÿ60 �C, Et3N (5mL) was added
and the resulting mixture was stirred for 2 h at room

temperature. The reaction mixture was diluted with
H2O (20mL) and then extracted with CH2Cl2 (30mL�3).
The organic layer was dried (Na2SO4), ®ltered, and

concentrated. The residue was chromatographed on a
silica gel column (hexane:ethyl acetate=1:1) to give 6

(530mg, 82%) as a white solid: mp 66±67 �C; IR (KBr)

2960, 2890, 1820 (C=O) cmÿ1; 1H NMR (CDCl3) d 0.86
(t, 3H, J=6.6Hz, ±CH3), 1.02±1.45 (s, 22H, (CH2)11±),
1.38 (s, 3H, acetonide), 1.50 (s, 3H, acetonide), 4.32 (m,

2H, C2-H and C4-H), 5.86 (d, 1H, J=4.1Hz, C1-H).

5,6-Dideoxy-1,2-isopropylidene-5-C-(n-undecanyl)-�-D-

allofuranose (7). To a solution of 6 (430mg, 1.3mmol)

in MeOH (150mL) was added NaBH4 (250mg,
6.7mmol) at 0 �C. The reaction mixture was stirred for
12 h at room temperature. After the evaporation of

methanol, the reaction mixture was diluted with water
(50mL) and then extracted with CH2Cl2 (30mL�3).
The organic layer was dried (Na2SO4), ®ltered, and

concentrated. The residue was chromatographed on a
silica gel column (hexane:ethyl acetate=1:1) to give 7

1046 S.-H. Yoon et al./Bioorg. Med. Chem. 6 (1998) 1043±1049



(410mg, 96%) as a white solid: mp 81±82 �C,
[a]20d=+46.4� (c=10.0, CHCl3); IR (KBr) 3480 (ÿOH),

2960, 2880 cmÿ1; 1H NMR (CDCl3) d 0.91 (t, 3H,
J=6.9Hz, ±CH3), 1.21±1.52 (m, 22H, ±(CH2)11±), 1.31
(s, 3H, acetonide), 1.62 (s, 3H, acetonide), 2.32 (d, 1H,

J=7.9Hz, ±OH), 3.52±3.82 (m, 2H, C3-H and C4-H),
4.5 (t, 1H, J=4.1Hz, C2-H), 5.79 (d, 1H, J=4.0Hz, C1-
H); 13C NMR (CDCl3) d 14.1, 22.7, 25.7, 29.3, 29.7,

31.9, 75.4 (C4), 80.3 (C2), 85.3 (C3), 104.2 (C1), 111.4
(C7).

(2R,3R)-2-Benzyloxy-3-formyloxy-1-pentadecanal (4b). 7

(400mg, 1.2mmol) was subjected to the same sequence
of the reactions as described for the synthesis of 4a from
2. Benzylation of 7 (480mg, 96%), followed by the

cleavage of the isopropylidene group, gave the 1,2-diol
compound (280mg, 65%): IR (neat) 3500, 2950, 2850,
1100 cmÿ1; 1H NMR (CDCl3) d 0.86 (t, 3H, J=6.6Hz,

±CH3), 1.13±1.58 (m, 22H, ±(CH2)11±), 1.72 (m, 1H,
±OH), 3.56 (m, 1H, C3-H), 3.95±4.20 (m, 2H, C2-H and
C4-H), 4.65 (s, 2H, ±OCH2), 5.25 (m, 1H, C1-H), 7.34 (s,

5H, -phenyl). Oxidative cleavage reaction of the 1,2-O-
diol compound gave 4b (250mg, 55%) as a slightly yel-
low oil: [a]20d=+29.9� (c=11.9, CHCl3); IR (neat)
3050, 2960, 2850, 1760, 1480 cmÿ1; 1H NMR (CDCl3) d
0.92 (t, 3H, J=6.9Hz, ±CH3), 1.32 (s, 20H, ±(CH2)10±),
1.65 (m, 2H, ±CH2), 3.87 (dd, 1H, J=1.9, 3.4Hz, C2-H),
4.68 (s, 2H, ±OCH2), 5.38 (m, 1H, C3-H), 7.33 (s, 5H,

±phenyl), 8.07 (s, 1H, ±OCHO), 9.65 (d, 1H, J=2.0Hz,
±CHO); 13C NMR (CDCl3) d 15.4, 24,0, 26.6, 30.7, 31.0,
33.2 (C3), 74.3 (±OCH2), 84.9 (C2), 129.3, 129.5, 129.9,

138.0, 161.6 (±OCHO), 202.3 (±CHO).

Ethyl (4S,5R)-4-benzyloxy-5-hydroxy-(2E)-heptadecan-

oate (5b). 4b (250mg, 0.66mmol) was subjected to the

same reaction described for the synthesis of 5a. 5b

(186mg, 68%) was obtained as a slightly yellow oil: IR
(neat) 3420 (±OH), 3050, 2920, 2860, 1730 (C=O) cmÿ1;
1H NMR (CDCl3) d 0.91 (t, 3H, J=6.8Hz, ±CH3),
1.21±1.52 (m, 25H, ±(CH2)11± and ±CH3), 2.28 (m, 1H, ±
OH), 3.88 (m, 1H, C5-H), 3.95 (m, 1H, C4-H), 4.21 (q,

2H, J=4.5Hz, ±CO2CH2±), 4.37±4.72 (dd, 2H, J=11.5,
49.7Hz, ±OCH2), 6.11 (d, 1H, J=14.5Hz, C2-H), 6.96
(dd, 1H, J=14.5, 6.8Hz, C3-H), 7.35 (s, 5H, -phenyl);
13C NMR (CDCl3) d 15.5, 24.0, 27.1, 30.7, 30.9, 33.5,
55.0, 72.6 (C5), 74.5 (±OCH2), 82.7 (C4), 126.0 (C2),
129.0, 129.1, 129.8, 138.9, 145.3 (C3), 167.1.

(+)-(4S,5R)-5-Hydroxyheptadeca-4-nolide (1b). 5b (120mg,
0.29mmol) was subjected to the same reaction described
for the synthesis of 1a. 1b (48mg, 59%) was obtained

as a white solid: mp 71.5 �C; [a]20d=+14.3� (c=7.4,
CHCl3); IR (KBr) 3430 (±OH), 2960, 2920, 1780 (C=O)
cmÿ1; 1H NMR (CDCl3) d 0.91 (t, 3H, J=6.8Hz, ±

CH3), 1.23±1.55 (s, 22H, ±(CH2)11±), 1.92 (s, 1H, ±OH),
2.12±2.47 (m, 2H, C3-H), 2.59 (m, 2H, C2-H), 3.95 (m,

1H, C5-H), 4.55 (ddd, 1H, J=3.2, 7.3, 10.6Hz, C4-H);
13C NMR (CDCl3) d 13.9, 21.8, 23.1, 25.9, 28.5, 29.2,

29.5, 31.9, 71.9 (C5), 82.5 (C4), 177.1 (C1); Mass (m/e)
285 (MH+), 266, 199, 111, 86 (base peak); Anal. Calcd
for C17H32O3: C, 71.79; H, 11.34. Found: C, 71.53; H,

11.58.

3,5,6-Trideoxy-1,2-O-isopropylidene-�-D-erythro-dode-3-

cenofuranose (8). To a solution of 2 (3.5 g, 7.0mmol) in
CH2Cl2 (100mL) was added pyridine (2mL). After the
solution was stirred for 30min at ÿ10 �C, tri-
¯uoromethanesulfonic anhydride (3.9 g, 13.9mmol) was

carefully added. The reaction mixture was stirred for 1 h
at ÿ10 �C under a nitrogen atmosphere and then diluted
with ether (100mL) to give a white precipitate. After

®ltration of the precipitate, the ®ltrate was successively
washed with H2O, 5% HCl, saturated aqueous
NaHCO3 solution, and saturated aqueous NH4Cl solu-

tion. The organic layer was dried (Na2SO4), ®ltered, and
concentrated. The residue was chromatographed on a
silica gel column (hexane:ethyl acetate=1:2) to give the

tri¯ated compound (5.1 g, 94%) as a slightly yellow oil.
To a solution of the tri¯ated compound (5.1 g,
10.2mmol) in ether (100mL) was added DBU (6.8 g,
45.3mmol). After the reaction mixture was stirred for

24 h at room temperature under a nitrogen atmosphere,
it was washed with H2O and brine. The organic layer
was dried (Na2SO4), ®ltered, and concentrated. The

residue was chromatographed on a silica gel column
(hexane:ethyl acetate=2:3) to give 7 (2.6 g, 76%) as a
slightly yellow oil: IR (neat) 2960, 2930, 2852, 1667,

1382 cmÿ1; 1H NMR (CDCl3) d 0.91 (t, 3H, J=6.7Hz,
±CH3), 1.22±1.54 (s, 20H, ±(CH2)10±), 1.37 (s, 3H, acet-
onide), 1.55 (s, 3H, acetonide), 2.12 (t, 2H, J=7.5Hz,
±CH2), 4.89 (t, 1H, J=2.3Hz, C2-H), 5.25 (m, 1H, C3-

H), 6.01 (d, 1H, J=5.3Hz, C1-H).

5,6-Dideoxy-1,2-isopropylidene-5-C-(n-undecanyl)-�-D-

galactofuranose (9). To a solution of 2-methyl-2-butene
(5.5mL, 5.02mmol) in anhydrous THF (5mL) was
added dropwise borane-disul®de complex (1.25mL of

2.0 M solution in THF, 2.5mmol) with a syringe under
a nitrogen atmosphere at 0 �C. After the mixture was
stirred for 2 h at 0 �C, the solution of 8 (390mg,

1.3mmol) in THF (20mL) was added dropwise to the
mixture. The reaction mixture was stirred for 24 h at
room temperature and then H2O2 (0.42mL, 4.0mmol)
was carefully added at 0 �C. The reaction mixture was

stirred for 24 h again at room temperature and then
quenched with sodium sul®te. The reaction mixture was
®ltered and the organic solvent was removed. The aqu-

eous layer was extracted with ether (3�20mL). The
etherate was dried (Na2SO4), ®ltered, and concentrated.
The residue was chromatographed on a silica gel col-

umn (hexane:ethyl acetate=1:2) to give 8 (210mg, 50%)
as a white solid: mp 52±53 �C; [a]20d=ÿ22.3� (c=6.9,
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CHCl3); IR (KBr) 3430 (±OH), 2930, 2850 1464,
1379 cmÿ1; 1H NMR (CDCl3) d 0.91 (t, 3H, J=6.9Hz,

±CH3), 1.22±1.51 (m, 22H, (CH2)11±), 1.33 (s, 3H, aceto-
nide), 1.62 (s, 3H, acetonide), 1.81 (d, 1H, J=4.4Hz,
±OH), 3.92 (m, 1H, C4-H), 4.11 (dd, 1H, J=3.9, 7.9Hz,

C3-H), 4.52 (d, 1H, J=3.9Hz, C2-H), 5.91 (d, 1H,
J=3.9Hz, C1-H); 13C NMR (CDCl3) d 14.3, 22.9, 26,2,
26.4, 27.1, 29.5, 29.6, 32.1, 33.9, 79.1 (C4), 87.6 (C2),

87.9 (C3), 105.5 (C1), 112.7 (C7).

(2S,3S)-2-Benzyloxy-3-formyloxy-1-pentadecanal (4c).

The same sequence of the reactions described for the

synthesis of 4b was applied. Benzylation of 9 (200mg,
0.61mmol) followed by the removal of the iso-
propylidene group gave the 1,2-O-diol compound

(130mg, 62%) as a white solid: mp 53±54 �C; IR (KBr)
3370, 3030, 29200, 2850, 1100 cmÿ1; 1H NMR (CDCl3)
d 0.88 (t, 3H, J=6.8Hz, ±CH3), 1.12±1.57 (m, 22H,

±(CH2)11±), 1.62 (m, 1H, ±OH), 3.81 (m, 1H, C3-H), 4.21
(m, 2H, C4-H), 4.61±4.81 (m, 3H, ±OCH2 and C2-H),
5.31 (m, 1H, C1-H), 7.33 (s, 5H, phenyl). Oxidative

cleavage reaction of the 1,2-O-diol compound a�orded
4c (100mg, 58%) as a slightly yellow oil: [a]20d=ÿ24.3�
(c=39.1, CHCl3); IR (neat) 3050, 2960, 2830, 1780
(C=O) cmÿ1; 1H NMR (CDCl3) d 0.91 (t, 3H,

J=6.9Hz, ±CH3), 1.26 (s, 20H, ±(CH2)10±), 1.68 (m,
2H, ±CH2), 3.88 (d, 1H, J=3.1Hz, C2-H), 4,65 (s, 2H,
±OCH2), 5.39 (m, 1H, C3-H), 7.35 (s, 5H, -phenyl), 8.05

(s, 1H, ±OCHO), 9.66 (d, 1H, J=1.8Hz, ±CHO); 13C
NMR (CDCl3) d 15.5, 24.1, 26.5, 30.7, 31.4, 33.3, 73.8
(C3), 74.8 (±OCH2), 84.1 (C2), 129.5, 129.7, 130.0, 13

7.9, 162.1 (±OCHO), 202.4 (±CHO).

Ethyl (4R,5S)-4-benzyloxy-5-hydroxy-(2E)-heptadecan-

oate (5c). 4c (300mg, 0.91mmol) was subjected to the

same reaction described for the synthesis of 5a. 5c

(240mg, 63%) was obtained as a slightly yellow oil: IR
3470 (ÿOH), 3030, 2920, 2860, 1721 (C=O) cmÿ1; 1H

NMR (CDCl3) 0.89 (t, 3H, J=6.8Hz, ±CH3), 1.21±1.52
(m, 25H, ±(CH2)11± and ±CH3), 2.11 (d, 1H, J=3.1Hz,
±OH), 3.81 (m, 1H, C5-H), 3.93 (m, 1H, C4-H), 4.21 (q,

2H, J=4.6Hz, ±CO2CH2±), 4.37±4.72 (dd, 2H, J=11.7,
50.3Hz, ±OCH2), 6.08 (d, 1H, J=14.8Hz, C2-H), 6.96
(dd, 1H, J=14.8, 6.9Hz, C3-H), 7.36 (s, 5H, -phenyl).

(ÿ)-(4R,5S)-5-Hydroxyheptadeca-4-nolide (1c). 5c (240mg,
0.57mmol) was subjected to the same reaction described
for the synthesis of 1a from 5a. 1c (130mg, 50%) was

obtained as a white solid: mp 70.5 �C; [a]20d=ÿ13.6�
(c=5.0, CHCl3); IR (KBr) 3430 (±OH), 2960, 2920,
1780 (C=O) cmÿ1; 1H NMR (CDCl3) d 0.90 (t,

3H, J=6.9Hz, ±CH3), 1.22±1.51 (s, 22H, ±(CH2)11±),
2.08 (s, 1H, ±OH), 2.10 ÿ2.45 (m, 2H, C3-H), 2.61 (m,
2H, C2-H), 3.94 (m, 1H, C5-H), 4.43 (ddd, 1H, J=3.0,

7.1, 10.1Hz, C4-H); 13C NMR (CDCl3) d 15.5, 22.4,
24.0, 24.8, 26.6, 30.0, 30.7, 30.9, 72.7 (C5), 84.2 (C4),

178.9 (C1); Anal. Calcd for C17H32O3: C, 71.79; H,
11.34. Found: C, 71.61; H, 11.43.

5,6-Dideoxy-1,2-isopropylidene-5-C-(n-undecanyl)-�-D-

gulofuranose (10). 9 (400mg 1.2mmol) was subjected to

the same reaction described for the synthesis of 7. 10
(300mg, 76%) was obtained as a white solid: mp 52 �C;
[a]20d=ÿ2.5� (c=0.65, CHCl3); IR (KBr) 3472 (±OH),

2930, 2850 1464, 1379 cmÿ1; 1H NMR (CDCl3) d 0.90
(t, 3H, J=6.8Hz, ±CH3), 1.24±1.49 (m, 22H, ±(CH2)11±),
1.41 (s, 3H, acetonide), 1.62 (s, 3H, acetonide), 2.57 (d,
1H, J=7.4Hz, ±OH), 3.86 (m, 1H, C4-H), 4.18 (dd, 1H,

J=5.7, 11.8Hz, C3-H), 4.62 (dd, 1H, J=4.2, 5.9Hz, C2-
H), 5.66 (d, 1H, J=4.2Hz, C1-H); 13C NMR (CDCl3) d
14.1, 22.6, 26.1, 26.9, 29.1, 29.6, 32.9, 70.2 (C4), 80.2

(C2), 82.5 (C3), 101.5 (C1), 111.5 (C7).

(2R,3S)-2-Benzyloxy-3-formyloxy-1-pentadecanal (4d).

The same sequence of the reactions described for the
synthesis of 4b was applied. Benzylation of 10 (300mg,
0.91mmol) followed by the removal of the iso-

propylidene group gave 1,2-O-diol compound (130mg,
56%) as a white solid: IR (neat) 3350, 3060, 2920, 2850,
1100 cmÿ1; 1H NMR (CDCl3) d 0.90 (t, 3H, J=6.8Hz,
±CH3), 1.14±1.60 (m, 22H, ±(CH2)11±), 1.65 (m, 1H, ±OH),

3.91 (m, 1H, C3-H), 4.15 (m, 2H, C4-H), 4.61±4.83 (m,
3H, ±OCH2 and C2-H), 5.08 (m, 1H, C1-H), 7.33 (s, 5H,
-phenyl). Oxidative cleavage reaction of the 1,2-O-diol

compound a�orded 4d (160mg, 47%) as a slightly yel-
low oil: [a]20d=+20.2� (c=10.0, CHCl3); IR (neat)
3050, 2920, 2846, 1739 (C=O) cmÿ1; 1H NMR (CDCl3)

d 0.92 (t, 3H, J=6.9Hz, ±CH3), 1.25 (s, 20H, ±(CH2)10±),
1.75 (m, 2H, ±CH2), 3.88 (dd, 1H, J=1.6, 3.6Hz, C2-H),
4.53±4.82 (dd, 2H, J=11.8, 49.6Hz, ±OCH2), 5.28 (m,
1H, C3-H), 7.35 (s, 5H, -phenyl), 8.05 (s, 1H, ±OCHO),

9.66 (d, 1H, J=1.4Hz, ±CHO); 13C NMR (CDCl3) d
20.9, 25.4, 29.5, 29.7, 30.3, 32.1, 72.7 (C3), 76.1 (±OCH2),
84.0 (C2), 128.5, 128.8, 129.0, 129.9, 160.3 (±OCHO),

201.2 (±CHO).

Ethyl (4S,5S)-4-benzyloxy-5-hydroxy-(2E)-heptadecan-

oate (5d). 4d (200mg, 0.53mmol) was subjected to the
same reaction described for the synthesis of 5b. 5d

(140mg, 62%) was obtained as a slightly yellow oil. IR

(neat) 3460 (±OH), 3070, 2920, 2860, 1721 (C=O) cmÿ1;
1H NMR (CDCl3) d 0.89 (t, 3H, J=6.8Hz, ±CH3),
1.21±1.52 (m, 25H, ±(CH2)11± and ±CH3), 2.52 (m,
1H, ±OH), 3.58 (m, 1H, C5-H), 3.81 (m, 1H, C4-H),

4.23 (q, 2H, J=4.6Hz, ±CO2CH2±), 433±4.72 (dd, 2H,
J=11.9, 49.9Hz, ±OCH2), 6.10 (d, 1H, J=14.8Hz,
C2-H), 6.96 (dd, 1H, J=14.8, 6.8Hz, C3-H), 7.36 (s, 5H,

-phenyl).

(+)-(4S,5S)-5-Hydroxyheptadeca-4-nolide (1d). 5d (140mg,

0.34mmol) was subjected to the reaction described for
the synthesis of 1a. 1d (50mg, 52%) was obtained as a
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white solid: mp 72.0 �C, lit.2c 73±74 �C, lit.2a 65 �C;
[a]20d=+16.9� (c=6.5, CHCl3), lit.

2c+23.02� (c=1.26,

CHCl3), lit.2a +25� (c=1.7, MeOH); IR (KBr) 3390
(±OH), 2917, 2910, 1745 (C=O) cmÿ1; 1H NMR
(CDCl3) d 0.90 (t, 3H, J=6.9Hz, ±CH3), 1.20±1.51 (s,

22H, ±(CH2)11±), 1.82 (s, 1H, ±OH), 2.22 (m, 2H, C3-H),
2.51 (ddd, 2H, J=5.6, 10.1, 12.7Hz, C2-H), 3.51 (m,
1H, C5-H), 4.44 (ddd, 1H, J=3.0, 7.0, 10.1Hz, C4-H);
13C NMR (CDCl3) d 14.1, 22.7, 24.1, 25.5, 28.7, 29.4,
31.9, 33.0, 73.7 (C5), 82.9 (C4), 177.0 (C1); Anal. Calcd
for C17H32O3: C, 71.79; H, 11.34. Found: C, 71.57; H,
11.64.

Cytotoxicity assay

Cytotoxicities (SRB assay) against in vitro A-549 and
MCF-7 cell lines were determined at the Choong-Wae
Pharmaceutical Company, LTD., Korea, according to

the procedure described by Skehan et al.12
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