
Accepted Manuscript

Synthesis of 5,7-disubstituted-4-methyl-7*H*-pyrrolo[2, 3-*d*]pyrimidin-2-amines as microtubule inhibitors

Aleem Gangjee, Sonali Kurup, Charles D. Smith

PII: DOI: Reference:	S0968-0896(12)01002-4 http://dx.doi.org/10.1016/j.bmc.2012.12.029 BMC 10495
To appear in:	Bioorganic & Medicinal Chemistry
Received Date: Revised Date: Accepted Date:	17 September 201213 December 201222 December 2012

Please cite this article as: Gangjee, A., Kurup, S., Smith, C.D., Synthesis of 5,7-disubstituted-4-methyl-7*H*-pyrrolo[2, 3-*d*]pyrimidin-2-amines as microtubule inhibitors, *Bioorganic & Medicinal Chemistry* (2013), doi: http://dx.doi.org/10.1016/j.bmc.2012.12.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis of 5,7-disubstituted-4-methyl-7*H*-pyrrolo[2, 3-*d*]pyrimidin-2-amines as

microtubule inhibitors

Aleem Gangjee,^{•,†} Sonali Kurup,^{†,§} Charles D. Smith[‡]

[†] Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences,

Duquesne University, Pittsburgh, PA 15282

[‡] Department of Pharmaceutical Sciences, Medical University of South Carolina,

Charleston, SC 29425

[§] Current address: Department of Biopharmaceutical Sciences, College of Pharmacy,

Roosevelt University, Schaumburg, IL 60173

* To whom correspondence should be addressed. Phone: 412-396-6070. Fax: 412-396-5593. Email: <u>gangjee@duq.edu</u>

- † Duquesne University
- ‡ Medical University of South Carolina
- [§] Roosevelt University

^a Abbreviations: MT, microtubule; MDR, multiple drug resistance; Pgp, P-glycoprotein; MRP, multidrug-resistance proteins; TLC, thin layer chromatography; NMR, nuclear magnetic resonance; HRMS, high resolution mass spectra.

Abstract

Compounds 1-4 were previously reported as potent antimitotic and antitumor agents with Pgp modulatory effects. Compounds 5-18 have been synthesized in an attempt to optimize the various activities of 1-4. Compounds 5-10 explored the influence of methoxy substitutions on the 7-benzyl moiety in 1, while 11-18 investigated the influence of incorporation of a sulfur linker at C5 compared to 1-3. Compounds 5-10 demonstrated potent single-digit micromolar tumor cell cytotoxicity, Pgp modulation and microtubule inhibition. Compound 7 of this series was the most potent and showed GI₅₀ values in the nanomolar range against several human tumor cell lines in the standard NCI preclinical in vitro screen. Antitumor activity and Pgp modulatory effects were found to decrease for the 5-phenylthic compounds 11-14 compared to their 5-phenylethyl analogs 2-4 and the standard compound Taxol. Incorporation of methoxy substitutions on the 7-benzyl moiety improved antitumor activity for the 5-phenylthio compounds 16 and 17. Compounds 16 and 17 demonstrated single to two-digit micromolar inhibition of tumor cells.

Keywords:

rs Pyrrolo[2,3-*d*]pyrimidines, Microtubule inhibitors, Microwave assisted organic synthesis

1. Introduction

The clinical prognosis of cancer remains relatively poor, suggesting a need for new therapeutic strategies for the improvement of drugs in clinical use.¹ Microtubules (MTs) represent an excellent target and several inhibitors have a prominent role in cancer chemotherapy. Microtubule inhibitors disrupt or suppress both microtubule structure and normal functions by inhibition or promotion of microtubule assembly, resulting in cell cycle arrest in the mitotic phase and induction of apoptosis.^{1,2} Microtubule inhibitors or antimitotic agents have been classified on the basis of their mechanism of action and effects on polymerization dynamics, and subsequently, on the basis of their binding site on tubulin.³ MT-destabilizing agents inhibit MT polymerization at high concentrations microtubule while MT-stabilizing agents promote assembly and prevent depolymerization. Three main sites of binding have been identified for antimitotic agents on microtubules or tubulin, namely the Vinca binding site, Taxol binding site and the Colchicine binding site.⁴ The Vinca alkaloids bind to the β -subunit of soluble tubulin dimers and induce a conformational change in tubulin which decreases tubulin selfassociation.⁵ Taxol and its derivatives bind poorly to soluble tubulin, but with high affinity to tubulin along the length of the microtubule. Taxol binding to the β -subunit stabilizes the microtubule by inducing a conformational change in the tubulin that increases its affinity for neighboring tubulin molecules. Ixabepilone, a recently approved antimitotic agent for the treatment of metastatic breast cancer also binds to the Taxol binding domain.⁶ Colchicine has been well studied for its antimitotic effects, however it is not used clinically in cancer treatment due to its toxicity.⁷ It initially binds to soluble

tubulin, forming a tubulin–colchicine complexes that binds more tightly to their tubulin neighbours than tubulin itself, so that the dissociation of tubulin is reduced.

Multidrug or multiple drug resistance (MDR) is a major drawback of the clinically used antimitotic agents and has resulted in treatment failures.⁸ A major mechanism of MDR occurs via the overexpression of the P-glycoprotein (Pgp) efflux pump. Pgp is a membrane transport protein that has been associated with MDR. Pgp binds drugs within the cell and releases them to the extracellular space using ATP, thereby decreasing the intracellular drug concentration. Tumor cells pre-exposed to cytotoxic compounds often overexpress these pumps, inducing resistance in the presence of the cytotoxic drug. Due to the lack of detailed structural information on binding sites for Pgp binders, the rational design of antimitotic agents with Pgp inhibitory effects has been limited, although a few examples have also been reported. ⁹⁻¹¹

Figure 1

Gangjee et. al.¹¹ previously reported the 7-benzyl-4-methyl-5-substituted phenylethyl-7*H*-pyrrolo-[2,3-*d*]pyrimidin-2-amines **1-4** (Figure 1) as antitumor agents with submicromolar to micromolar tumor cell inhibition and Pgp inhibitory effects. The antitumor effects were attributed to microtubule inhibition. Compounds **1-4** were reported to bind to a novel/unknown site on microtubules that is distinct from the Taxol, Vinca and Colchicine binding sites. Novel small molecules that bind to microtubules at novel sites and are not substrates for drug efflux pumps (Pgp) would show significant potential as therapeutic agents in cancer chemotherapy. Such agents could be used in combination regimens with other antimitotic agents to afford a synergistic/additive effect, overcome resistance and lower toxicity. Thus, it was of interest to further delineate the

structure-activity relationship (SAR) for **1-4**. Compounds **5-18** were designed as analogs of **1-4** to optimize antitumor potential and Pgp modulatory effects.

Removal of the 7-benzyl moiety in **1** was previously reported to decrease activity by 100 to 10,000-fold against tumor cell lines, indicating the importance of the N7benzyl moiety on the inhibitory potency of 1^{11} Compounds 5-10 (Figure 1) were synthesized to determine the effects of variation in the substitutions on the 7-benzyl moiety of 1 on antitumor activities and Pgp modulation. Methoxy substitutions were incorporated at varied positions of the 7-benzyl moiety while maintaining the 3,4,5triOMephenylethyl substitution at C5. Compounds 11-14 (Figure 1) were synthesized as 5-thio analogs of 2-4 to determine the impact of variation in the C5-phenylethyl linker on antitumor activity and Pgp modulation. The sulfur atom incorporated at C5 was anticipated to mimic the two-atom bridge of 2-4 due to a larger atomic size of the sulfur atom compared to a carbon or nitrogen atom. This modification would allow a side chain phenyl distance somewhere between a one- and two-carbon-atom bridge and also cause a decrease in the C-S-C angle (98°) compared to a C-C-C angle (109°), consequently altering the orientation of the C5 phenyl ring. Compounds 11-14 incorporated a small set of electron donating and withdrawing groups on the C5-thiophenyl moiety while maintaining the 7-benzyl substitution. Additionally, compounds 15-18 were synthesized to determine the influence on biological activity of varied substitutions on the 7-benzyl moiety in combination with a 5-thiophenyl moiety.

2. Chemistry

Gangjee et. al.¹¹ synthesized **1-4** in a ten-step sequence starting from 2acetylbutyrolactone. A convergent synthesis of the proposed target compounds **5-10** could be envisioned to proceed via removal of the 7-benzyl followed by alkylation at N7with the appropriately substituted benzyl chlorides. Debenzylation and alkylation at N7proceeded in poor yields, hence **5-10** were synthesized following a modification of the previously reported procedures as shown in Schemes **1** and **2**.

Scheme 1

Reaction of **19a-f¹²** with pivaloyl chloride in the presence of triethylamine and DMAP for 12 h afforded a mixture of the dipivaloylated **22a-d** and/or monopivaloylated compounds **23a-f** (Scheme 1). Decreasing the electron density of the pyrrole ring promotes regioselective halogenation at C5. Pivaloylation of the 2-amino group in **20a-d**¹² and **21a-f** directs the iodination regiospecifically to C5 yielding compounds **22a-f**. Based on the success of reported microwave assisted Sonogashira reactions,^{13,14} the Sonogashira reaction of **22a-f** with 3,4,5-trimethoxyphenyl acetylene was attempted using dichloroethane as solvent, triethylamine as base, Pd(PPh₃)₄ as catalyst and CuI as an additive under microwave irradiation at 100 °C for 10 min. Compounds **23a-f** were synthesized in 71-80% yields. Microwave irradiation significantly shortened the duration of reaction (10 min at 100 °C *vs* 12 h at room temperature). Reduction with hydrogen and 5% palladium-on-charcoal in a mixture of methanol and methylene chloride, followed by removal of the pivaloyl protecting group on reflux with 1 N NaOH and methanol afforded target compounds **5-10** in 55-66 % yield.

Scheme 2

The synthesis of target compounds 11-18 was envisioned to proceed via substitution of the 5-iodo in N-[5-iodo-7-benzylsubstituted-4-methyl-7H-pyrrolo[2,3*d*]pyrimidin-2-yl]-2,2-dimethyl propanamide, 24a,¹¹ 24b, 22d and 24c with the appropriate thiol (Scheme 2). Among heterocyclic halides, there are few reports on C-S bond formation via copper mediated cross coupling.¹⁵⁻¹⁸ We elected to utilize a microwave assisted, copper catalyzed reaction under ligand-free conditions for the synthesis of target compounds **11-18**. It was anticipated that microwave irradiation and the appropriate choice of solvent would lower reaction duration. Attempts were made to couple 24a with the appropriate thiol (1.2 eq) using stoichiometric amount of CuI (1.3 eq), K_2CO_3 as base (1.5 eq) and DMF as the solvent under time and temperature variations. Optimal results were obtained at 100 °C for 4 h. Compounds 25a-h were synthesized in 68-81% yields. The phenyl thiols were utilized in slight excess (1.2 eq) due to the formation of the corresponding phenyl disulfides as a byproduct in this reaction. This is the first report on microwave assisted, copper-catalyzed reaction of 5iodo substituted pyrrolo[2,3-d]pyrimidines with substituted phenyl thiols at a lower reaction temperature of 100 °C under ligand free conditions. Higher reaction temperatures resulted in lower yields and increased disulfide formation. The microwave assisted reaction of 24a with the appropriate thiol, K₂CO₃ in DMF, in the absence of CuI from 60-150 °C was unsuccessful. No reaction occurred and the starting material was recovered, confirming that the reaction proceeds via a copper-catalyzed, Ullman-type coupling. Removal of the pivaloyl protecting group in 25a-h was achieved on reflux with 1 N NaOH to afford target compounds **11-18** in 50-65 % yield.

3. Biological Evaluation and Discussion

Table 1

Target compounds **5-18** were evaluated for cytotoxicity toward JC mammary adenocarcinoma cells and for their impact on Pgp activity according to the reported protocols (Table 1).¹⁹ JC mouse adenocarcinoma cells express high levels of Pgp and can be used for the evaluation of Pgp substrate activity and/or inhibition. The lowest concentration of the target compounds displaying a maximal increase in the intracellular accumulation of [³H] Taxol, a known substrate of Pgp was determined. A known microtubule inhibitor and antitumor agent, Taxol was included for comparison.

Compounds 5-10 with varied *N*7-benzyl substitutions demonstrated IC₅₀ values ranging from 0.6 μ M to 3 μ M in the cytotoxicity assay. Compound **7** was the most potent compound in this series being only 4-fold less potent than the standard compound Taxol, while compounds **5** and **10** were 6.6-fold less potent than Taxol. Among the mono-OMe benzyl substituted compounds, the 4-OMe was slightly better than the 2- and 3-OMe substituted compounds. In the di- and tri-OMe benzyl substituted compounds, the presence of a 4-OMe slightly improved potency, with the 3,4-diOMe and 3,4,5-triOMe both being better than 3,5-diOMe substituted compound, although less potent than **7**. In the drug accumulation assay for determination of Pgp activity, all of the compounds with the exception of **10**, demonstrated a significant increase in the intracellular accumulation of [³H] Taxol at values close to their IC₅₀ ranging from 0.2 μ M to 2 μ M. Compound **7** demonstrated an increase in the intracellular accumulation of [³H] Taxol at the lowest concentration for this series of compounds, followed by compounds **6**, **8** and **9** suggesting Pgp modulatory effects for compound **7** >6 >8 >9.

The 5-thiosubstituted compounds 11-14 demonstrated micromolar cytotoxicity in JC cells. Of compounds 11-14, compound 11 demonstrated IC50 values (cytotoxicity) at the lowest concentration, and was approximately 2-fold more cytotoxic in JC cells than 12-14. Against Pgp, compound 12 demonstrated an increase in the intracellular accumulation of $[^{3}H]$ Taxol below its IC₅₀, while **11**, **13** and **14** did not show any increase in the accumulation of $[^{3}H]$ Taxol at the evaluated concentrations. Based on the cytotoxicity and Pgp modulation for 12, a combination of the 5-(2-methoxy)phenylthio substitution was attempted with a variety of 7-benzyl substitutions for compounds 15-17. Antitumor activity improved for the 4-OMe and 3,4,5-triOMe benzyl substitutions in 16 and 17 respectively. Compounds 16 and 17 demonstrated single-digit micromolar cytotoxicity (IC₅₀ values) in JC cells and were approximately 4- fold better than 11. Pgp modulation however, was abolished with substitution at the 7-benzyl moiety. A combination of the 3,4,5-triOMe phenylthio substitution at C5 with the 3,4,5-triOMe benzyl substitution at N7 was attempted in compound 18 in an effort to improve antitumor activity. Compound 18 showed a dramatic decrease in antitumor activity compared to its phenylethyl analog, 10.

Figure 2

Based on the promising results for JC cell inhibition and Pgp modulation, compound 7 was evaluated specifically for its effect on microtubules at varied doses (Figure 2). Compound 7 produced dose-dependent microtubule depolymerization, confirming inhibition of microtubule polymerization as the mechanism for tumor cell inhibition.

Compound 7 was further evaluated in the NCI 60 tumor cell line panel.²⁰ Compound 7 inhibited most of the cell lines with GI₅₀ values that ranged from two-digit nanomolar to submicromolar concentrations (Table 2). In addition, compound 7 also demonstrated submicromolar GI₅₀ values toward resistant tumor cell lines NCI/ADR-RES (202 nM), HCT-15 colon (242 nM) and renal cancer cell lines, TK-10 (686 nM) and UO-31 (397 nM).

4. Conclusions

We synthesized fourteen novel microtubule inhibitors 5-18 to determine the effect of the substitution pattern of the 5,7-disubstituted pyrrolo[2,3-d]pyrimidines on antitumor activity and Pgp modulation. Compounds 5-10 and 16 demonstrated single digit micromolar effects in JC tumor cells. The ethyl linker was found to be preferred over the this linker at C5 for antitumor activity. Methoxy substitutions on the N7-benzyl ting improved antitumor activity over the unsubstituted benzyl moiety for both the C5-ethyl and C5-thio linked compounds. Compounds 5-9 induced significant Pgp modulation as demonstrated in the *in vitro* drug accumulation assay. The ethyl linker was also found to be preferred over the thio linker at C5 for Pgp modulation. Although substitutions at the N7-benzyl improved antitumor activity over the unsubstituted benzyl moiety for both the C5-ethyl and C5-thio linked compounds, Pgp modulation was not observed for C5-thio linked compounds with substitutions at the N7-benzyl moiety. Our results indicate that the potency of antitumor activity and Pgp modulation does indeed vary with different substitutions and that an optimal combination of the substitutions in the 7-benzyl moiety, the C5-linker and the C5-phenyl moiety is essential for inhibition of microtubules, tumor

cells and Pgp. Compound **7** emerged as the most viable candidate for future evaluation with its potent microtubule and Pgp modulatory effects and remarkable nanomolar cytotoxic effects in the NCI 60 cell line panel.

5. Experimental Section

5.1 Synthesis All evaporations were carried out in vacuo with a rotary evaporator. Thinlayer chromatography (TLC) was performed on silica gel plates (Whatman 250 µM PE SilG/UV) with fluorescent indicator. Spots were visualized by UV (254 and 366 nm) illumination. Column chromatography was performed using Merck silica gel (200-400 mesh). Proton nuclear magnetic resonance (¹H) spectra were recorded on a Bruker WH-300 (300 MHz) or Bruker WH-400 (400 MHz) spectrometer. The chemical shift values were expressed in ppm (parts per million) relative to tetramethylsilane as internal standard; s = singlet, d = double, t = triplet, q = quartet, m = multiplet, br = broad singlet. The relative integrals of peak areas agreed with those expected for the assigned structures. Melting points were determined on a Mel-Temp II melting point apparatus with FLUKE 51 K/J electronic thermometer and were uncorrected. Analytical samples were dried in vacuo (0.2mm Hg) in a CHEM DRY drying apparatus over P_2O_5 . Elemental analysis was performed by Altlantic Microlabs, Norcross, GA, USA. Element compositions are within ±0.4% of the calculated values. Fractional moles of water or organic solvents frequently found in some analytical samples could not be prevented despite 24–48 h of drying *in vacuo* and were confirmed where possible by their presence in the ¹H NMR spectra. High-resolution mass spectra (HRMS), using Electron Impact

(EI), were recorded on a VG Autospec (Fisons Instruments) micromass (EBE Geometry) double-focusing mass spectrometer. All solvents and chemicals were purchased from Aldrich Chemical Co. and Fisher Scientific and were used as received.

5.1.1 *N*-(2-methoxybenzyl)-*N*-(2,2-dimethylpropanoyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl)-2,2-dimethylpropanamide (20a) and *N*-[7-(2-methoxybenzyl)-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (21a)

To a 100 mL round-bottom flask, under nitrogen, was added **19a** (0.8 g, 2.43 mmol), PivCl (12 mL), DMAP (100 mg, 0.5 mmol), NEt₃ (15 ml) and dichloroethane (55 mL). The mixture was stirred at 50-55 ° C for 12 h. The reaction mixture was diluted with CH₂Cl₂ (120 mL) and washed sequentially with H₂O (30 mL) and brine (30 mL). The organic layer was separated and dried over Na₂SO₄, filtered, and dried *in vacuo* to afford brown oil. The crude product was purified by flash chromatography on silica gel (gradient, 1:1:15 EtOAc/NEt₃/hexane to 1:1:5 EtOAc/NEt₃/hexane) and washed with diethyl ether or methanol to afford 0.8 g (62 %) of **20a** as an off-white solid (R_f , ¹H NMR as that reported)¹² and 0.39 g (39 %) of **21a** as a yellow solid; TLC R_f 0.54 (EtOAc/NEt₃/Hexane, 5:1:3); mp 119-120 °C; ¹H NMR (DMSO- d_6): δ 1.21 (s, 9 H, C(CH₃)₃), 2.61 (s, 3 H, CH₃), 3.86 (s, 3 H, OCH₃), 5.33 (s, 2 H, CH₂), 6.65 (d, 1 H, CH), 6.71 (d, 2 H, C₆H₄), 6.82 (t, 1 H, C₆H₄), 7.02 (d, 2 H, C₆H₄), 7.25 (t, 2 H, C₆H₄), 7.36 (d, 1 H, CH), 9.70 (s, 1 H, NH); HRMS (EI) Calcd for C₂₀H₂₄N₄O₂ *m*/*z* = 352.1899, found *m*/*z* = 352.1888.

5.1.2 N-(3-methoxybenzyl)-N-(2,2-dimethylpropanoyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-yl)-2,2-dimethylpropanamide (20b) and *N*-[7-(3-methoxybenzyl)-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (21b)

Compounds **20b** and **21b** were synthesized as described for **20a** and **21a** with **19b**. The crude mixture was purified by flash chromatography on silica gel to afford 0.36 g of **20b** (25%) as a yellow solid (R_f , ¹H NMR as that reported) ¹² and **21b** as a yellow semisolid (0.9 g, 70 %); TLC R_f 0.55 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.22 (s, 9 H, C(CH₃)₃), 2.59 (s, 3 H, CH₃), 3.70 (s, 3 H, OCH₃), 5.34 (s, 2 H, CH₂), 6.63 (d, 1 H, CH), 6.81-7.20 (m, 4 H, C₆H₄), 7.46 (d, 1 H, CH), 9.95 (s, 1 H, NH). HRMS (EI) Calcd for C₂₀H₂₄N₄O₂ m/z = 352.1899, found m/z = 352.1909.

5.1.3 *N*-(4-methoxybenzyl)-*N*-(2,2-dimethylpropanoyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl)-2,2-dimethylpropanamide (20c) and *N*-[7-(4-methoxybenzyl)-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (21c)

Compounds **20c** and **21c** were synthesized as described for **20a** and **21a** with **19c**. The crude mixture was purified by flash chromatography on silica gel to afford **20c** (25%) as a yellow semisolid (R_f , ¹H NMR as that reported) ¹² and **21c** as a yellow semisolid (65%); TLC R_f 0.54 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.24 (s, 3 H, C(CH₃)₃), 2.60 (s, 3 H, CH₃), 3.69 (s, 3 H, OCH₃), 5.29 (s, 2 H, CH₂), 6.66 (d, 1 H, CH), 6.84 (d, 2 H, C₆H₄), 7.28 (d, 2 H, C₆H₄), 7.42 (s, 1 H, CH), 9.81 (s, 1 H, NH).

5.1.4 *N*-[7-(3,4-Dimethoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2dimethylpropanamide (21d)

Compound **21d** was synthesized as described for **21a** with **19d** and was obtained as a yellow foam; TLC R_f 0.52 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.23 (s, 9 H, C(CH₃)₃), 2.58 (s, 3 H, CH₃), 3.68 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 5.26 (s, 2 H, CH₂), 6.58 (d, 1 H, CH), 6.82-7.19 (m, 3 H, C₆H₃), 7.45 (d, 1 H, CH), 9.76 (s, 1 H, NH); HRMS (EI) [M]⁺: Calcd for C₂₁H₂₆N₄O₃ *m*/*z* = 382.2004, found *m*/*z* = 382.1998.

5.1.5 *N*-[7-(3,5-Dimethoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2dimethylpropanamide (21e)

Compound **21e** was synthesized as described for **21a** with **19e** and was obtained as a light brown semisolid (0.82 g, 68 %); TLC R_f 0.53 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.22 (s, 9 H, C(CH₃)₃), 2.60 (s, 3 H, CH₃), 3.68 (s, 6 H, (OCH₃)₂), 5.28 (s, 2 H, CH₂), 6.37 (s, 1 H, C₆H₃), 6.48 (s, 2 H, C₆H₃), 6.62 (d, 1 H, CH), 7.47 (d, 1 H, CH), 9.79 (s, 1 H, NH); HRMS (EI) [M]⁺: Calcd for C₂₁H₂₆N₄O₃ *m*/*z* = 382.2004, found *m*/*z* = 382.2003.

5.1.6 *N*-(3,4,5-Trimethoxybenzyl)-*N*-(2,2-dimethylpropanoyl)-7*H*-pyrrolo[2,3*d*]pyrimidin-2-yl)-2,2-dimethylpropanamide (20d) and 5.1.20 *N*-[7-(3,4,5-Trimethoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2

dimethylpropanamide (21f)

Compounds **20d** and **21f** were synthesized as described for **20a** and **21a** with **19f**. The crude mixture was purified by flash chromatography on silica gel to afford **20d** (62%) as a yellow solid (R_f , ¹H NMR as that reported) ¹² and **21f** as a yellow foam (26 %); TLC R_f 0.50 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.20 (s, 9 H, C(CH₃)₃), 2.57

(s, 3 H, CH₃), 3.55 (s, 3 H, OCH₃), 3.71 (s, 6 H, (OCH₃)₂), 5.23 (s, 2 H, CH₂), 6.57 (d, 1 H, CH), 6.85 (s, 1 H, C₆H₂), 7.52 (d, 1 H, CH), 9.79 (s, 1 H, NH); HRMS (EI) $[M]^+$: Calcd for C₂₂H₂₈N₄O₄ *m*/*z* = 412.2110, found *m*/*z* = 412.2122.

5.1.7 *N*-[5-Iodo-7-(2-methoxybenzyl)-*N*-(2,2-dimethylpropanoyl)-7*H*-pyrrolo[2,3*d*]pyrimidin-2-yl)-2,2-dimethylpropanamide (22a)

To a 100 mL round-bottom flask, protected from light, under nitrogen, was added compound **20a** (350 mg, 0.7 mmol), N-iodo succinimide (NIS) (350 mg, 1.5 mmol) and dry DMF (10 mL). The mixture was stirred at room temperature for 12 h. The reaction mixture was dried *in vacuo*, purified by flash chromatography on silica gel (isocratic, 1:1:15 EtOAc/NEt₃/hexane) and washed with diethyl ether or methanol to afford 360 mg (82%) of **22a** as a white solid (R_f , ¹H NMR as that reported). ¹²

5.1.8 *N*-[5-Iodo-7-(3,4,5-Trimethoxybenzyl)-*N*-(2,2-dimethylpropanoyl)-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl)-2,2-dimethylpropanamide (22b)

Compound **22b** was synthesized as described for **22a** with **20d**(1 g, 2.29 mmol) using the general procedure described above to afford a yellow solid (0.92 g, 78%) (R_f , ¹H NMR as that reported)¹²

5.1.9 *N*-[5-Iodo-7-(3-methoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]2,2-dimethylpropanamide (22c)

Compound **22c** was synthesized as described for **22a** with **20b** and was obtained as a yellow foam (0.6 g, 60 %); TLC R_f 0.64 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO-

*d*₆): δ 1.23 (s, 9 H, C(CH₃)₃), 2.79 (s, 3 H, CH₃), 3.71 (s, 3 H, OCH₃), 5.29 (s, 2 H, CH₂), 6.82-7.20 (m, 4 H, C₆H₄), 7.73 (s, 1 H, CH), 9.89 (s, 1 H, NH); HRMS (ESI) [M + H]⁺: Calcd for C₂₀H₂₄N₄O₂I *m*/*z* = 479.0944, found *m*/*z* = 479.0938.

5.1.10 *N*-[5-Iodo-7-(4-methoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-

2,2-dimethylpropanamide (22d)

Compound **22d** was synthesized was synthesized as described for **22a** with **21c** and was obtained as a yellow foam (820 mg, 86 %); TLC R_f 0.63 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.24 (s, 9 H, C(CH₃)₃), 2.80 (s, 3 H, CH₃), 3.70 (s, 3 H, OCH₃), 5.26 (s, 2 H, CH₂), 6.88 (s, 2 H, C₆H₄), 7.33 (d, 2 H, C₆H₄), 7.77 (s, 1 H, CH), 9.86 (s, 1 H, NH); HRMS (EI): Calcd for C₂₀H₂₃N₄O₂I *m*/*z* = 478.0865, found *m*/*z* = 478.0856.

5.1.11 *N*-[5-Iodo-7-(3,4-dimethoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (22e)

Compound **22e** was synthesized as described for **22a** with **21d** and was obtained as a yellow semisolid (0.42 g, 70 %); TLC R_f 0.61 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.24 (s, 9 H, C(CH₃)₃), 2.78 (s, 3 H, CH₃), 3.67 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 5.23 (s, 2 H, CH₂), 6.85-7.25 (m, 3 H, C₆H₃), 7.74 (s, 1 H, CH), 9.89 (s, 1 H, NH); HRMS (EI) : Calcd for C₂₁H₂₅IN₄O₃ m/z = 508.0971, found m/z = 508.0973.

5.1.12 *N*-[5-Iodo-7-(3,5-dimethoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2yl]-2,2-dimethylpropanamide (22f)

Compound **22f** was synthesized as described for **22a** with **21e** and was obtained as a yellow semisolid (0.74 g, 75 %); TLC R_f 0.62 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.23 (s, 9 H, C(CH₃)₃), 2.81 (s, 3 H, CH₃), 3.69 (s, 6 H, (OCH₃)₂), 5.24 (s, 2 H, CH₂), 6.38 (s, 1 H, C₆H₃), 6.58 (s, 2 H, C₆H₃), 7.76 (s, 1 H, CH), 9.91 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: Calcd for C₂₁H₂₆IN₄O₃ *m*/*z* = 509.1041, found *m*/*z* = 509.1050.

5.1.13 *N*-[7-(2-Methoxybenzyl)-4-methyl-5-(3,4,5-trimethoxyphenylethynyl)-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-*N*-(2,2-dimethylpropanoyl)-2,2-dimethylpropanamide (23a)

To a 5 mL microwave reaction vial was added **22a** (500 mg, 0.80 mmol), 2methoxyphenyl acetylene (2.26 eq), CuI (0.16 eq), Pd(Ph₃)₄ (0.16 eq), NEt₃ (2 mL) and dry dichloroethane (3 mL). The mixture was evacuated and back-filled with nitrogen (three cycles). The reaction mixture was irradiated in a microwave apparatus at 100 °C for 10 min. After the reaction mixture was cooled to ambient temperature, the mixture was filtered. The filtrate was dried *in vacuo* and the crude product was purified by flash chromatography on silica gel (gradient, 1:1:15 EtOAc/NEt₃/hexane to 1:1:5 EtOAc/NEt₃/hexane) and washed with diethyl ether or methanol to afford 415 mg (75%) of **23a** as a yellow semisolid; TLC R_f 0.52 (EtOAc/NEt₃/Hexane, 5:1:10); ¹H NMR (DMSO- d_6): δ 1.15 (s, 18 H, C(CH₃)₆), 2.89 (s, 3 H, CH₃), 3.69 (s, 3 H, OCH₃), 3.81 (s, 9 H, (OCH₃)₃), 5.35 (s, 2 H, CH₂), 6.84 (s, 2 H, C₆H₄), 6.92-7.29 (m, 4 H, C₆H₄), 7.92 (s, 1 H, CH); Anal.(C₃₆H₄₂N₄O₆ • 0.22 H₂O): C, 68.53; H, 6.78; N, 8.88. Found C, 68.57; H, 6.71; N, 8.59.

5.1.14 *N*-[7-(3,4,5-Trimethoxybenzyl)-4-methyl-5-(3,4,5-trimethoxyphenylethynyl)-

7H-pyrrolo[2,3-d]pyrimidin-2-yl]-N-(2,2-dimethylpropanoyl)-2,2-

dimethylpropanamide (23b)

Compound **23b** was synthesized as described for **23a** with **22b** and was obtained as a yellow semisolid (73 %); TLC R_f 0.48 (5:1:10 EtOAc/NEt₃); ¹H NMR (DMSO-*d*₆): δ 1.18 (s, 18 H, C(CH₃)₆), 2.89 (s, 3 H, CH₃), 3.60 (s, 3 H, OCH₃), 3.68 (s, 3 H, OCH₃), 3.70 (s, 6 H, (OCH₃)₂), 3.80 (s, 6 H, (OCH₃)₂), 5.28 (s, 2 H, CH₂), 6.62 (s, 2 H, C₆H₂), 6.82 (s, 2 H, C₆H₂), 8.13 (s, 1 H, CH); HRMS (ESI) [M + Na]⁺: Calcd for C₃₈H₄₆N₄O₈Na m/z = 709.3213, found m/z = 709.3157.

5.1.15 *N*-7-(3-methoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethynyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (23c)

Compound **23c** was synthesized as described for **23a** with **22c** and was obtained as a yellow semisolid (273 mg, 80 %); TLC R_f 0.52 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.22 (s, 9 H, C(CH₃)₃), 2.85 (s, 3 H, CH₃), 3.69 (s, 3 H, OCH₃), 3.79 (s, 6 H, (OCH₃)₂), 3.86 (s, 3 H, OCH₃), 5.35 (s, 2 H, CH₂), 6.83 (s, 2 H, C₆H₂), 6.83 (m, 2 H, C₆H₄), 7.06 (d, 1 H, C₆H₄), 7.29 (t, 1 H, C₆H₄), 7.75 (s, 1 H, CH), 9.88 (s, 1 H, NH); Anal.(C₃₁H₃₄N₄O₅ • 0.3 CH₃OH): C, 68.12; H, 6.41; N, 10..16. Found C, 68.20; H, 6.29; N, 9.83.

5.1.16 *N*-7-(4-methoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethynyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (23d)

Compound **23d** was synthesized as described for **23a** with **22d** and was obtained as a yellow foam (250 mg, 74 %); TLC R_f 0.52 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.25 (s, 3 H, C(CH₃)₃), 2.84 (s, 3 H, CH₃), 3.68 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.80 (s, 6 H, (OCH₃)₂), 5.30 (s, 2 H, CH₂), 6.81 (s, 2 H, C₆H₂), 6.88 (d, 2 H, C₆H₄), 7.35 (d, 2 H, C₆H₄), 7.87 (s, 1 H, CH), 9.93 (s, 1 H, NH).

5.1.17 *N*-7-(3,4-Dimethoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethynyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (23e)

Compound **23e** was synthesized as described for **23a** with **22e** and was obtained as a yellow semisolid (240 mg, 71 %); TLC R_f 0.50 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.27 (s, 9 H, C(CH₃)₃), 2.55 (s, 3 H, CH₃), 3.67 (s, 3 H, OCH₃), 3.79 (s, 6 H, (OCH₃)₂), 3.68-3.70 (s, 6 H, (OCH₃)₂), 5.28 (s, 2 H, CH₂), 6.81 (s, 2 H, CH₂), 6.89 (d, 2 H, C₆H₃), 6.96 (s, 1 H, C₆H₃), 7.26 (d, 1 H, C₆H₃), 7.91 (s, 1 H, CH), 9.92 (s, 1 H, CH).

5.1.18 *N*-7-(3,5-Dimethoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethynyl]-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (23f)

Compound **23f** was synthesized as described for **23a** with **22f** and was obtained as a yellow semisolid (246 mg, 73 %); TLC R_f 0.48 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.23 (s, 9 H, C(CH₃)₃), 2.84 (s, 3 H, CH₃), 3.69 (s, 3 H, OCH₃), 3.70 (s, 6 H, (OCH₃)₂), 3.79 (s, 6 H, (OCH₃)₂), 5.27 (s, 2 H, CH₂), 6.39 (s, 1 H, C₆H₃), 6.58 (s, 2 H, C₆H₃), 6.81 (s, 2 H, C₆H₂), 7.94 (s, 1 H, CH), 9.93 (s, 1 H, NH); HRMS (ESI) [M + H]⁺: Calcd for C₃₂H₃₇N₄O₆ *m*/*z* = 573.2713, found *m*/*z* = 573.2697.

5.1.19 7-(2-Methoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-amine (5)

To a Parr hydrogenation bottle was added 23a (200 mg, 0.36 mmol), 5% Pd/C (1:3 by weight) 4 mL MeOH and 10 mL CH₂Cl₂. The mixture was shaken under 50 p.s.i. hydrogen for 24 h. The reaction mixture was filtered, dried in vacuo. To the resulting offwhite semisolid (160 mg, 0.23 mmol) was added aqueous 1 N NaOH (4 mL) and MeOH (20 mL). The reaction mixture was refluxed for 12 h, and concentrated. The slurry obtained was dissolved in water (5 mL) and extracted with CH₂Cl₂ (30 mL). The organic layer was dried over Na₂SO₄ and concentrated to afford a colourless oil. The crude product was purified by flash chromatography on silica gel (gradient, 5:1:10 EtOAc/NEt₃/hexane to 5:1:3 EtOAc/NEt₃/hexane) and washed with diethyl ether or methanol to afford 78 mg (66%) of 5 as a white solid; TLC $R_f 0.26$ (EtOAc/NEt₃/Hexane, 5:1:3); mp 147-148 °C; ¹H NMR (DMSO-*d*₆): δ 2.53 (s, 3 H, CH₃), 2.82 (t, 2 H, CH₂), 2.99 (t, 2 H, CH₂), 3.60 (s, 3 H, OCH₃), 3.71 (s, 6 H, (OCH₃)₂), 3.83 (s, 3 H, OCH₃), 5.12 (s, 2 H, CH₂), 6.06 (s, 2 H, NH₂), 6.45 (d, 1 H, C₆H₄), 6.48 (s, 2 H, C₆H₂), 6.74 (s, 1 H, CH), 6.79 (t, 1 H, C₆H₄), 6.99 (d, 1 H, C₆H₄), 7.23 (t, 1 H, C₆H₄); Anal.(C₂₆H₃₀N₄O₄): C, 66.90; H, 6.57; N, 12.00. Found C, 66.97; H, 6.56; N, 11.81.

5.1.20 7-(3-Methoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-amine (6)

Compound **6** was synthesized as described for **5** with **23c** and was obtained as a white solid (70 mg, 61 %); TLC R_f 0.27 (EtOAc/NEt₃/Hexane, 5:1:3); mp 144-146 °C; ¹H NMR (DMSO- d_6): δ 2.48 (s, 3 H, CH₃), 2.80 (t, 2 H, CH₂), 2.96 (t, 2 H, CH₂), 3.59 (s, 3

H, OCH₃), 3.68 (s, 9 H, (OCH₃)₃), 5.12 (s, 2 H, CH₂), 6.08 (s, 2 H, NH₂), 6.64 (s, 2 H, CH₂), 6.73-6.74 (m, 3 H, C₆H₄), 6.80 (s, 1 H, CH), 7.18 (t, 1 H, C₆H₄); HRMS (ESI) [M + H]⁺: Calcd for C₂₆H₃₁N₄O₄ m/z = 463.2345, found m/z = 463.2325.

5.1.21 7-(4-Methoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-amine (7)

Compound **7** was synthesized as described for **5** with **23d** and was obtained as a white solid (60 mg, 57 %); TLC R_f 0.26 (EtOAc/NEt₃/Hexane, 5:1:3); mp 137-138 °C; ¹H NMR (DMSO- d_6): δ 2.50 (s, 3 H, CH₃), 2.78 (t, 2 H, CH₂), 2.94 (t, 2 H, CH₂), 3.58 (s, 3 H, OCH₃), 3.69 (s, 9 H, (OCH₃)₃), 5.06 (s, 2 H, CH₂), 6.06 (s, 2 H, NH₂), 6.52 (s, 2 H, CH₂), 6.74 (s, 1 H, CH), 6.83 (d, 2 H, C₆H₄), 7.09 (d, 2 H, C₆H₄); HRMS (ESI) [M + H]⁺: Calcd for C₂₆H₃₁N₄O₄ m/z = 463.2345, found m/z = 463.2331.

5.1.22 7-(3,4-Dimethoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-amine (8)

Compound **8** was synthesized as described for **5** with **23e** and was obtained as a light yellow solid (65 mg, 55 %); TLC R_f 0.24 (EtOAc/NEt₃/Hexane, 5:1:3); mp 135-137 °C; ¹H NMR (DMSO- d_6): δ 2.51 (s, 3 H, CH₃), 2.79 (t, 2 H, CH₂), 2.94 (t, 2 H, CH₂), 3.59 (s, 3 H, OCH₃), 3.69 (s, 6 H, (OCH₃)₂), 3.69 (s, 6 H, (OCH₃)₂), 5.06 (s, 2 H, CH₂), 6.08 (s, 2 H, NH₂), 6.51 (s, 2 H, C₆H₃), 6.57 (d, 2 H, C₆H₃), 6.76 (s, 1 H, CH), 6.84 (s, 1 H, CH), 6.96 (s, 1 H, CH). HRMS (ESI) [M + H]⁺: Calcd for C₂₇H₃₃N₄O₅ *m/z* = 493.2451, found *m/z* = 493.2430.

5.1.23 7-(3,5-Dimethoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethyl]-4-methyl-7*H*pyrrolo[2,3-*d*]pyrimidin-2-amine (9)

Compound **9** was synthesized as described for **5** with **23f** and was obtained as a light yellow solid (70 mg, 57 %); TLC R_f 0.22 (EtOAc/NEt₃/Hexane, 5:1:3); mp 133-135 °C; ¹H NMR (DMSO- d_6): δ 2.49 (s, 3 H, CH₃), 2.80 (t, 2 H, CH₂), 2.95 (t, 2 H, CH₂), 3.60 (s, 3 H, OCH₃), 3.67 (s, 6 H, (OCH₃)₂), 3.71 (s, 6 H, (OCH₃)₂), 5.09 (s, 2 H, CH₂), 6.09 (s, 2 H, NH₂), 6.29 (s, 2 H, C₆H₃), 6.38 (s, 1 H, C₆H₃), 6.54 (s, 2 H, C₆H₂), 6.82 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: Calcd for C₂₇H₃₃N₄O₅ m/z = 493.2451, found m/z = 493.2433.

5.1.24 7-(3,4,5-Trimethoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)ethyl]-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine (10)

Compound **10** was synthesized as described for **5** with **23b** and was obtained as a white solid (78 mg, 66%); TLC R_f 0.20 (EtOAc/NEt₃/Hexane, 5:1:3); mp 136-137 °C; ¹H NMR (DMSO- d_6): δ 2.52 (s, 3 H, CH₃), 2.81 (t, 2 H, CH₂), 2.94 (t, 2 H, CH₂), 3.61 (s, 6 H, OCH₃), 3.69-3.71 (s, 12 H, (OCH₃)₄), 5.07 (s, 2 H, CH₂), 6.12 (s, 2 H, NH₂), 6.54 (s, 2 H, C₆H₂), 6.60 (s, 1 H, C₆H₂), 6.84(s, 1 H, CH); Anal.(C₃₈H₅₀N₄O₈ · 0.38 (C₂H₅)₂O): Calcd C, 66.01; H, 7.54; N, 7.78. Found C, 66.32; H, 7.29; N, 7.51.

5.1.25 *N*-[5-Iodo-7-(2-methoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (24b)

Compound **24b** was synthesized as described for **22a** with **21a** and was obtained as a yellow foam (0.86 g, 66 %); TLC R_f 0.65 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.22 (s, 9 H, C(CH₃)₃), 2.82 (s, 3 H, CH₃), 3.86 (s, 3 H, OCH₃), 5.32 (s, 2

H, CH₂), 6.84-7.30 (m, 4 H, C₆H₄), 7.57 (s, 1 H, CH), 9.82 (s, 1 H, NH); Anal.(C₂₀H₂₃IN₄O₂ · 1.02 (C₄H₈)O): Calcd C, 52.41; H, 5.69; N, 10.14; I, 22.97. Found C, 52.81; H, 5.78; N, 10.10; I, 23.25.

5.1.26 *N*-[5-Iodo-7-(3,4,5-Trimethoxybenzyl)-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (24c)

Compound **24c** was synthesized as described for **22a** with **21f** and was obtained as a yellow solid (0.73 g, 73 %); TLC R_f 0.59 (EtOAc/NEt₃/Hexane, 5:1:3); ¹H NMR (DMSO- d_6): δ 1.23 (s, 9 H, C(CH₃)₃), 2.79 (s, 3 H, CH₃), 3.57 (s, 3 H, OCH₃), 3.75 (s, 6 H, (OCH₃)₂), 5.20 (s, 2 H, CH₂), 6.99 (s, 2 H, C₆H₂), 7.82 (s, 1 H, CH), 9.95 (s, 1 H, NH).

5.1.27 *N*-[7-benzyl-5-(4-phenyl)sulfanyl-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25a)

To a 5 mL microwave reaction vial was added **24a** (300 mg, 0.48 mmol), phenylthiol (1.2 eq), CuI (1.3 eq), K₂CO₃ (1.5 eq) and 4 mL of dry DMF. The mixture was evacuated and back-filled with nitrogen (three cycles). The reaction mixture was irradiated in a microwave apparatus at 100 °C for 4 h. After the reaction mixture was cooled to ambient temperature, the mixture was filtered. The filtrate was dried *in vacuo* and the crude product was purified by flash chromatography on silica gel (gradient, 1:8 to 1:2, EtOAc: hexane) and washed with diethyl ether/methanol to afford 230 mg (78%) of **25a** as a yellow semisolid; R_f 0.50 (5:1:3, EtOAc/NEt₃/Hexane); ¹H NMR (DMSO-*d*₆): δ 1.23 (s,

9 H, C(CH₃)₃), 2.54 (s, 3 H, CH₃), 5.44 (s, 2 H, CH₂), 7.04-7.36 (m, 10 H, C₆H₅ and C₆H₅), 7.95 (s, 1 H, CH), 9.93 (s, 1 H, NH).

5.1.28 *N*-[7-benzyl-5-(2-methoxyphenyl)sulfanyl-4-methyl-7*H*-pyrrolo[2,3*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25b)

Compound **25b** was synthesized as described for **25a** with 2-methoxyphenylthiol and was obtained as a white foam (76%); R_f 0.45 (5:1:3, EtOAc/NEt₃/Hexane); ¹H NMR (DMSOd₆): δ 1.20 (s, 9 H, C(CH₃)₃), 2.39 (s, 3 H, 4-CH₃), 3.83 (s, 3 H, OCH₃), 5.4 (s, 2 H, CH₂), 6.42-7.33 (m, 9 H, C₆H₅ and C₆H₄), 7.84 (s, 1 H, CH), 9.85 (s, 1 H, NH). HRMS(ESI) [M+H]⁺ *m/z* Calcd for (C₂₆H₂₉N₄O₂S) 461.2011 Found 461.1987.

5.1.29N-[7-benzyl-5-(4-methoxyphenyl)sulfanyl-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl]-2,2-dimethylpropanamide (25c)

Compound **25c** was synthesized as described for **25a** with 4-methoxyphenylthiol and was obtained as a yellow foam (78%); R_f 0.48 (5:1:3, EtOAc/NEt₃/Hexane); ¹H NMR (DMSO- d_6): δ 1.22 (s, 9 H, C(CH₃)₃), 2.58 (s, 3 H, CH₃), 3.68 (s, 3 H, OCH₃), 5.41 (s, 2 H, CH₂), 6.86 (d, 2 H, C₆H₄), 7.02 (d, 2 H, C₆H₄), 7.22-7.34 (m, 5 H, C₆H₅), 7.89 (s, 1 H, CH), 9.87 (s, 1 H, NH). HRMS (ESI) [M + H]⁺: m/z Calcd for (C₂₆H₂₉N₄O₂S) 461.2011 Found 461.1982.

5.1.30 *N*-[7-benzyl-5-(4-chlorophenyl)sulfanyl-4-methyl-7*H*-pyrrolo[2,3*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25d)

Compound **25d** was synthesized as described for **25a** with 4-chlorophenylthiol and was obtained as a yellow semisolid (83%); R_f 0.53 (5:1:3, EtOAc/NEt₃/Hexane); ¹H NMR (DMSO- d_6): δ 1.23 (s, 9 H, C(CH₃)₃), 2.54 (s, 3 H, CH₃), 5.32 (s, 2 H, CH₂), 7.04-7.73 (m, 9 H, C₆H₅ and C₆H₄), 7.98 (s, 1 H, CH), 9.92 (s, 1 H, NH). HRMS (ESI) [M + H]⁺: m/z Calcd for (C₂₅H₂₆N₄O₂SCl) 465.1481 Found 465.1516.

5.1.31 *N*-(2-Methoxybenzyl)-4-methyl-5-[(2-methoxyphenyl)sulfanyl]-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25e)

Compound **25e** was synthesized as described for **25a** with **24** and was obtained as a white foam (77%); TLC $R_f 0.47$ (5:1:3, EtOAc/NEt₃/Hexane); ¹H NMR (DMSO- d_6): δ 1.20 (s, 3 H, C(CH₃)₃), 2.52 (s, 3 H, CH₃), 3.83 (s, 3 H, OCH₃), 3.85 (s, 3 H, OCH₃), 5.37 (s, 2 H, CH₂), 6.47 (d, 1 H, C₆H₄), 6.84-7.27 (m, 7 H, C₆H₄ and C₆H₄), 7.69 (s, 1 H, CH), 9.82 (s, 1 H, NH); Anal.(C₂₇H₃₀N₄O₃S • 0.533 (C₂H₅)₂O): C, 66.00; H, 6.71; N, 10.56; S, 6.04. Found C, 65.95; H, 6.48; N, 10.30; S, 6.23.

5.1.32 *N*-(4-Methoxybenzyl)-4-methyl-5-[(2-methoxyphenyl)sulfanyl]-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25) Compound 25 was synthesized as described for 25a with 22d and was obtained as a yellow semisolid (72%); TLC R_f 0.46 (5:1:3, EtOAc/NEt₃/Hexane); ¹H NMR (DMSO d_6): δ 1.27 (s, 3 H, C(CH₃)₃), 2.50 (s, 3 H, CH₃), 3.73 (s, 3 H, OCH₃), 3.89 (s, 3 H, OCH₃), 5.37 (s, 2 H, CH₂), 6.48 (d, 1 H, C₆H₄), 6.77 (t, 1 H, C₆H₄), 6.89 (d, 2 H, C₆H₄), 6.92 (d, 1 H, C₆H₄), 7.03 (t, 1 H, C₆H₄), 7.38 (d, 2 H, C₆H₄), 7.87 (s, 1 H, CH), 9.95 (s, 1

H, NH); HRMS (ESI) $[M + H]^+$: Calcd for C₂₇H₃₁N₄O₃S *m*/*z* = 491.2117, found *m*/*z* = 491.2091.

5.1.33 *N*-(2-Methoxybenzyl)-4-methyl-5-[(3,4,5-trimethoxyphenyl)sulfanyl]-7*H*pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25g)

Compound **25g** was synthesized as described for **25a** with **24c** and 3,4,5trimethoxyphenyl thiol and was obtained as a yellow semisolid (72%); TLC R_f 0.47 (5:1:3 Hexane/ TEA /EtOAc); ¹H NMR (DMSO- d_6): δ 1.21 (s, 3 H, C(CH₃)₃), 2.63 (s, 3 H, CH₃), 3.59 (s, 6 H, (OCH₃)₂), 3.86 (s, 3 H, OCH₃), 5.41 (s, 2 H, CH₂), 6.37 (s, 2 H, C₆H₂), 6.77-6.81 (m, 2 H, C₆H₄), 7.04 (d, 1 H, C₆H₄), 7.28 (t, 1 H, C₆H₄), 7.80 (s, 1 H, CH), 9.85 (s, 1 H, NH); HRMS (ESI) [M + H]⁺: Calcd for C₂₉H₃₅N₄O₅S *m*/*z* = 551.2328, found *m*/*z* = 551.2304.

5.1.34 *N*-(3,4,5-Trimethoxybenzyl)-4-methyl-5-[(3,4,5-trimethoxyphenyl)sulfanyl]-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]-2,2-dimethylpropanamide (25h)

Compound **25h** was synthesized as described for **25a** with **24c** and was obtained as a yellow semisolid (76%); TLC R_f 0.41 (5:1:3 EtOAc/NEt₃); ¹H NMR (DMSO- d_6): δ 1.23 (s, 3 H, C(CH₃)₃), 2.65 (s, 3 H, CH₃), 3.53 (s, 6 H, (OCH₃)₂), 3.60 (s, 3 H, OCH₃), 3.68 (s, 6 H, (OCH₃)₂), 3.74 (s, 6 H, (OCH₃)₂), 5.33 (s, 2 H, CH₂), 6.30 (s, 2 H, C₆H₂), 6.61 (s, 2 H, C₆H₄), 6.97 (s, 1 H, CH), 8.19 (s, 1 H, NH).

5.1.35 7-Benzyl-5-phenylsulfanyl-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine (11)

To a 50 mL round-bottom flask was added **25a** (200 mg, 0.33 mmol), aqueous 1 N NaOH (4 mL) and MeOH (20 mL). The reaction mixture was refluxed for 12 h, and concentrated. The slurry obtained was dissolved in water (5 mL) and extracted with CH₂Cl₂ (30 mL). The organic layer was dried over Na₂SO₄ and concentrated to afford a colourless oil. The crude product was purified by flash chromatography on silica gel (gradient, 5:1:10 EtOAc/NEt₃/hexane to 5:1:3 EtOAc/NEt₃/hexane) and washed with diethyl ether to afford **11** (56%) as a white solid; TLC R_f 0.30 (5:1:3, EtOAc/NEt₃/Hexane); mp 142-143 °C; ¹H NMR (DMSO- d_6) δ 2.37 (s, 3 H, CH₃), 5.30 (s, 2 H, CH₂), 5.71 (s, 2 H, NH₂), 7.04-7.34 (m, 10 H, C₆H₅ and C₆H₅), 7.54 (s, 1 H, CH); Anal. [C₂₀H₁₈N₄S· 0.2 (C₂H₅)₂O]: C, 69.16; H, 5.35; N, 15.64; S, 9.16. Found C, 69.22; H, 5.45; N, 15.75; S, 9.01.

5.1.367-Benzyl-5-[(2-methoxyphenyl)sulfanyl]-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine (12)

Compound **12** was synthesized as described for **11** with **25b** and was obtained as a white solid (58%); R_f 0.26 (5:1:3, EtOAc/NEt₃/Hexane); mp 164–165 °C; ¹H NMR (DMSOd₆) δ 2.31 (s, 3 H, CH₃), 3.84 (s, 3 H, OCH₃), 5.29 (s, 2 H, CH₂), 6.35 (s, 2 H, NH₂), 6.35 (d, 1 H, C₆H₄), 6.54 (t, 1 H, C₆H₄), 6.78 (d, 1 H, C₆H₄), 6.99 (d, 1 H, C₆H₄), 7.08 (t, 1 H, C₆H₄), 7.20-7.33 (m, 6 H, C₆H₅), 7.46 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: *m/z* Calcd for (C₂₁H₂₁N₄OS) 377.1436 Found 377.1399.

5.1.377-Benzyl-5-[(4-methoxyphenyl)sulfanyl]-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine (13)

Compound **13** was synthesized as described for **11** with **25c** and was obtained as a white solid (52%); TLC R_f 0.28 (5:1:3 EtOAc/NEt₃/Hexane); mp 158-160 °C; ¹H NMR (DMSO- d_6) δ 2.43 (s, 3 H, CH₃), 3.56 (s, 3 H, OCH₃), 3.57 (s, 6 H, (OCH₃))₂, 5.30 (s, 2 H, CH₂), 6.34 (s, 2 H, NH₂), 6.32 (s, 2 H, C₆H₂), 7.17-7.30 (m, 5 H, C₆H₅), 7.53 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: *m/z* Calcd for (C₂₁H₂₁N₄OS) 377.1436 Found 377.1454.

5.1.38 7-Benzyl-5-[(4-chlorophenyl)sulfanyl]-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine (14)

Compound **14** was synthesized as described for **11** with **25d** and was obtained as a yellow solid (51%); TLC R_f 0.31 (5:1:3, EtOAc/NEt₃/Hexane); mp 134-135 °C; ¹H NMR (DMSO- d_6) δ 2.31 (s, 3 H, CH₃), 5.28 (s, 2 H, CH₂), 6.32 (s, 2 H, NH₂), 6.87 (d, 2 H, C₆H₄), 7.02-7.33 (m, 7 H, C₆H₅ and C₆H₄), 7.51 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: *m/z* Calcd for (C₂₀H₁₈N₄SCl) 381.0941 Found 381.0916.

5.1.39 7-(2-Methoxybenzyl)-5-[(2-methoxyphenyl)sulfanyl]-4-methyl-7H-

pyrrolo[2,3-d]pyrimidin-2-amine (15)

Compound **15** was synthesized as described for **11** with **25e** and was obtained as a white solid (105 mg, 53%); TLC R_f 0.20 (5:1:3, EtOAc/NEt₃/Hexane); mp 171-172 °C; ¹H NMR (DMSO- d_6): δ 2.33 (s, 3 H, CH₃), 3.84 (s, 3 H, OCH₃), 3.86 (s, 3 H, OCH₃), 5.24 (s, 2 H, CH₂), 6.34 (s, 2 H, NH₂), 6.55-7.27 (m, 8 H, C₆H₄ and C₆H₄), 7.35 (s, 1 H, CH); Anal.(C₂₂H₂₂N₄O₂S): C, 65.00; H, 5.45; N, 13.78; S, 7.88. Found C, 64.78; H, 5.37; N, 13.68; S, 7.86.

5.1.40 7-(4-Methoxybenzyl)-5-[(2-methoxyphenyl)sulfanyl]-4-methyl-7H-

pyrrolo[2,3-*d*]pyrimidin-2-amine (16)

Compound **16** was synthesized as described for **11** with **25f** and was obtained as a yellow solid (98 mg, 54%); TLC R_f 0.20 (5:1:3, EtOAc/NEt₃/Hexane); mp 165-166 °C; ¹H NMR (DMSO- d_6): δ 2.30 (s, 3 H, CH₃), 3.70 (s, 3 H, OCH₃), 3.84 (s, 3 H, OCH₃), 5.19 (s, 2 H, CH₂), 6.30 (s, 2 H, NH₂), 6.47 (d, 1 H, C₆H₄), 6.77 (t, 1 H, C₆H₄), 6.89 (d, 2 H, C₆H₄), 6.98 (d, 1 H, C₆H₄), 7.07 (t, 1 H, C₆H₄), 7.19 (d, 2 H, C₆H₄), 7.42 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: Calcd for C₂₂H₂₃N₄O₂S m/z = 407.1542, found m/z = 407.1575.

5.1.41 7-(3,4,5-Trimethoxybenzyl)-5-[(2-methoxyphenyl)sulfanyl]-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine (17)

Compound **17** was synthesized as described for **11** with **25g** and was obtained as a white solid (95 mg, 56 %); TLC R_f 0.18 (5:1:3, EtOAc/NEt₃/Hexane); mp 162-163 °C; ¹H NMR (DMSO- d_6): δ 2.32 (s, 3 H, CH₃), 3.60 (s, 3 H, OCH₃), 3.70 (s, 6 H, (OCH₃)₂), 3.85 (s, 3 H, OCH₃), 5.19 (s, 2 H, CH₂), 6.36 (s, 2 H, NH₂), 6.53 (d, 1 H, C₆H₄), 6.61 (s, 2 H, C₆H₂), 6.74 (t, 1 H, C₆H₄), 6.97 (d, 1 H, C₆H₄), 7.06 (t, 1 H, C₆H₄), 7.47 (s, 1 H, CH); HRMS (ESI) [M + H]⁺: Calcd for C₂₄H₂₇N₄O₄S m/z = 467.1753, found m/z = 467.1734.

5.1.42 7-(3,4,5-Trimethoxybenzyl)-5-[(3,4,5-trimethoxyphenyl)sulfanyl]-4-methyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine (18)

Compound **17** was synthesized as described for **11** with **25h** and was obtained as a white solid (95 mg, 56 %); TLC R_f 0.15 (5:1:3, EtOAc/NEt₃/Hexane); mp 164-165 °C; ¹H NMR (DMSO- d_6): δ 2.42 (s, 3 H, CH₃), 3.53 (s, 6 H, (OCH₃)₂), 3.56 (s, 3 H, OCH₃), 3.59 (s, 3

H, OCH₃), 3.68 (s, 6 H, (OCH₃)₂), 5.16 (s, 2 H, CH₂), 6.31 (s, 2 H, C₆H₂), 6.39 (s, 2 H, NH₂), 6.66 (s, 1 H, C₆H₂), 7.52(s, 1 H, CH); HRMS (ESI) $[M + H]^+$: Calcd for C₂₆H₃₁N₄O₆S *m*/*z* = 527.1964, found *m*/*z* = 527.1914.

5.2 General methods for biological evaluations:

5.2.1 Cell Culture and Cell lines

Cell line CRL-2116 (ATCC designation : JC) was obtained from the American Type Culture Collection (Manassas, VA) and cultured as recommended. The cells were maintained in RPMI-1640 (Life Technologies, Inc., Rockville, MD) with L-glutamine containing 10% FBS and 50 μ g/ml gentamicin. Cells were maintained at 37 ⁰ C and 5% CO₂ in 100 X 20-mm polystyrene tissue culture dishes.

5.2.2 In Vitro Cytotoxicity Assay¹⁹

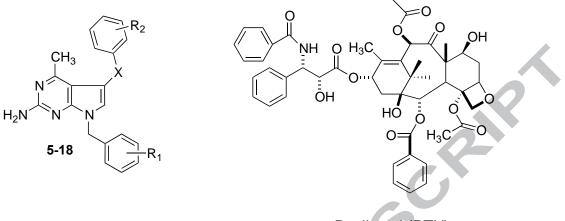
JC Cells were seeded in 96-well tissue cluture dishes at approximately 20% confluency and allowed to recover and attach for 24h. Cells were then treated with varying concentrations of target compounds **5-18** or Taxol for 48 h. The number of surviving cells remaining in each well was quantitated with the sulfonamide B (SRB) colorimetric assay. Briefly, cells were washed with phosphate-buffered saline (PBS) and fixed to the plate with 10% tricholoracetic acid. The cells were then washed with water and stained with 0.4% SRB in 1% acetic acid. Cells were then rinsed with 1% acetic acid and 10mM tris base buffer was added to dissolve the SRB. The degree of absorbance was determined with a Perkin Elmer HTS 7000 Plus BioAssay plate reader at a wavelength of 570 nm.

5.2.3 In Vitro Drug Accumulation Assay¹⁹

JC Cells were seeded in 24-well tissue culture dishes at approximately 25% confluency and allowed to recover and grow to near confluency, approximately 3-4 days. Medium was aspirated and replaced with serum-free medium. Compounds **5-18** were incubated for 30 min at 37° C. Approximately 0.1 µCi of [³H]Taxol (75Ci/mmol) (Moravek Biochemicals, Brea , CA) was then added per well and the cultures were incubated for 60 min at 37° C. Radioactive medium was aspirated and cells were rapidly washed twice with ice-cold PBS. Intracellular [³H]Taxol was solubilized with 1% sodium dodecyl sulfate (SDS) in water and quantified by liquid scintillation counting using UniverSol (ICN, Costa Mesa, CA).

5.2.4 Cytoskeleton Staining: JC rat mammary adenocarcinoma cells were grown to near confluency on glass cover slips and treated for 24 h with EtOH (control) and varying concentrations 1.25 μ M -100 μ M of compound 7. Microtubules were stained with monoclonal anti- β -tubulin and visualized with fluorescein-conjugated anti-mouse IgG. For staining of microfilaments, cells were fixed with 3% p-formaldehyde, permeabilized with 0.2% Triton X-100, and reduced with sodium borohydride (1 mg/mL). Microfilaments were visualized by incubation with 100 nM of TRITC-phalloidin for 45 min at 37 °C. Microtubules and microfilaments were imaged using a Nikon Optiphot-2 microscope with a Bio-Rad MRC 600 Confocal Laser Scanning system. The images were reconstructed using VoxelView Ultra Software and were printed on a Kodak Model XL 7700 digital continuous tone printer.

6. Acknowledgements


This work was supported by the National Institutes of Health, National Cancer Institute grant CA 114021 (AG). We thank the National Cancer Institute for performing the in vitro antitumor evaluation in their 60 tumor preclinical screening program.²⁰

7. References

- 1) Jordan, M. A.; Wilson, L. Nat. Rev. Cancer. 2004, 4, 253-65.
- 2) Jordan, M. A.; Kamath, K. Curr. Can. Drug Tar. 2007, 7, 730-742.
- Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A.T. Med. Res. Rev. 1998, 18, 259-296.
- Nogales, E.; Wolf, S. G.; Khan, I. A.; Luduena, R. F.; Downing, K. H. Nature 1995, 375, 424-427.
- Singer, W. D.; Jordan, M. A.; Wilson, L.; Himes, R. H. Mol. Pharmacol. 1989, 36, 366-370.
- Conlin, A.; Fornier, M.; Hudis, C.; Kar, S.; Kirkpatrick, P. *Nat. Rev. Drug Discov.* 2007, *6*, 953-954.
- 7) Hastie, S. B. Pharmacol. Ther. 1991, 512, 377-401.
- 8) Safa, A. R. Curr. Med. Chem. Anti-Canc. Agents 2004, 4, 1-17.
- 9) Chen, J.; Ahn, S.; Wang, J.; Lu, Y. J. Med. Chem. 2012, 55, 7285-7289.
- 10) Gangjee, A.; Zhao, Y.; Lu, L.; Raghavan, S.; Roberts, R.; Risinger, A.; Hamel, E.;
 Moobery, S. J. Med. Chem. 2010, 53, 8116-8128.
- 11) Gangjee, A.; Yu, J.; Copper, J. E.; Smith, C. D. J. Med. Chem. 2007, 50, 3290-3301.
- 12) Gangjee, A.; Namjoshi, O.; Zhao, Y.; Smith, C. D. Abstracts of the 6th Asian Federation for Medicinal Chemistry (AFMC) International Medicinal Chemistry Symposium, Istanbul, Turkey, July 8-11, 2007.
- 13) Chinchilla, R.; Najera, C. O. Chem. Rev. 2007, 107, 874-922.
- 14) Petricci, E.; Radi. M.; Corelli, F.; Botta, M. Tet. Lett. 2003, 44, 9181-9184.

- 15) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054-3131.
- 16) Sperotto, E.; Klink, G. P.; de Vries, J. G.; van Koten, G. J. Org. Chem. 2008, 73, 5625-5628.
- 17) Gangjee, A.; Qiu, Y.; Li, W.; Kisliuk, R. L. J. Org. Chem. 2008, 51, 5789-5797.
- 18) Bagley, M. C.; Davis, T.; Dix, M. C.; Fusillo, V.; Pigeaux, M.; Rokicki, M.;
 Kipling, D. J. Org. Chem. 2009, 74, 8336–8342.
- 19) Lee, B. D.; French, K. J.; Zhuang, Y.; Smith, C. D. Oncology Res. 2003, 14, 49-60.

20) <u>http://dtp.nci.nih.gov/branches/btb/ivclsp.html</u>.

Table 1: Cytotoxicity and Pgp modulatory effects for target compounds 5-18

Paclitaxel (PTX)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cpd	R ₁	R_2	Х	Cytotoxicity	Lowest concentration for in vitra
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cpu	R ₁	112	21		
	5	2-OMe	3.4.5-triOMe	CH ₂ CH ₂		e
74-OMe $3,4,5$ -triOMe CH_2CH_2 0.6 ± 0.3 0.2 8 $3,4$ -diOMe $3,4,5$ -triOMe CH_2CH_2 1.5 ± 0.4 1.2 9 $3,5$ -diOMe $3,4,5$ -triOMe CH_2CH_2 3 ± 0.7 1.5 10 $3,4,5$ -triOMe $3,4,5$ -triOMe CH_2CH_2 1.0 ± 0 none11HHS 4 ± 0.7 none12H2-OMeS 11 ± 0.7 1.5 13H 4 -OMeS 10 ± 1.2 none14H 4 -ClS 7.5 ± 3.2 none15 2 -OMe 2 -OMeS 9 ± 0.7 none16 4 -OMe 2 -OMeS 3 ± 0 none17 $3,4,5$ -triOMe 2 -OMeS 3 ± 0 none18 $3,4,5$ -triOMe $3,4,5$ -triOMeS>100none						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
93,5-diOMe3,4,5-triOMe CH_2CH_2 3 ± 0.7 1.5103,4,5-triOMe3,4,5-triOMe CH_2CH_2 1.0 ± 0 none11HHS 4 ± 0.7 none12H2-OMeS 11 ± 0.7 1.513H4-OMeS 10 ± 1.2 none14H4-ClS 7.5 ± 3.2 none152-OMe2-OMeS 9 ± 0.7 none164-OMe2-OMeS 2.5 ± 0.4 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100none						
103,4,5-triOMe3,4,5-triOMe CH_2CH_2 1.0 ± 0 none11HHS 4 ± 0.7 none12H2-OMeS 11 ± 0.7 1.513H4-OMeS 10 ± 1.2 none14H4-ClS 7.5 ± 3.2 none152-OMe2-OMeS 9 ± 0.7 none164-OMe2-OMeS 3 ± 0 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100none						
11HHS 4 ± 0.7 none12H2-OMeS 11 ± 0.7 1.513H4-OMeS 10 ± 1.2 none14H4-ClS 7.5 ± 3.2 none152-OMe2-OMeS 9 ± 0.7 none164-OMe2-OMeS 2.5 ± 0.4 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100none						
12H2-OMeS 11 ± 0.7 1.513H4-OMeS 10 ± 1.2 none14H4-ClS 7.5 ± 3.2 none152-OMe2-OMeS 9 ± 0.7 none164-OMe2-OMeS 2.5 ± 0.4 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100						none
13H4-OMeS 10 ± 1.2 none14H4-ClS 7.5 ± 3.2 none152-OMe2-OMeS 9 ± 0.7 none164-OMe2-OMeS 2.5 ± 0.4 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100none	12	Н	2-OMe		11 ± 0.7	1.5
152-OMe2-OMeS 9 ± 0.7 none164-OMe2-OMeS 2.5 ± 0.4 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100none	13	Н				
164-OMe2-OMeS 2.5 ± 0.4 none173,4,5-triOMe2-OMeS 3 ± 0 none183,4,5-triOMe3,4,5-triOMeS>100none	14	Н	4-C1	S	7.5 ± 3.2	none
17 3,4,5-triOMe 2-OMe S 3 ± 0 none 18 3,4,5-triOMe 3,4,5-triOMe S >100 none	15	2-OMe	2-OMe	S	9 ± 0.7	none
18 3,4,5-triOMe 3,4,5-triOMe S >100 none	16	4-OMe	2-OMe	S	2.5 ± 0.4	none
	17	3,4,5-triOMe	2-OMe	S	3 ± 0	none
PTX 0.15	18	3,4,5-triOMe	3,4,5-triOMe	S	>100	none
	РТХ				0.15	
	6					

Panel/cell	7 CI	Panel/cell line	7.01	Panel/cell line	7.01	Panel/cell	7.01
line	7 GI ₅₀	Panel/cell line	7 GI ₅₀	Panel/cell line	7 GI ₅₀	line	7 GI ₅₀
Leukemia		Ovarian		Breast		RXF-393	44.1
	> 1000		154		262		
CCRF-CEM	>1000	IGROV1	154	HOP-62	362	SN12C	499
HL-60	220	OVCAR-3	164	HOP-92	>1000	TK-10	686
K-562	116	OVCAR-4	338	NCI-H226	927	UO-31	397
RPMI-8226	713	OVCAR-5	596	NCI-H23	428		
SR	120	OVCAR-8	334	NCI-H322M	712	CNS	
		NCI/ADR-RES	202	NCI-H460	251	SF-268	379
NSCLC		SK-OV-3	251	NCI-H522	31.6	SF-295	83.9
A549/ATCC	329			MCF7	46.4	SF-539	96.4
EKVX	348	Melanoma		MDA-MB-	361	SNB-19	234
				231/ATCC			
HOP-62	362	LOXIMVI	364	HS578T	139	SNB-75	172
HOP-92	>1000	MALME-3M	284	BT-549	440	U251	311
NCI-H226	927	M14	204	T-47D	443		
NCI-H23	428	MDA-MB-435	32.1	MDA-MB-468	52.4	Colon	
NCI-H322M	712	SK-MEL-2	446			COLO	204
						205	
NCI-H460	251	SK-MEL-28	417	Renal		HCC-	191
						2998	
NCI-H522	31.6	SK-MEL-5	110	786-0	575	HCT-116	265
		UACC-257	>1000	A498	115	HCT-15	242
Prostate		UACC-62	61.5	ACHN	216	HT29	247
PC-3	301			CAKI-1	206	KM12	264
DU-145	337					SW-620	208

Table 2. Tumor cell inhibitory activity GI₅₀ (nM) of compound 7 (NCI)

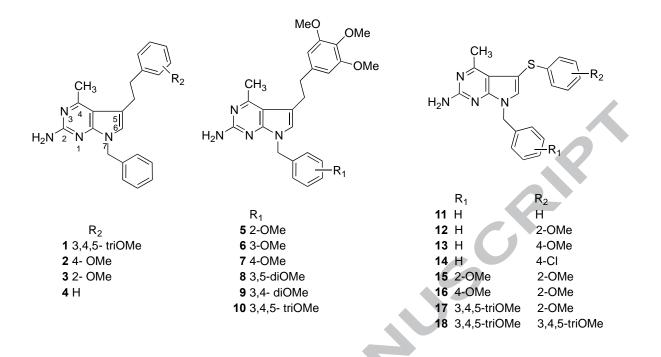
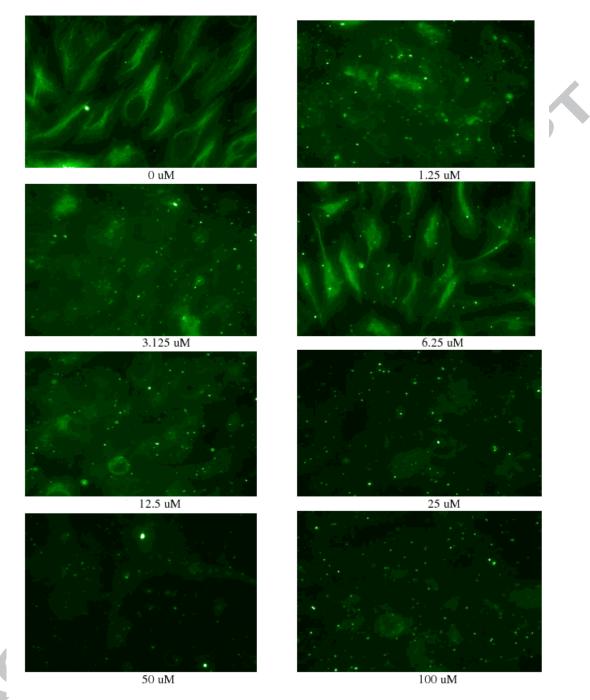
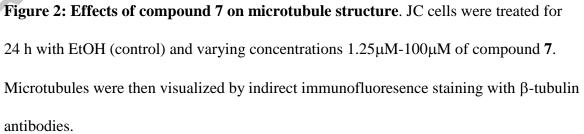
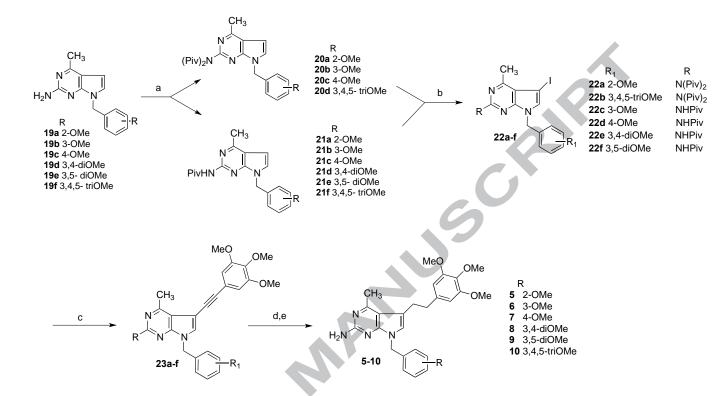
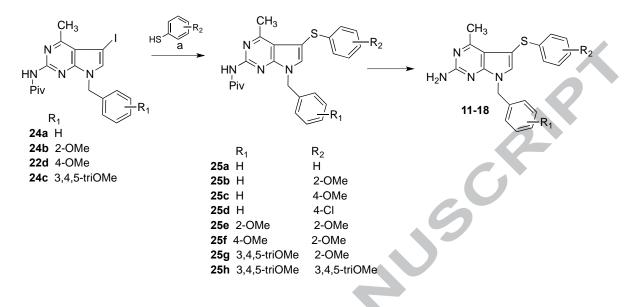
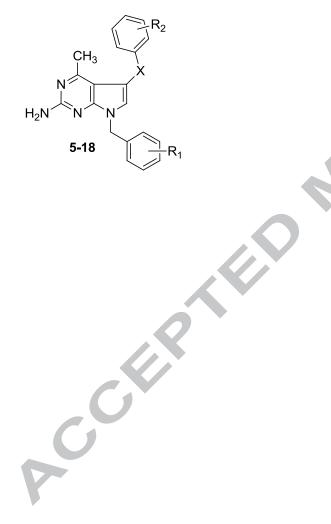





Figure 1: Target compounds 5-18


Scheme 1

(a) PivCl, DMAP, NEt₃, Dichloroethane, 50-55 ^oC.; (b) NIS, DMF, Dark, R.T., 8 h.; (c) 3,4,5-trimethoxyacetylene,Pd(PPh₃)₄, Cul,NEt₃, DCE, MW 100 ^oC, 10 min.; (d) 5% Pd/C,H₂, 50psi, 3-24 h.; (e) 1N NaOH, reflux, 12 h

R


(a) Cul, K₂CO₃, DMF, MW, 100 °C, 4h.; (b) 1N NaOH, MeOH, reflux, 12h

Synthesis of 5,7-disubstituted-4-methyl-7*H*-pyrrolo[2, 3-*d*]pyrimidin-2-amines as

microtubule inhibitors

Aleem Gangjee,^{•,†} Sonali Kurup,^{†,§} Charles D. Smith[‡]

Graphical Abstract

