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Abstract: 5-Thiomannose-containing oligomannoside mimics, 5SManc~(1,6)Man, 5SMancz(1,- 

3)Man, 5SManct(1,6){Manot(1,3)Man}, Mana(1,6){5SMan~t(1,3)Man}, and 5SMancx(1,6){5S- 
Mamx(1,3)Man}, were synthesized. Dissociation constants for the binding of these mimics to 

concanavalin A (ConA) were determined by a fluorescence anisotropy inhibition assay. Comparison 
of these data with those of the natural oligomannosides and with a crystal structure of the 
trimannoside-ConA complex established that replacing a ring oxygen atom with a sulfur atom causes 
about 1 kcal/mol decrease in the binding free energy when the ring oxygen is recognized with a 
hydrogen bonding. © 1998 Elsevier Science Ltd. All rights reserved. 

5-Thio-analog of an aldohexopyranose is referred to as a 5-thiosugar, in which the ring oxygen is replaced 

with a sulfur atom. The glycosides of 5-thiosugars are glycosidase-resistant 1 and, depending on the structure, 

they behave as glycosidase inhibitors. 2 When 5-thiosugar is incorporated into an oligosaccharide, l ,3 the 

resulting mimic is a potential tool to investigate oligosaccharide-receptor interaction, even being hoped as a 

hydrolase-resistant drug. Such oligosaccharide mimics so far synthesized have shown equivocal effects of the 

ring sulfur in the binding to receptors; e.g., incorporation of 5-thiofucose into an H-type 2 trisaccharide in place 

of the fucose residue results in enhancement of binding to an antibody on the one hand, hampering a lectin 

binding on the other. 3a This variation in the binding strengths may be due to the difference in the ring oxygen 

recognition pattern. A stacking interaction between an aromatic residue of the binding site and a sugar face may 

be strengthened by incorporation of a sulfur atom into the ring. On the other hand, hydrogen bonds involving the 

ring oxygen should be weakened by replacing it with a sulfur atom. Confirming these assumptions is important 

ti)r the future finding of 5-thiosugar based drug candidates targeting specific receptors. To this end, required is a 

systematic investigation on an oligosaccharide-receptor interaction where the recognition pattern of the ring 
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oxygen is known. Concanavalin A (ConA) meets this criterion; i.e., the crystal structure of the ConA- 

a'imannoside (Mantx(1,6){Mantx(1,3)Man}) complex indicates a hydrogen bonding to the ring oxygen of the 

1,6-mannose residue. 4 Therefore, by replacing the ring oxygen of the 1,6-mannose residue with sulfur, we will 

be able to estimate the effect of sulfur atom on a hydrogen bond. Moreover, it is interesting to investigate the 

effect of the ring sulfur atom on the 1,3-mannose residue, which is free from hydrogen bondings and stacking 

interactions. We thus synthesized 5-thiomannose containing oligomannoside mimics, 5SManct(1,6)Man 2, 

5SMantx(1,3)Man 4, 5SMantx(1,6){Manct(1,3)Man} 6, Mantz(1,6){5SMantx(1,3)Man} 7, and 

5SMantz(1,6){5SManct(1,3)Man} 8, and determined dissociation constants (Kd) of the binding of these mimics 

to ConA. 
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Scheme 1. (a) BF3.OEt 2, CH2CI 2. (b) Na-liq.NH 3, THF; Ac20-Py. (c) NaOMe. (d) Bu4NE THE 

First attempt of the synthesis of the disaccharide 2 was made by the glycosylation of the compound 1 2 with 

the per-O-acetyl-5-thiomannosyl trichloroacetimidate 1 0 as a glycosyl donor (Scheme 1). However, it ended in 

the formation of multiproducts, being also the case for other glycosyl acceptors. These results were unexpected 
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because 5-thioglucose has been incorporated into disaccharides with the same method. 3b Only the difference in 

configuration at C-2 caused the dramatic change of reactivity. We reasoned that the stability of a 1,2-orthoester 

intermediate might be responsible for the result, and altered the all acetyl groups to benzyl ones. With the per-O- 

benzylated 5-thiomannosyl trichloroacetimidate 11 in hand, we were able to synthesize the desired 5- 

thiomannose-containing mimics 5 as shown in Scheme 1. In all glycosidation reactions, a-glycosides were 

stereoselectively obtained as a single isomer. The natural type oligomannosides 1, 3, and 5 were synthesized as 

reported. 6 

The K d values for the binding of the synthesized oligomannose derivatives (1-8) to ConA was determined 

by fluorescence anisotropy inhibition assay (Table 1). 7,8 The obtained K d values for the natural type 

oligomannosides 1, 3, 5 were in good accordance with those reported. 9 The all K d values for the mimics 

showed decreased affinities for ConA, in comparison with the corresponding natural type oligomannosides, the 

extent of which varies depending on the structures (see AAG). ConA has a single high-affinity site that binds the 

1,6-1inked mannose of the trimannosides with the aid of the hydrogen bonding to the ring oxygen. 4,9c 

Therefore, the AAG values of 1.0 kcal/mol for the trimannoside 6 and of 1.3 kcal/mol for the dimannoside 2 

indicate a lessened hydrogen accepting ability of the ring sulfur. These magnitudes correspond to those for the 

substitution of a key hydroxyl group with a hydrogen atom. 10 Since ConA binds the 1,3-1inked mannose at the 

extended site that includes no hydrogen bonds to the ring oxygen, the AAG value of 0.5 kcal/mol for the 

trimannoside 7 implies that the ring sulfur atom is somewhat an obstruction for the binding. The unexpectedly 

large binding retardations of the disaccharide 4 and the trisaccharide 8 are difficult to interpret. These results 

exemplify that apparently small difference in the structure of a ligand saccharide sometimes affects the fitness for 

ConA to a large extent. 

Table 1. Thermodynamic parameters for the binding of oligomannose derivatives to ConA at 25 °C. 

compound structure K d (~tM) AG (kcal/mol) AAG (kcal/mol) 

1 Manct(1,6)Man 150 -5.2 

2 5S Man(x( 1,6)Man 1280 -3.9 1.3 a 

3 Manct(1,3)Man 49 -5.9 

4 5S Mancc(1,3)Man 1720 -3.8 2. I b 

5 Man~x(1,6){Manct(1,3)Man} 3 -7.5 

6 5S Mantx(1,6){ Manct(1,3)Man } 18 -6.5 1.0 c 

7 Manoc(1,6){ 5S Manoc(1,3)Man} 7 -7.0 0.5 c 

8 5S Manoc(1,6) { 5S Manor(1,3)Man } 376 -4.7 2.8 c 

aCompared with 1. bCompared with 3. CCompared with 5. 
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