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Abstract: A facile synthesis is reported for the construction of the
five- and six-membered fused carbamate rings of an oxazo-
lo[5,4]pyrimidin-2-one and a pyrimido[5,4][1,3]oxazin-2-one, re-
spectively. The method utilises a controlled two-step procedure in
which a reactive p-nitrophenylcarbamate intermediate ring closes
upon treatment with base, affording the bicyclic pyrimidine-car-
bamate scaffolds in good yields.
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Pyrimidine derivatives play an important role in many
drug discovery programmes in the pharmaceutical indus-
try and amongst them bicyclic pyrimidine ring systems
are a very important class of compounds.1 Bicyclic pyri-
midine ring systems also play a crucial role in mammalian
systems: the DNA base pairs adenine and guanine are pu-
rine derivatives whilst ATP (adenosine triphosphate), a
key energy provider substrate in biological signalling
pathways, contains a purine moiety. More specifically, the
purine group plays an important role in the binding of
ATP to protein kinases (an important class of enzymes
mediating most signal transduction pathways),1b,2 result-
ing in activation of downstream enzymes in the signalling
pathway through phosphorylation.3 It is known that many
forms of cancer develop due to mutations of one or several
enzymes in these signalling pathways. For this reason, a
considerable body of research is directed toward the
development of ATP-competitive inhibitors for mutated
protein kinases thereby preventing activation of these
enzymes and thus blocking the signalling pathway that
can lead to cancers.4 Examples of protein kinase inhibitors
in the treatment of cancer are Gleevec© (for leukaemia),
Iressa© (for lung cancer) and Sorafeni© (for renal cancer).5

Thus developing protein kinase inhibitors that strongly
compete with ATP have a huge potential in cancer treat-
ments. Pyrimidines have already been shown to be very
successful in this area because they possess many key
functionalities for crucial binding (mainly hydrogen
bonds) to the backbone (hinge region) of the constrained
and rather well-defined ATP-pocket of many protein
kinases. In addition, due to their versatile chemistry,
pyrimidines can be readily decorated with various func-
tionalities to fine-tune their biological activity.6

Our interest in kinase inhibitors led us to develop a novel
route towards oxazolo[5,4]pyrimidin-2-ones 1 and pyrim-
ido[5,4][1,3]oxazin-2-ones 2 (Figure 1) with R2 = benzyl
or functionalised benzyl-groups. To our knowledge, no
compounds of types 1 and 2 are known in which N-7 and
N-9, respectively, are substituted. This was rather surpris-
ing since scaffolds 1 and 2 possess many characteristics of
a good pharmacophore for binding in the ATP-pocket of
kinases. We believe that the absence of compounds of
type 1 and 2 in the literature is due to the lack of good and
reproducible methods to produce their bicyclic pyrimi-
dine-carbamate ring systems. Herein we report a new
proof of concept methodology to construct the bicyclic
pyrimidine-carbamate scaffolds of both an oxazo-
lo[5,4]pyrimidin-2-one (1) and a pyrimido[5,4][1,3]ox-
azin-2-one (2) bearing a benzyl substituent (R2, Figure 1)
on the positions N-7 and N-9, respectively.

Figure 1 Oxazolo[5,4]pyrimidin-2-ones 1 and 
pyrimido[5,4][1,3]oxazin-2-ones 2

Initial screening of the literature for potential suitable
methods to create the bicyclic pyrimidine-carbamate ring
systems resulted in only two publications by Wetzel et al.
describing compounds of type 1 in which R2 = H.7 They
reported the synthesis of a variety of oxazolo-pyrimidine
derivatives of type 1 (R2 = H) as intermediates in the syn-
thesis of b-lactam antibiotics. In their synthesis, 5-amino-
4-hydroxypyrimidines were reacted with phosgene to pro-
vide the desired oxazolopyrimidines in moderate to good
yields. As mentioned earlier, from a medicinal chemistry
point of view, we were keen to introduce substituents,
preferably (functionalised) benzyl substituents, on the
positions N-7 of 1 and the N-9 of 2. To explore suitable
routes we decided to use a model reaction with
R2 = benzyl. Applying Wetzel’s reaction conditions to
construct the bicyclic pyrimidine-carbamate scaffold of 1
(R2 = benzyl) starting from 5-(benzylamino)uracil8 and
phosgene resulted in irreproducible results with poor
yields. In the best case, 1-benzyl-5-hydroxyoxazolo[5,4-
d]pyrimidin-2(1H)-one (5) was isolated in 8% yield. Re-
placing the phosgene with triphosgene, another regularly
used reagent for this type of reaction resulted in equally
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poor yields. Since we needed a reproducible method to
access products of type 1, we started to explore a different
method to prepare the central pyrimidine-carbamate skel-
eton. We decided to perform the ring-closing step in a
controllable two-step procedure. The synthesis of 1-ben-
zyl-5-hydroxyoxazolo[5,4-d]pyrimidin-2(1H)-one (5) is
outlined in Scheme 1. First the reactive 4-nitrophenyl
carbamate 4 was synthesised from 5-benzylaminouracil 3,
which is available from 5-bromouracil and benzylamine.8

Uracil 3 was found to be insufficiently soluble to react
with 4-nitrophenyl chloroformate to afford intermediate
4: only up to 30% conversion was observed even after
prolonged reaction times (>72 h) and elevated tempera-
tures (reflux in THF). To overcome this problem, 3 was
first treated with an excess of N,N-diethyltrimethylsilyl-
amine, giving the completely THF-soluble bis(silyloxy)
ether, and subsequent treatment of this soluble intermedi-
ate with 4-nitrophenyl chloroformate in the presence of
triethylamine followed by an aqueous work-up, gave the
4-nitrophenyl carbamate 4 in 77% yield.9 Subsequent
treatment of 4 with potassium tert-butoxide in THF at
reflux conditions resulted in the formation of the desired
bicyclic carbamate structure 5 in 77% yield9 and in 60%
overall yield starting from 3.9 Using the ethyl carbamate
intermediate, which is more commonly used in the litera-
ture to synthesise cyclic carbamates, instead of the 4-
nitrophenyl derivative, failed to the give the final cyclic
product 5. This is probably a result of the rather poor
nucleophilicity of the 4-OH functionality of the pyrimi-
dine combined with the poor leaving group ability of the
ethoxide group relative to the 4-nitrophenol group.

Scheme 1 Reagents and conditions: i. neat, 160 °C, 3 h;8 ii. N,N-
diethyltrimethylsilylamine, THF, reflux, 1 h, followed by 4-nitro-
phenyl chloroformate, Et3N, THF, 0 °C, r.t., 3 h; iii. t-BuOK, THF,
reflux, 1.5 h.

Since we were also interested in 6-membered cyclic car-
bamates fused to a pyrimidine ring (2, Figure 1) as scaf-
folds for drug-like molecules, we decided to investigate
whether this new method could also be applied to the con-
struction of the bicyclic scaffold of type 2. To do so, a
similar approach was followed (Scheme 2). In the first
step, uracil was subjected to Mannich reaction conditions
using paraformaldehyde and benzylamine in an ethanol–
water mixture (4:1), affording 5-(benzylaminometh-
yl)uracil (6) in 65% yield.10 The presence of a consider-
able amount of water (ca. 20%) in the solvent mixture was

found to be crucial in order to get satisfying yields and re-
producible results. This is probably due to the fact that
water is necessary to solubilise all reagents under the ap-
plied reaction conditions.

Scheme 2 Reagents and conditions: i. EtOH–H2O (4:1), reflux,
20 h; ii. 4-nitrophenyl chloroformate, THF, Et3N, 0 °C, r.t., 20 h; iii.
t-BuOK, THF, reflux, 2 h.

Treatment of uracil derivative 6 with 4-nitrophenyl chlo-
roformate in THF in the presence of triethylamine afford-
ed the reactive carbamate intermediate 7 in 82% yield.
Reaction of 7 with potassium tert-butoxide in THF at
reflux conditions resulted in the formation of the desired
pyrimido-oxazinone 8 in 84% yield.11 Also here, we first
attempted to synthesise 8 directly from 6 using phosgene
or triphosgene and the conditions described by Wetzel et
al., however, in this case we were unable to isolate any de-
sired product. Via the new controlled two-step procedure,
however, we were able to obtain the desired product 8 in
67% overall yield starting from uracil derivative 6.

In conclusion, we report a facile two-step procedure to
synthesise the bicyclic pyrimidine-carbamate skeleton of
oxazolo[5,4]pyrimidin-2-ones and pyrimido[5,4][1,3]ox-
azin-2-ones. For the first time an oxazolo[5,4]pyrimidin-
2-one and a pyrimido[5,4][1,3]oxazin-2-one are described
with an alkyl substituent at N-7 and N-9, respectively.
Whereas the more conventional methods (using phosgene
and triphosgene) failed, this method afforded the desired
fused pyrimidine-carbamate products in good yields,
creating the possibility to access a wide variety of these
bicyclic carbamate substrates. This in combination with
the rich chemistry already developed for functionalising
pyrimidines6,12 and the known key hydrogen bond donat-
ing/accepting abilities of bicyclic pyrimidine systems for
binding to biological targets, make these fused pyrimi-
dine-carbamate systems interesting building blocks in
medicinal chemistry.
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