View Article Online View Journal

Green Chemistry

Accepted Manuscript

Green Chemistry

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/greenchem Registered Charity Number 207890

Dynamic Article Links

Selective Carbon-Carbon Bond Formation : Terpenylations of Amines Involving Hydrogen Transfers

Zeyneb Sahli, Basker Sundararaju, Mathieu Achard and Christian Bruneau^a*

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

The well-defined ruthenium(II) complex A featuring a phosphine sulfonate chelate promotes the introduction of terpene motives onto cyclic saturated amines through hydrogen "auto"transfers without side alkene reduction. 10 These eco-friendly transformations enable the production of diverse N- and C- terpenoid alkaloids with only water and carbon dioxide as benign side products.

Introduction

Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36982J

Downloaded by University of Sussex on 20 January 2013

The broad family of terpenes and their oxygenated terpenoid 15 partners resulting from the assembly of isoprene units represent a class of secondary metabolites arising from biomass and isolated from plants and fungi.¹ Besides their historical application in perfume, fragrances,^{1a,2} or medicines,³ these compounds have also attracted considerable interest as raw materials for fine 20 chemicals,^{2,4} agrochemicals,⁵ and as renewable ressource for rubber and polymerization chemistry.⁶ Arising from the attachment of terpene moieties to various non terpenic organic molecules such as indoles, coumarins, hybrid isoprenoids are a special class of molecules which revealed high biological 25 activity, presumably due to their increased affinity to biological membranes.⁷ Similarly, terpene alkaloids ranging from prenylated to steroidal alkaloids, have a broad range of biological properties.^{8,9} Another interest of « aza-terpenes » results in the quaternization of the amines allowing the access of diverse 30 amphiphiles with potential industrial properties as surfactants or ionic liquids.¹⁰ Synthetic preparation of N-terpenylated amines with simple terpenes usually involved telomerization, hydroamination and related reactions.4b,11,12 Geranylation and prenylation of amines with allylic alcohol derivatives such as 35 prenol, linalool, geraniol via catalytic nucleophilic substitution are also documented.¹³ Reductive amination of terpenaldehydes represent another important approach.¹⁴ However, even if the preparation of C(2)- and C(3)-prenylated indole derivatives to access isoprenoids are reported,¹⁵ straightforward accesses of 40 novel C-terpenylated saturated amines minimizing the steps and

wastes are still unknown. Recently, we demonstrated that well-50 defined ruthenium(II) and iridium(III) containing phosphine sulfonate as chelating ligand allowed the C(3)-H functionalization of amines with aldehydes via an oxidant free dehydrogenation.¹⁶ This reactivity involving hydrogen autotransfers took advantage of the ability of the in situ generated 55 metal hydride species resulting from the dehydrogenation of amines to reduce the iminium intermediates formed upon condensation with aldehydes. Herein, we report on the preparation of various N-terpenylated amines and their application in catalytic hydrogen autotransfer reactions for the 60 access to diverse amines containing two or three terpene moieties via C-H functionalization.

Scheme 1 Preparation of tertiary amines via N-terpenylation.

Results and Discussion

65 Initially, the preparation of the N-terpenylated alkaloids 3 (Figure 1) was easily achieved by using three different pathways. Starting from aldehydes such as citronellal, myrtenal, safranal with secondary cyclic amines 2, N-terpenylation occurred under neat reaction condition using the so-called Leuckart-Wallach reaction ⁷⁰ in up to 95% isolated yield (Scheme 1 – route a).^{17,18} From allylic alcohols such as geraniol and phytol, N-alkylated amines 3 were obtained via a tandem isomerization-reductive amination sequence in the presence of cat. A and formic acid acting as hydrogen donor through hydrogen transfer processes by using our ⁷⁵ previously described methodology (Scheme 1 – route b).¹⁹ Finally the borrowing hydrogen methodology starting from alcohol such as citronellol led to the formation of N-geranylated amines in up to 63% isolated yield (Scheme 1 – route c).²⁰ Overview of the *N*-terpenylated amines **3** is outlined in Figure 1.

⁸⁰ With the freshly prepared *N*-terpenylated amines **3** in hand, we

^a UMR 6226 CNRS – Université de Rennes 1, Institut des Sciences chimiques de Rennes, Organometallics : Materials and Catalysis, Campus de Beaulieu, 35042 Rennes Cedex, France. Fax: +33 223236939; Tel: +33 223236602; E-mail: christian.bruneau@univ-45 rennes1.fr

[†] Electronic Supplementary Information (ESI) available: Experimental procedures and characterization data for cat. D and compounds 3, 4, 5. See DOI: 10.1039/b000000x/

Figure 1 Overview of prepared *N*-terpenylated amines 3 via hydrogen transfers (preparation route indicated in brackets).

next explored the reactivity of the racemic N-geranylated s piperidine **3a** with citronellal **1a** towards β -geranylation in the presence of the ruthenium complex cat. B, the iridium precatalyst cat. C featuring phosphine sulfonate chelate and cat. D containing a pyridone chelate obtained by treatment of [Ru(p-cymene)Cl₂]₂ with the deprotonated hydroxyquinoline (see 10 S I) (Figure 2). Thus, alkylated piperidine 3a was first reacted with citronellal 1a in the presence of a catalyst and CSA as additive at 150 °C for 16 h, and after cooling formic acid was added as a reducing agent at the last stage of the procedure to ensure complete reduction of the unsaturated intermediates at 150 15 °C for 2 h (Table 1). Under these reaction conditions, the amines act both as nucleophile through the formation of enamine intermediates and as hydrogen donor for the generation of metal hydride species enabling the reduction of the iminium species. Noteworthy, piperidines 4a were obtained as a mixture of eight 20 stereoisomers due to the presence of three stereogenic carbon centers in the final molecule including the formation of one of them during the β -alkylation step. When the β -geranylation was attempted under our initial reaction conditions with iridium

Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36982J

Downloaded by University of Sussex on 20 January 2013

7

4

4

4

73

90

58

65

92(62)

91(80)

89

92

Table 1	C(3)-Ter	penylation	of piperidine	3a with	citronellal 1a ^a
---------	----------	------------	---------------	---------	-----------------------------

yield. ^d Second step at 130 °C. ^e Second step at 100 °C.

2.0

1.5

1.5

1.0

cat. C, the expected product 4a was formed but large amounts of 35 side products resulting from the over reduction of the C=C insaturations via hydrogen transfer processes were observed (entry 3). Attempts with lower amount of formic acid and reduced reaction temperature were unsuccessful highlighting the low chemoselectivity for this transformation (entry 4). On the 40 other hand, the application of the ruthenium(II) cat. D was more fruitful affording the expected digeranylated piperidines 4a in a 67% isolated yield (entry 5). The transformation in the presence of the ruthenium cat. B occurred with a better chemoselectivity and led to 62% isolated yield (entry 1). Finally, the best result 45 was obtained by using 1.5 equiv. of formic acid and a reduced temperature of 130 °C at the last stage yielding 80% of the isolated digeranylated piperidine 4a (entry 2). With the N-terpenylated cyclic amines prepared from Figure 1 and under our best reaction conditions, the substrate diversity toward 50 ruthenium-catalyzed C-terpenylation was explored with various biosourced terpenaldehydes (Table 2). In most cases the reaction went smoothly affording the expected diterpenylated amines in moderate to good yields. Reaction of piperidine 3a, tetrahydroisoquinoline 3b and pyrrolidine 3e derivatives with 55 racemic citronellal 1a led to the formation of stereoisomeric mixtures of digeranylated amines in 62-80% isolated yield (entries 1-3). N-Geranylated morpholine 3d was also compatible affording 4d in 69% isolated yield (entry 4). The presence of stereoisomers in these previous compounds prevented the 60 accurate determination of the diastereoselectivity during C-H functionalization and in order to tackle this issue we decided to start from the achiral amine 3f derived from safranal. It was noted that a good 72% isolated yield was obtained but most significantly even at these high temperatures a promising 72% 65 diastereoisomeric excess was observed (entry 5). Noteworthy, NMR analyses revealed that no C=C isomerization occurred on the dienic structure. α , β -Unsaturated aldehydes have never been examined during β-alkylation of amines and interestingly, during the transformation of the enantiopure amine 3g with (-)-myrtenal, 70 a moderate diastereoisomeric excess of 62% was obtained but importantly using 1.5 equivalent of formic acid highlighted that the former conjugated double bond was not hydrogenated affording amine 4h in 57% isolated yield (entry 8). The same trend was observed with perillaldehyde and both C=C bonds 75 remained intact giving amines 4g, 4i and 4j in up to 71% isolated yield (entries 7, 9 and 10). In contrast, the reaction of 3a with an

Scheme 2 Geranylation with citrals

Cat. B

Cat. B

Cat. C

Cat. C

1

 2^d

3

 4^e

Downloaded by University of Sussex on 20 January 2013 Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36982J

Γable 2 Ruthenium-catalyzed β-terpenylation of amines 3^a $1/ \text{ cat. } \mathbf{B} (3 \text{ mol}\%)$ CSA (4 mol%) $2/ \text{ HCO}_2\text{H} (1,5 \text{ equiv.})$									
	R ¹⁷ 1	H N(²)n toluei R ² 150 °C, 1 a-c 3a-h 16 h, 3	$\begin{array}{ccc} & & & & \\ ne & & & & \\ 30 \ ^{\circ}C & & & \\ 3h & & & & \\ 4a \cdot j \end{array}$						
Entry	Terpene 1	Amine 2	Product 3	$d.e^{c}.$	Yield ^d				
1		N 3a		_ <i>b</i>	80				
2			N 4b	_b	68				
3	H 1a	Se S		_b	62				
4		N 3d		_b	69				
5	H 1a	N 3f		72	72				
6		N 3g	Af	_ <i>b</i>	56				
7		N Sh	y	_b	60				
8	1b	N 3g		62	57				
9		N Sh	Ai	5	71				
10	O → H → 1c			_b	67				

Green Chemistry Accepted Manuscrip

^{*a*} All reactions were carried out at 0.135 M concentration at 150 °C for 16 h under an inert atmosphere of argon with 1/3/[Ru] in 1/1.1/0.03 molar ratio. ^{*b*} stereoisomeric mixture. ^{*c*} diastereomeric excess. ^{*d*} isolated yield.

⁵ Scheme 3 Trigeranylated piperidines 5a

acyclic α,β -unsaturated aldehyde such as citrals led to the major formation of the diterpenylated amines **4a** resulting from the reduction of the former conjugated C=C enal bond whereas the distal unsaturation remained intact (Scheme 2). At this stage, ¹⁰ piperazine derivatives **3i** and **3j** didn't react likely due to the difficult deprotonation of the iminium intermediates preventing enamine formation. Finally, another approach to highlight the interest of our methodology in synthesis consisted in the formation of triterpenylated amines arising from functionalization ¹⁵ at the two C(3)-position of the *N*-terpenylated amine **3a**. We demonstrated that the chemoselective formation of the trigeranylated piperidine **5a** was possible in the presence of 2 equivalents of aldehyde **1a** simply by increasing the amount of Brønsted acid (CSA) from 4 to 15 mol % leading to the formation ²⁰ of the lipophilic amine **5a** in 53% isolated yield (Scheme 3).

Conclusion

In summary, the oxidant free dehydrogenative C-H bond functionalization of N-terpenylated cyclic amines was successfully performed with various terpenaldehydes without side 25 alkene reduction in the presence arene ruthenium(II) catalyst containing a chelating phosphine sulfonate. Starting from enantiopure or non chiral amines 3, this method, enabled promising diastereoselective formation of disusbtituted amines with water and carbon dioxide as the only side products. Amine 30 quaternization of these raw biosourced materials followed by postfunctionalization via cross metathesis of the remaining unsaturations would afford the access to valuable amphiphiles.^{10,21}

Aknowledgements

³⁵ The authors thank the financial support from the Ministry of Higher Education and Research of Algeria for a PNE fellowship to Z.S.. Thanks are also due to CEFIPRA/IFCPAR (IFC/A/3805-2/2008/1720) for a grant to B.S.

Experimental

40 Procedure for the preparation of amines 4:

To a stirred solution of amine 3 (1.1 equiv.) in 1.5 mL of toluene was added aldehyde 2 (1 equiv., 0.2 mmol). Subsequently D-(+)-camphor sulfonic acid (3 mol %) and cat. B (3 mol %) were added and then the sealed Schlenk tube was stirred at 150 °C (oil

⁴⁵ bath temperature) for 16 h. After 16 h, the reaction mixture was cooled down and then HCOOH (1.5 equiv.) was added and stirring was continued at 130 °C for 3 h. The crude mixture was

directly taken for GC analysis and purified by column chromatography (Et₂O/PE/Et₃N) to afford the β C-alkylated ⁵⁰ amines **4**.

3-(3,7-dimethyloct-6-en-1-yl)-1-((2,6,6-trimethylcyclohexa-1,3-dien-1-yl)methyl)piperidine 4e

Compound 4e was prepared according to the general procedure for the preparation of amines 4 after purification through column

- ⁵⁵⁵ chromatography (Et₂O/PE/Et₃N: 1/9/0.025) in 72% yield with a 72% diastereoisomeric excess. ¹H NMR (400 MHz, CDCl₃): δ 5.71-5.64 (m, 2H), 5.02 (t, 1H, *J*= 7.0 Hz), 2.86 (s, 2H), 2.68-2.63 (m, 2H), 1.92-1.74 (m, 6H), 1.69 (s, 3H), 1.61(s, 3H), 1.53 (s, 3H), 1.36-1.20 (m, 8H), 1.13-1.02 (m, 4H), 0.98 (s, 6H), 0.77 (d,
- ⁶⁰ 3H, J= 6.3 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 134.6, 129.9, 128.8, 126.5, 124.1, 124.0, 59.4, 59.2, 55.5, 52.8, 39.6, 36.0, 36.0, 35.5, 33.1, 32.5, 31.6, 30.8, 30.4, 30.2, 29.9, 28.6, 25.1, 24.7, 24.5, 18.5, 17.4, 16.6, HRMS calculated for C₂₅H₄₄N⁺: [M+H]⁺ 358.34738, found [M+H]⁺ 358.3474.

65 References

- 1 (a) E. Breitmaier, *Terpenes: Flavors, Fragrances, Pharmaca, Pheromones*, Wiley-VCH Verlag, Weinheim, 2006. (b) J. Gershenzon and N. Dudareva, *Nat. Chem. Biol.*, 2007, **3**, 408. (c) S. Zwenger and C. Basu, *Biotechnol. Mol. Biol. Rev.*, 2008, **3**, 1.
- ⁷⁰ 2 (a) L. Ružička, Nobel Lecture, 1945. (b) Current Topics in Flavours and Fragrances, K. A. D. Swift Ed., Kluwer Acad. Pub. Dordrecht, 1999. (c) P. Kraft, J. A. Bajgrowicz, C. Denis and G. Fráter, Angew. Chem. Int. Ed., 2000, **39**, 2980. (d) M. Séquin, The Chemistry of Plants : Perfumes, Pigments, and Poisons, 75 Royal Society of Chemistry, Cambridge, 2012.
- 3 Selected references : (*a*) A. M. Janssen, J. J. C. Scheffer and A. Baerheim Svendsen, *Planta Med.*, 1987, **53**, 395. (*b*) K. A. Hammer, C. F. Carson and T. V. Riley, *J. Appl. Microbiol.*, 2003, **95**, 853. (*c*) T. J. Maimone and P. S. Baran, *Nat. Chem. Biol.*,
- ⁸⁰ 2007, **3**, 396. (*d*) T. Suzuki, A. Sazaki, N. Egashira and S. Kobayashi, *Angew. Chem. Int. Ed.*, 2011, **123**, 9343.

4 (a) A. Corma, S. Iborra and A. Velty, *Chem. Rev.*, 2007, **107**, 2411. (b) A. Behr and L. Johnen, *ChemSusChem*, 2009, **2**, 1072.

- 5 (a) G. Hüppi, W. DeSilva and G. Ryser, 1979, USPatent 85 4,139,367.
- 6 (a) P. A. Wilbon, F. Chu and C. Tang, *Macromol. Rapid. Commun.*, 2013, **34**, 8. (b) M. Morton, Elastomers, Synthetic, Survey. John Wiley & Sons, New York 2000.
- 7 (a) D. Crich and A. Banerjee, Acc. Chem. Res., 2007, 40, 151
 90 (b) K. A. Gallagher, W. Fenical and P. R. Jensen, Curr. Opin. Biotechnol., 2010, 21, 794. (c) K. Takada, H. Kajiwara and N. Imamura, J. Nat. Prod., 2010, 73, 698. (d) J. K. Cho, Y. B. Ryu, M. J. Curtis-Long, H. W. Ryu, H. J. Yuk, D. W. Kim, H. J. Kim, W. S. Lee and K. H. Park, Bioorg. Med. Chem., 2012, 20, 2595.
 95 (e) Z. Xu, M. Baunach, L. Ding and C. Hertweck, Angew. Chem. Int. Ed., 2012, 51, 10293.
- 8 (*a*) A.-U. Rahman and M.I. Choudhary, *Nat. Prod. Rep.*, 1995, **12**, 361 (*b*) A.–U. Rahman and M. I. Choudhary, *Nat. Prod. Rep.*, 1999, **16**, 619. (*c*) Z. U. Babar, A. Ata and M. H. Meshkatalsadat,
- ¹⁰⁰ Steroids, 2006, **71**, 1045. (d) K. P. Devkota, B. N. Lenta, P. A. Fokou and N. Sewald, *Nat. Prod. Rep.*, 2008, **25**, 612. (e) F. –P.

Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36982J

Downloaded by University of Sussex on 20 January 2013

Wang, Q. –H. Chen and X.–Y. Liu, *Nat. Prod. Rep.*, 2010, **27**, 529. (*f*) E. C. Cherney and P. S. Baran, *Isr. J. Chem.*, 2011, **51**, 391. (*g*) R. Vallakati and J. A. May, *J. Am. Chem. Soc.*, 2012, **134**, 6936.

- ⁵ 9 (a) M. A. Reed, D. Weaver, S. Sun, A. McLellan and E. Eru, WO 2012/034232 A1, (b) A. Kaouas, H. Renes and C. Winkel, WO 2010/0946679 A1. (c) O. K. Onajole, Y. Coovadia, H. G. Kruger, G. E. M. Maguire, M. Pillay and T. Govender, *Eur. J. Med. Chem.*, 2012, **5**, 1.
- ¹⁰ 10(*a*) T. Narender, G. Madhur, Dharamsheela, K.P. Reddy, S. Sarkar, J. Sarkar and R. K. Triphati, *Synlett*, 2011, 1687. (*b*) M. G. Speziali and A. L. Monteiro, *Synthesis*, 2012, 44, 3505.
- 11 (a) W. Keim and M. Röper, J. Org. Chem., 1981, 46, 3702.
 (b) K. Tani, T. Yamagata, S. Akutagawa, H. Kumobayashi, T.
- ¹⁵ Taketomi, H. Takaya, A. Miyashita, R. Noyori and S. Otsuka, J. Am. Chem. Soc., 1984, 106, 5208.
 12 (a) C.L. Kranemann and P. Eilbracht, Synthesis, 1998, 71. (b) C. S. Graebin, V. L. Eifler-Lima and R. G. da Rosa, Catal. Commun., 2008, 9, 1066.
- ²⁰ 13 Selected reports : (a) I. D. G. Watson and A. K. Yudin, *J. Am. Chem. Soc.*, 2005, **127**, 17516. (b) D. H. Nguyen, M. Urrutigoïty,
 A. Fihri, J.-C. Hierso, P. Meunier and P. Kalck, *Appl. Organometal.Chem.*, 2006, **20**, 845.
- 14 (a) P. Andersson and I. M. Munslow Modern Reduction
 25 Methods, 2008, Wiley-VCH Weinheim. (b) T. C. Nugent and M. El-Shazly, Adv. Synth. Catal., 2010, 352,753.
 15 Selected transformations : (a) E. Wenkert, E. C. Angell, V. F. Ferreira, E. L. Michelotti, S. R. Piettre, J.-H. Sheu and C. S. Swindell, J. Org. Chem., 1986, 51, 2343. (b) M. Kimura, M.
- ³⁰ Futamata, R. Mukai and Y. Tamaru, J. Am. Chem. Soc., 2005, 127, 4592. (c) I. Usui, S. Schmidt, M. Keller and B. Breit, Org. Lett., 2008, 10, 1207. (d) B. M. Trost, S. Malhotra and W. H. Chan, J. Am. Chem. Soc., 2011, 133, 7328. (e) B. Sundararaju, M. Achard, B. Demerseman, L. Toupet, G. V. M. Sharma and C.
 ³⁵ Bruneau, Angew. Chem. Int. Ed., 2010, 49, 2782.
- 16 (a) B. Sundararaju, Z. Tang, M. Achard, G. V. M. Sharma, L. Toupet and C. Bruneau, *Adv. Synth. Catal.*, 2010, **352**, 3141. (b)
 T. Boudiar, Z. Sahli, B. Sundararaju, M. Achard, Z. Kabouche, H. Doucet and C. Bruneau, *J. Org. Chem.*, 2012, **77**, 3674. (c) B.
- ⁴⁰ Sundararaju, M. Achard, G. V. M. Sharma, C. Bruneau, *J. Am. Chem. Soc.*, 2011, **133**, 10340. (*d*) K. Yuan, F. Jiang, Z. Sahli, M. Achard, T. Roisnel and C. Bruneau, *Angew. Chem. Int. Ed.*, 2012, **51**, 8876.
- 17 (a) P. L. deBenneville and J. H. Macartney, J. Am. Chem.
- ⁴⁵ Soc., 1950, **72**, 3073 . (b) G. Musumarra and C. Sergi, *Heterocycles*, 1994, **37**, 1033. (c) M. Christmann, *Angew. Chem. Int. Ed.*, 2010, **49**, 9580.

18 Selected recent related metal-catalyzed reductive aminations with formic acid : (a) M. Kitamura, D. Lee, S. Hayashi, S.

⁵⁰ Tanaka and M. Yoshimura, J. Org. Chem., 2002, **67**, 8685. (b) R. Kadyrov and T. H. Riermeier, Angew. Chem. Int. Ed., 2003, **42**, 5472. (c) Y.-B. Huang, J. -J. Dai, X.-J. Deng, Y.-C. Qu, Q.-X. Guo and Y. Fu, ChemSusChem, 2011, **4**, 1578.

19 Z. Sahli, B. Sundararaju, M. Achard and C. Bruneau, *Org.* 55 *Lett.*, 2011, **13**, 3964;

20 Reviews : (a) Y. Ishii and S. Sakaguchi, *Bull. Chem. Soc. Jpn.*, 2004, 77, 909. (b) K.-I. Fujita and R. Yamaguchi, *Synlett*, 2005, 560. (c) G. Guillena, D. J. Ramón and M. Yus, *Angew.*

Chem. Int. Ed., 2007, 46, 2358. (d) M. H. S. A. Hamid, P. A.
⁶⁰ Slatford and J. M. J. Williams, Adv. Synth. Catal., 2007, 349, 1555. (e) G. W. Lamb and J. M. J. Williams, Chim. Oggi 2008, 26, 17. (f) T. D. Dixon, M. K. Whittlesey and J. M. J. Williams, Dalton Trans., 2009, 753. (g) G. E. Dobereiner and R. H. Crabtree, Chem. Rev., 2010, 110, 681. (h) G. Guillena, D. J.

- ⁶⁵ Ramón and M. Yus, *Chem. Rev.*, 2010, **110**, 1611. (*i*) R. Yamaguchi, K. -I. Fujita and M. Zhu, *Heterocycles*, 2010, **81**, 1093. (*j*) Y. Obora and Y. Ishii, *Synlett*, 2011, 30. (*k*) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, *ChemCatChem*, 2011, **3**, 1853.
- ⁷⁰ 21 H. Bilel, N. Hamdi, F. Zagrouba, C. Fischmeister and C. Bruneau, *Green Chem.*, 2011, **13**, 1448.