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ABSTRACT: The Taxol core was prepared in five steps via a key copper-catalyzed asymmetric conjugate addition trapping
sequence. The use of a bromodiene-derived alkylzirconium nucleophile followed by trapping with POCl3/DMF gave a highly
functionalized intermediate featuring a quaternary center in 69% yield with 92% ee. After 1,2-addition, Suzuki−Miyaura cross-
coupling, allylic oxidation, and a type II intramolecular Diels−Alder reaction, the taxol core was obtained in 11% overall yield with
92% ee.

Taxol 1 (trademarked as paclitaxel) is a multibillion dollar
anticancer drug. In the past, interest in this molecule

stemmed from solving an issue of supply; Taxol was only
available in appreciable quantities from the Yew tree, and
harvesting from such a source was not sustainable.1a A
significant effort was devoted toward the chemical synthesis
of 1, and many advances in organic chemistry were made by
groups attempting to solve this challenging problem.1b−j

A recent strategy for the synthesis of terpenes proposed by
Baran and coworkers involves first constructing the carbon-
based framework of the molecule, followed by the installation
of functional groups via a series of late-stage oxidations to give
the target.2a−c Using this approach, oxidized taxanes, including
Taxol itself, were prepared by the combination of a “cyclase”
phase to form the carbon skeleton, followed by an “oxidase”
phase to adjust the final oxidation state of the molecule
(Scheme 1A).2d,e Thus the cyclase phase was implemented to
provide Taxadiene 2 in seven steps in 20% overall yield. The
brevity in the synthesis of 2 arises from two key features
(Scheme 1B): the use of a type II intramolecular Diels−Alder
reaction to prepare the A/B rings of 3, a strategy shared by
Shea and others to prepare taxane derivatives,3 and a catalytic
asymmetric conjugate addition (ACA) for the formation of 4
using Alexakis’s protocol for Me addition.4

The latter of these tactics was the main inspiration for this
project, and we wondered if we could add fragments more
complex than simple alkyl units such as methyl (Scheme 1C).
The nucleophiles traditionally used in ACAs (organozinc,
organoaluminum, and Grignard reagents)5 are limited to only
very simple coupling partners. Furthermore, the use of these
organometallic reagents imposes limits on which functional
groups can be used and the applicability of these procedures in

complex molecule synthesis. In 2013, we reported the
formation of quaternary stereogenic centers6 by ACA of
alkylzirconium reagents7 to enones.8 The transformations are
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Scheme 1. (A) Synthesis of (+)-Taxadiene by Baran and
Coworkers and (B) This Work
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catalyzed by copper−phosphoramidite complexes, and the
alkyl zirconocenes are generated in situ from alkenes and
Cp2ZrHCl via hydrometalation. Alkylzirconium reagents, when
used in this fashion, can mitigate the aforementioned
shortcomings of traditional nucleophiles because they are
more tolerant toward functional groups. We hoped to use an
appropriate fragment in the synthesis of the taxol core, but the
precise choice of the precursor alkene was not immediately
obvious. Also, it is more common than not that ACAs are
sensitive to the solvent, temperature, concentration, method of
addition, and presence of additives.5

In an approach that would have closely follow Baran’s route
to the core, conjugated triene 59 was added to 6 (Scheme 2).

Despite extensive optimization, 7 could be obtained in only
14% yield with 80% ee. Although disappointing, no side
products that would result from hydrozirconation at the di- or
tetrasubstituted olefins were observed, and we postulated that
the low yield was due to the size of the polyene.
In our search for an alkene with a smaller steric profile, we

encountered bromodiene 910 first reported by Takahashi and
coworkers. 9 was prepared from 3-methylcrotonaldehyde via
bromination to the corresponding bromoaldehyde followed by
Peterson olefination and could easily be made on a decagram
scale. (See the Supporting Information for more details.)
The ACA of 9 to 6 was examined, and it was found that the

phosphoramidite ligand has a tremendous effect on the
enantioselectivity of this reaction (Table 1). L1 and L2 have

both been used extensively in similar transformations6a,7 but
gave poor enantioselectivities for our system. To our delight,
L3,6a developed in our group and used in other challenging
transformations,8e,11−13 was found to give the best yield/ee
combination and is easily prepared. The investigation of
different counterions (BF4, SbF6, OTf, PF6, ClO4) indicated
that NTf2 gave superior yields and enantioselectivity. Previous
experiments in the group showed that using dichloromethane
as a solvent was often beneficial. The use of a chlorinated
cosolvent gave better enantioselectivity but lower yields. With
hydrocarbon or ethereal cosolvents, higher yields but lower ee
values were observed.
Upon scale-up (to 3 mmol of 6), the reaction performed

better, and the product could be obtained in 96% yield with
88% ee. ACAs of alkylzirconium nucleophiles often work better
when scaled up; this effect is attributed to the fact that it is
easier to measure and mix the reaction components on larger
scales, and larger scales minimize the impact of trace air and
moisture.
Having demonstrated that 9 could reliably be added to 6, we

next turned our attention to the preparation of a suitable
intermediate for the synthesis of the desired product. The
trapping of zirconium enolates is a challenging problem,14 and
we recently reported trapping reactions using the Vilsmeier−
Haack reagent to give β-chloroaldehydes from our ACA
zirconium enolates.15 It was found that this trapping protocol
also worked for our substrate; using 16.5 mmol of 6, 3.6 g of
11 (corresponding to 69% yield) could be obtained with 92%
ee, requiring minimal modification (Scheme 3, steps a and b).
(See the Supporting Information for optimization.)

To complete the synthesis, allylic alcohol 12 was obtained
from the 1,2-addition of vinylmagnesium bromide to 11. Then,
standard Suzuki−Miyaura conditions with isopropenyl boronic
acid pinacol ester gave triene 13 in 59% yield.16 The final two
steps of the synthesis proved to be problematic. Triene 13 was
found to be unstable under various oxidation conditions. (See
the Supporting Information.) Eventually, it was found that the
use of Dess−Martin periodinane with one equivalent of water
gave good results. Without water, an allylic transposition
product was observed in appreciable quantities.17

Scheme 2. Preparation of Intermediate 7 Using ACA of
Triene 5a

a(a) Vinylmagnesium bromide (1.3 equiv), ZnBr2 (2.0 equiv), PdCl2·
dppf (0.020 equiv), THF, 0 °C to rt, 6.5 h, 49%. (b) ee determined by
SFC or HPLC. Abbreviations: dppf = 1,1′-bis(diphenylphosphino)-
ferrocene.

Table 1. Optimization of Key ACA Conjugate Addition
Stepa

entry L cosolvent yield (%)b ee (%)c

1 1 MTBE 70 6
2 2 MTBE 63 18
3 3 MTBE 81 82
4 3 DCE 45 90
5 3 PhMe 71 88

aReactions were performed on a 0.5 mmol scale using 2.4 equiv of 9.
bIsolated yields. cee values were determined by SFC or HPLC analysis
using a chiral nonracemic stationary phase.

Scheme 3. Completion of the Synthesisa

a(a) Cp2ZrHCl (1.9 equiv), CuCl/L3 (0.08 equiv), DCE/CH2Cl2, rt,
17 h; then, POCl3/DMF (10 equiv), DCE, 60 °C, 1 h, 69%, 92% ee.
(b) Vinylmagnesium bromide (1.2 equiv), Et2O, 0 °C, 1 h, 87%. (c)
Isopropenylboronic acid pinacol ester (1.1 equiv), PdCl2(PPh3)2/
dppf (0.10 equiv), K3PO4 (3.0 equiv), DMF, 65 °C, 17 h, 59%. (d)
Dess−Martin periodinane (1.2 equiv), H2O (0.50 equiv), CH2Cl2, rt,
30 min, undesired/desired 1:10, 90%. (e) TiCl4 (1.1 equiv), slow
addition, CH2Cl2, −35 °C, 6 h, 35%, 1:1 d.r., 92% ee. Abbreviations:
DCE = 1,2-dichloroethane, dppf = 1,1′-bis(diphenylphosphino)-
ferrocene.

Organic Letters pubs.acs.org/OrgLett Letter

https://dx.doi.org/10.1021/acs.orglett.0c01165
Org. Lett. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c01165/suppl_file/ol0c01165_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c01165/suppl_file/ol0c01165_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c01165/suppl_file/ol0c01165_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01165?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01165?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01165?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01165?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01165?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01165?fig=sch3&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c01165?ref=pdf


For the Diels−Alder reaction, we investigated a number of
different conditions spanning both thermal and Lewis-acid-
promoted transformations. (See the Supporting Information.)
Although the conditions reported by Baran and coworkers
(3.65 equiv of BF3·Et2O, slow addition at 0 °C)2a gave trace
product (10% yield, 1:1 d.r., 92% ee), our substrate, being
structurally different from that employed by Baran and
coworkers, required extensive screening to reach an acceptable
yield. The best results were obtained via the slow addition of
the substrate to a dilute and cold (−35 °C) solution of the
Lewis acid, which furnished 15 in 35% yield as a 1:1 mixture of
diastereomers at C1 and 92% ee.
One might assume that quaternary stereocenter C8 is

responsible for the stereoinduction at C1 and that the poor
diastereoselectivity is a result of the remoteness of C8. In the
Diels−Alder reaction to form 2, Baran and coworkers observed
a diastereomeric ratio of 2:1 (desired/undesired) at C3 in the
cyclization precursor, which corresponded to an identical ratio
at C1 in the product.2a While these centers are α to carbonyls,
this may suggest that C3 is responsible for the diastereose-
lectivity, and we note that 14 lacks a C3 stereocenter.
In conclusion, the Taxol core was prepared in five steps from

commercially available 3-methyl-2-cyclohex-2-ene-1-one 6 in
11% yield with 92% ee. The key step employed a hydro-
metalation ACA/trapping sequence of functionalized alkene 9
to furnish unsaturated β-chloroaldehyde 11 in high enantio-
meric excess. Further elaboration of this intermediate to the
ketone was accomplished via an addition, cross-coupling, and
oxidation sequence. Finally, an intramolecular Diels−Alder
reaction simultaneously formed the A and B rings to deliver
the Taxol core. We believe that this work highlights the
benefits of using organozirconium nucleophiles in asymmetric
addition reactions for total synthesis and related applications.
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