1,1-Carboboration Reactions of Strongly Electrophilic 2-Borylethyl Thioethers

Christina Eller, Bastian Billmann, Constantin G. Daniliuc^{\$}, Gerald Kehr, and Gerhard Erker

Organisch-chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany

\$ X-Ray crystal structure analyses

Reprint requests to Prof. Dr. G. Erker. Fax: +49-251-8336503. E-mail: erker@uni-muenster.de

Z. Naturforsch. **2014**, *69b*, 1357 – 1364 / DOI: 10.5560/ZNB.2014-4190 Received August 22, 2014

Dedicated to Professor Hubert Schmidbaur on the occasion of this 80th birthday

The RSCH₂CH₂B(C₆F₅)₂ boranes **3a** (R = Ph) and **3b** (R = Et) were *in situ* generated by HB(C₆F₅)₂ hydroboration of the respective vinylthioethers. Their treatment with R¹-C≡C-SiMe₃ acetylenes resulted in clean 1,1-carboboration to give the respective RSCH₂CH₂-substituted alkenylboranes **4** (3 examples). Likewise, the reagents **3** underwent 1,1-carboboration with the acetylenes Ar₂P-C≡C-SiMe₃ to give the tetrasubstituted alkenylboranes **6**, featuring a geminal pair of RSCH₂CH₂/B(C₆F₅)₂ substituents at one carbon atom and the Me₃Si/PAr₂ pair at the other (3 examples). The compounds **6** feature an internal B…P interaction. The conceptually related Mes₂PCH₂CH₂B(C₆F₅)₂ borane (**2**) does not undergo 1,1-carboboration with ArS-C≡C-SiMe₃ but forms the 1,2-P/B-FLP addition product **7** to the acetylene instead. Compounds **4a**, **4c**, **6a**, and **7** were characterized by X-ray diffraction.

Key words: Boron, Sulfur, Alkenylboranes, Frustrated Lewis Pairs (FLPs)

Introduction

The 1,1-carboboration of suitable alkynes is a good method for synthesizing alkenylboranes [1-3]. The method is especially well suited for making alkenylboranes with bulky substitution patterns [4]. The early development of this reaction ("Wrackmeyer reaction") relied on metal-containing migrating substituents on the alkyne (SiMe₃, SnR₃, PbR₃ and a few others) [5-8]; lately the use of very electrophilic boranes containing the $B(C_6F_5)_2$ group greatly widened the scope of the 1,1-carboboration reaction [9, 10], now featuring H [11] and even alkyl or aryl groups as migrating substituents [12]. It had been shown that PAr₂ [13] and even SR groups [14] migrated in these "advanced" 1,1-carboboration reactions, which made it a useful tool for *e*. *g*. phosphole [15] and even borole synthesis [16].

We had recently shown that the 1,1-carboboration reaction can be used for attaching functional groups at the newly formed alkenylborane. Two typical examples are depicted in Scheme 1, namely the formation of the dienylborane 1a by the selective transfer of an alkenyl group from boron to the acetylenic carbon [17] and the synthesis of a doubly PAr₂-substituted "frustrated Lewis pair" 1b by CH₂-CH₂-PMes₂ transfer [18]. We have now employed a small series of RSCH₂CH₂-substituted boranes as reagents carrying out the 1,1-carboboration reactions of two trimethylsilyl-substituted alkynes.

© 2014 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 2.

This made the respective RS–CH₂CH₂-substituted alkenylboranes readily available. Their preparation and characterization will be described in this article.

Results and Discussion

We had previously described the reaction of phenyl vinylsulfide with Piers' borane $[HB(C_6F_5)_2]$. It gave the anti-Markovnikov hydroboration product 3a of the vinylsulfide functionality. The product 3a turned out to show an extremely low solubility; it is probably oligomeric, but it was amply identified by the formation of a variety of addition products and derivatives [19]. We have now generated the oligomeric S/B frustrated Lewis pair 3a in situ from PhS-vinyl and HB(C_6F_5)₂. After stirring the suspension for 30 min at r.t. in toluene we added phenyl(trimethylsilyl)acetylene and stirred the mixture overnight at 80 °C. Workup gave the product 4a as a colorless solid in 58% yield. The product was characterized by C, H elemental analysis, by NMR spectroscopy and X-ray diffraction. This identified it as a 1,1-carboboration product of the borane 3a with this acetylene. There are two stereoisomers possible, but we have only found one major isomer which was identified as the E-4a by NMR spectroscopy and X-ray diffraction (see Scheme 2 and Fig. 1).

Compound **4a** shows the typical ¹³C NMR low-field resonance of an alkenylborane = C2–[B] carbon atom (see Table 1). It features an ¹¹B NMR signal in the range of a tetracoordinated borane. Consistently, we observed a $\Delta \delta^{19} F_{m,p}$ chemical shift difference of the borane-bound C₆F₅ pair of substituents in an intermediate range between typical 3- and 4-coordinate values. Taken together these data point to a weakly coordinated PhS····B structural feature in compound 4a. This was confirmed by the X-ray crystal structure analysis of compound *E*-4a (see Fig. 1 and Table 3). It shows that the borane reagent 3a has added to the Me₃Si- $C\equiv$ carbon atom of the acetylene reagent and induced migration of the SiMe₃ group to its adjacent \equiv C-Ph acetylenic carbon atom to make room for the PhS–CH₂–CH₂- substituent for its migration from boron to carbon. The formation of the final product 4a then apparently profits from some internal stabilization by Ph-S···B coordination.

The *in situ*-formed S/B FLP **3a** was similarly trapped by 1-trimethylsilylhexyne to selectively give the 1,1-carboboration product **4b**. The reaction was carried out directly in $[D_8]$ toluene, and the product was not isolated but characterized from the reaction mixture. The NMR analysis showed that the major isomer was formed that had similar NMR data as compound **4a** (see Table 1).

We have also treated ethyl vinyl sulfide with $HB(C_6F_5)_2.$ The resulting suspension of the pre-

Table 1. Selected spectroscopic data of compounds 4a-c.

Compound	4a ^a	4b ^b	4c ^a
R[S]	Ph	Ph	C_2H_5
\mathbf{R}^1	Ph	n-C ₄ H ₉	Ph
δ^{13} C1	148.1	144.4	146.7
δ^{13} C2	158.4	156.4	158.4
$\delta^{13}C3$	42.3	38.7	38.9
δ^{13} C4	38.2	37.3	34.1
δ^{1} H(3)	3.05	2.94	2.69
δ^{1} H(4)	3.17	2.55	2.75
$\delta^{11}\mathrm{B}$	8.4	10.5	1.6
δ^{29} Si	-8.6	-6.8	-8.9
$\Delta \delta^{19} \mathbf{F}_{m,p}$	8.1	8.4	8.2/7.3

^a In CD₂Cl₂, 299 K; ^b in C₇D₈, 299 K.

Fig. 1. A view of the molecular structure of the 1,1carboboration product 4a (displacement ellipsoids are shown at the 50% probability level; H atoms as spheres with arbitrary radii).

sumably oligomeric hydroboration product (3b, see Scheme 2) was subsequently treated with phenyl(trimethylsilyl)acetylene (80 °C, overnight, toluene) to give the 1,1-carboboration product 4c as a colorless solid, isolated in 66% yield (characterized by C, H elemental analysis, by NMR spectroscopy, and by X-ray diffraction). It shows the typical spectroscopic and structural features of the C3-bridged internally S...B-coordinated S/B FLP product (see Tables 1 and 3 and Fig. 2).

We then treated the in situ-generated system 3a with a small series of diarylphosphino-(trimethylsilyl) acetylenes [aryl = phenyl (a), o-tolyl(b), mesityl (c)]. The reaction of 3a with Ph_2P- C=C-SiMe₃ at r.t. (10 min) in CD₂Cl₂ gave the P/B

Fig. 2. A view of the molecular structure of the 1,1carboboration product 4c (displacement ellipsoids are shown at the 50% probability level; H atoms as spheres with arbitrary radii).

adduct 5 (Scheme 3). It was characterized in situ by NMR (¹¹B: $\delta = -8.7$; ³¹P: $\delta = -1.1$; ²⁹Si: $\delta -14.0$; $\Delta \delta^{19}$ F _{m,p} = 6.0 ppm; for further details including the depicted NMR spectra see the Supporting Information available online; see note at the end of the paper for availability). We then generated compound 3a in situ in toluene (r. t., 60 min) and treated the resulting suspension with Ph₂P–C≡C–SiMe₃ (80 °C overnight). Workup eventually gave the product **6a** as a colorless powder in 36% yield (Scheme 3). Single crystals of compound **6a** suitable for its characterization by X-ray diffraction were obtained by slow crystallization from pentane at -32 °C. The X-ray crystal structure analysis has confirmed that the product **6a** had been formed by a selective 1,1-carboboration reaction (see Fig. 3).

Scheme 3.

1359

Fig. 3. A view of the molecular structure of the 1,1-carboboration product **6a** (displacement ellipsoids are shown at the 30% probability level; H atoms as spheres with arbitrary radii).

It shows that both the $B(C_6F_5)_2$ group and its former PhSCH₂-CH₂ substituent are now formally attached at the former acetylenic carbon atom C2. We assume that it was the SiMe₃ group that had consequently migrated along the acetylenic core C₂ framework to become attached at C1, geminally oriented to the PPh₂ substituent. The tetracoordinated C=C double bond of the product **6a** is found *E*-configurated. It features a marked B····P interaction (see Fig. 3).

The NMR features indicate an analogous structure of compound **6a** in solution (CD₂Cl₂, 299 K, see Table 2). It features typical heteroatom NMR data of an internal B–P-coordinated system. The ¹¹B NMR chemical shift and the $\Delta \delta^{19} F_{m,p}$ NMR chemical shift difference at the C₆F₅ substituents indicate a stronger internal Lewis acid and Lewis base interaction in the P/B compound **6a** than it was observed for the related S/B systems **4** (see above).

We also prepared the closely related P/B products **6b** $[P(o-tolyl)_2]$ and **6c** $(PMes_2)$ by the 1,1carboboration reactions of the *in situ*-generated S/B system **3a** with $(o-tolyl)_2P-C\equiv C-SiMe_3$ or $Mes_2P-C\equiv C-SiMe_3$ and isolated the products in 48% (**6b**) and 34% (**6c**) yield. Both compounds showed similar NMR spectra to those of **6a** (see Table 2) indicating similar structures with internal $P\cdots B$ coordination (for details see Table 2 and the Supporting Information).

Eventually we treated the P/B FLP **2** (see Scheme 1) with the acetylene (p-tolyl)S-C=C-SiMe₃

Table 2. Selected spectroscopic data of compounds **6a**–**c**^a.

Compound	6a ^b	6b ^b	6c ^b
PAr ₂	PPh ₂	$P(o-tol)_2$	PMes ₂
δ^{13} C1	139.1	140.0	144.8
$^{1}J_{\mathrm{PC}}$	27.2	27.1	24.2
δ^{13} C2	205.6	202.1	196.5
C3	40.2	40.9	40.4
$^{3}J_{\rm PC}$	50.0	52.3	51.8
δ^{13} C4	32.8	33.0	32.6
δ^{1} H(3)	3.12	3.04	2.99
δ^{1} H(4)	2.88	2.91	2.83
$\delta^{11}\mathrm{B}$	-6.7	-2.7	0.5
δ^{29} Si	-10.8	-10.9	-10.0
$^{2}J_{\mathrm{PSi}}$	6.9	6.0	7.4
$\Delta \delta^{19} \mathrm{F}_{m,p}$	6.5	6.4	5.8

^a Chemical shifts as δ values in ppm, J in Hz; ^b in CD₂Cl₂, 299 K.

Table 3. Selected structural data of compounds 4a, 4c, and $6a^a$.

Compound	4a	4c	6a
R[S]	Ph	C_2H_5	Ph
\mathbb{R}^1	Ph	Ph	PPh ₂
C1-C2	1.353(2)	1.346(3)	1.359(3)
C2–C3	1.523(2)	1.522(3)	1.510(3)
C3–C4	1.526(2)	1.522(3)	1.533(3)
B1-S1	2.169(2)	2.112(2)	-
B1-P1	-	-	2.030(3)
$\Sigma \angle C1^{R1SiC}$	359.7	360.0	359.5
$\Sigma \angle C2^{CCB}$	360.0	359.9	360.0
$\Sigma \angle B1^{CCC}$	351.4	348.3	346.7
R1C1C2B1	178.6(1)	-175.7(2)	10.0(2)
C2-C3-C4-S1	-37.4(1)	-46.5(2)	-167.1(2)

^a Bond lengths in Å and angles in deg.

to learn whether the carboboration of the acetylene by the P/B system 2 can be achieved. The reaction was performed in pentane (r. t., 18 h) to eventually give the product 7 which we isolated in 47% yield as a colorless powder. Compound 7 was characterized by C, H elemental analysis, by X-ray diffraction and by NMR spectroscopy. The X-ray crystal structure analysis (single crystals were obtained by slow evaporation of a pentane solution at -32 °C) revealed that the product in this case was not formed by 1,1-carboboration, but the alkyne had added to the pair of heteroatoms of the P/B FLP 2 to form the respective six-membered heterocycle (see Scheme 4 and Fig. 4). This is a typical FLP addition product [20].

The X-ray crystal structure analysis characterized compound **7** as a zwitterionic phosphonium cation type with an internal borate anion formed by regioselective

Scheme 4.

Fig. 4. Molecular structure of compound **7** (displacement ellipsoids are shown at the 30% probability level; H atoms as spheres with arbitrary radii). Selected bond lengths (Å) and angles (deg): P1–C1 1.815(2), C1–C2 1.532(4), C2–B1 1.646(4), B1–C4 1.667(4), C4–C3 1.351(3), C3–P1 1.822(2); C2–B1–C4 109.3(2), C41–B1–C51 111.0(2), C1–P1–C3 106.3(1), C11–P1–C21 109.2(1), C3–S1–C31 106.0(1), P1–C1–C2–B1 –71.1(2), P1–C3–C4–B1 1.7(3), C3–P1–C1–C2 42.5(2).

alkyne addition to the P/B FLP **2**. The phosphonium moiety shows a distorted tetrahedral coordination geometry at phosphorus. Hindered rotation of the mesityl and C₆F₅ substituents gave rise to the ¹H NMR observation of two pairs of diastereotopic methylene hydrogen atoms of the bridging [P]–CH₂–CH₂–[B] ethylene moiety (for details see the Supporting Information). Compound **7** shows a typical borate ¹¹B NMR signal at $\delta = -12.4$ ppm and a typical phosphonium ³¹P NMR signal at $\delta = 5.1$ ppm.

Conclusion

The scope of the 1,1-carboboration reaction seems to be steadily increasing. With this study we have shown that we can use *in situ*-generated R^2 -B(C₆F₅)₂ FLPs with thioether-containing substituents [R^2 = PhSCH₂CH₂ or EtSCH₂CH₂] as reagents undergoing the 1,1-carboboration reaction with a small

series of trimethylsilyl-substituted alkynes to give the respective tetrasubstituted alkenylboranes 4 and 6. In these cases it is the RS-CH₂CH₂- substituent at the boron atom that selectively migrates from boron to carbon during the multi-rearrangement process. Quite surprisingly, only single geometric isomers of the compounds 4 were obtained, a reaction behavior that was markedly different from many of our earlier reported examples that were stereo-unselective [11]. At this time we do not have an ample explanation for this behavior. In the phosphorus-containing examples 6 it is probably the formation of the marked B-P interaction in the product that determines the selective formation of the E-alkenyl boranes. It seems that the formation of the addition product 7 marks a limiting situation where FLP addition to the alkyne has become favored over 1,1-carboboration.

Our examples of the selective formation of the RS–CH₂CH₂-substituted alkenylboranes by 1,1carboboration extends the scope of this method. It had been shown that related alkenylboranes obtained by the "advanced" $B(C_6F_5)_2$ -containing variation can undergo cross-coupling reactions to form the respective boron-free organic follow-up products easily. Other highly substituted alkenylboranes obtained by this method had been used as selective Lewis acid compounds in catalytic metal-free FLP hydrogenation reactions of electron-poor alkenes and alkynes.

Experimental Section

All syntheses involving air- and moisture-sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of argon.

The phosphanes were synthesized according to a modified literature procedure [21]. Bis(pentafluorophenyl)borane was synthesized according to a modified literature procedure [22, 23]. Phenylvinylsulfide and ethylvinylsulfide were purchased from Sigma Aldrich and TCI.

Preparation of compound 4a

Bis(pentafluorophenyl)borane (56.1 mg, 0.162 mmol, 1.0 eq.) in toluene (5 mL) was added to a solution of

phenylvinylsulfide (22.1 mg, 0.162 mmol, 1.0 eq.) in toluene (5 mL) to give a colorless suspension, which was stirred for 30 min at room temperature. Thereafter trimethylsilylphenylacetylene (28.3 mg, 31.8 µL, 0.162 mmol, 1.0 eq.) was added, and the light-yellow reaction mixture was stirred at 80 °C for overnight. Subsequently all volatiles were removed in vacuo, and pentane (5 mL) was added to the yellow residue. Then, immediately after the addition of pentane (5 mL), all volatiles were removed in vacuo, and pentane (5 mL) was added again to finally give a colorless precipitate. The supernatant solution of the suspension was removed, and the colorless solid was dried in vacuo to give compound 4a (61.4 mg, 0.094 mmol, 58%) as a colorless powder. Crystals suitable for the X-ray crystal structure analysis were obtained by slow evaporation of a dichloromethane solution of compound 4a at -32 °C. – C31H23BF10SSi: calcd. C 56.72 H 3.53; found C 56.33 H 3.33. – ¹H NMR (500 MHz, 299 K, CD₂Cl₂): δ = 7.35 (m, 1H, p-Ph^S), 7.31 (m, 2H, m-Ph), 7.23 (m, 2H, m-Ph^S), 7.17 (m, 1H, p-Ph), 7.11 (m, 2H, o-Ph^S), 6.96 (m, 2H, o-Ph), 3.17 (m, 2H, SCH₂), 3.05 (m, 2H, CH₂), -0.42 ppm (s, $^{2}J_{\text{SiH}} = 6.6 \text{ Hz}, 9\text{H}, \text{SiCH}_{3}$). $- {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR} (125 \text{ MHz}, 125 \text{ MHz})$ 299 K, CD₂Cl₂): $\delta = 158.4$ (br, BC=), 149.4 (*i*-Ph), 148.9 (dm, ${}^{1}J_{\text{FC}} \sim 240 \text{ Hz}, \text{ C}_{6}\text{F}_{5}$), 148.1 (br, = CSi), 141.0 (dm, $^{1}J_{FC} \sim 250$ Hz, C₆F₅), 137.5 (dm, $^{1}J_{FC} \sim 250$ Hz, C₆F₅), 130.7 (*p*-Ph^S), 130.5 (*i*-Ph^S), 130.0 (*o*-Ph^S), 129.5 (*m*-Ph^S), 128.4 (m-Ph), 127.3 (o-Ph), 125.2 (p-Ph), 116.9 (br, i- C_6F_5), 42.3 (CH₂), 38.2 (SCH₂), 0.2 ppm (¹J_{SiC} = 52.3 Hz, SiCH₃). -¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂): $\delta = 8.4 \text{ ppm} (v_{1/2} \sim 400 \text{ Hz}). - {}^{19}\text{F} \text{ NMR} (470 \text{ MHz}).$ 299 K, CD₂Cl₂): $\delta = -127.2$ (br, 2F, o-C₆F₅), -156.4 (tm, ${}^{3}J_{\text{FF}} = 20.5$ Hz, 1F, p-C₆F₅), -164.5 ppm (m, 2F, m-C₆F₅), $[\Delta \delta^{19}F_{m,p} = 8.1]$. $-{}^{29}\text{Si}\{^{1}\text{H}\}$ DEPT (99 MHz, 299 K, CD₂Cl₂): $\delta = -8.6$ ppm (v_{1/2} ~ 2 Hz).

Preparation of compound 4c

Bis(pentafluorophenyl)borane (80.0 mg, 0.231 mmol, 1.0 eq.) was dissolved in toluene (2 mL) and added to a solution of ethylvinylsulfide (20.4 mg, 0.231 mmol, 1.0 eq.) in toluene (10 mL). After the resulting suspension was stirred for 30 min trimethylsilylphenylacetylene (40.3 mg, 0.231 mmol, 1.0 eq.) was added. The brownish reaction mixture was stirred at 80 °C for overnight. Then all volatiles were removed in vacuo, and the obtained residue was extracted with pentane (5 mL) to give a colorless precipitate. The supernatant solution of the suspension was removed, and the residue was dried *in vacuo* to give the compound 4c as a colorless powder (66.2 mg). The supernatant solution was stored at -32 °C for 3 d to give a colorless solid (27.0 mg). The two solid fractions were combined to give compound 4c (93.2 mg, 0.153 mmol, 66%) as a colorless powder. Crystals suitable for the X-ray crystal structure analysis were obtained by slow evaporation of a dichloromethane solution of compound 4c at -32 °C. $-C_{27}H_{23}BF_{10}SSi$: calcd. C 53.30 H 3.81; found C 53.10 H 3.51. – ¹H NMR (600 MHz, 299 K, CD₂Cl₂): $\delta = 7.29$ (m, 2H, *m*-Ph), 7.15 (m, 1H, *p*-Ph), 6.92 (m, 2H, o-Ph), 2.75 (br, 2H, SCH2), 2.69 (m, 2H, CH2), 2.18 (q, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}$, 2H, CH^{Et}₂), 1.25 (t, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}$, 3H, CH₃^{Et}), -0.44 ppm (s, ${}^{2}J_{SiH} = 6.6$ Hz, 9H, SiCH₃). $- {}^{13}C{}^{1}H$ NMR (151 MHz, 299 K, CD₂Cl₂): $\delta = 158.4$ (br, BC=), 149.3 (*i*-Ph), 149.1 (dm, ${}^{1}J_{\text{FC}} \sim 240 \text{ Hz}, \text{ C}_{6}\text{F}_{5}$), 146.7 (=CSi), 140.9 (dm, ${}^{1}J_{\text{FC}} \sim 250 \text{ Hz}$, C₆F₅), 137.7 (dm, ${}^{1}J_{\text{FC}} \sim 250 \text{ Hz}, \text{ C}_{6}\text{F}_{5}$), 128.3 (*m*-Ph), 127.4 (br, *o*-Ph), 125.1 (p-Ph), 116.7 (br, i-C₆F₅), 38.9 (CH₂), 34.1 (SCH₂), 30.2 (CH₂^{Et}), 12.8 (CH₃^{Et}), 0.2 ppm (${}^{1}J_{SiC} = 52.3$ Hz, SiCH₃). – ¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): $\delta = 1.6$ ppm $(v_{1/2} \sim 350 \text{ Hz})$. – ¹⁹F NMR (564 MHz, 299 K, CD₂Cl₂): $\delta = -126.3, -127.9, -129.5$ (each br, $\Sigma 4F$, $o-C_6F_5$), -156.0, -156.9 (each br, each 1F, p-C₆F₅), -164.2 ppm (br, 4F, *m*-C₆F₅), $[\Delta \delta^{19}F_{m,p} = 8.2/7.3]. - {}^{29}Si\{{}^{1}H\}$ DEPT (119 MHz, 299 K, CD₂Cl₂): $\delta = -8.9$ ppm ($v_{1/2} \sim 1$ Hz)

Preparation of compound 6a

Bis(pentafluorophenyl)borane (56.1 mg, 0.162 mmol, 1.0 eq.) in toluene (2 mL) was added to a solution of phenylvinylsulfide (22.1 mg, 0.162 mmol, 1.0 eq.) in toluene (10 mL) to give a suspension which was stirred for 1 h at room temperature. Thereafter diphenylphosphino(trimethylsilyl)acetylene (45.7 mg, 0.162 mmol. 1.0 eq.) was added. The brownish/yellow reaction mixture was stirred at 80 $^\circ C$ for overnight. After cooling to room temperature all volatiles were removed in vacuo, and the obtained residue was dissolved in pentane (3 mL). Then all volatiles were removed in vacuo, and the resulting residue was dissolved in hexane (3 mL). The hexane solution was stored at -32 °C and after 4 days a colorless precipitate was formed. The precipitate was collected and dried in vacuo to give compound 6a (44.0 mg, 0.058 mmol, $36\,\%)$ as a colorless powder. Crystals suitable for the X-ray crystal structure analysis were obtained by slow evaporation of a pentane solution of compound 6a at -32 °C. - C₃₇H₂₈BF₁₀PSSi: calcd. C 58.18 H 3.69; found C 58.67 H 3.46. - ¹H NMR (500 MHz, 299 K, CD₂Cl₂): $\delta = 7.50$ (m, 2H, *p*-Ph^P), 7.38 (m, 4H, *m*-Ph^P), 7.31 (m, 4H, o-Ph^P), 7.27 (m, 2H, m-Ph^S), 7.24 (m, 2H, o-Ph^S), 7.19 (m, 1H, p-Ph^S), 3.12 (m, 2H, CH₂), 2.88 (m, 2H, SCH₂), 0.10 ppm (s, ${}^{2}J_{SiH} = 6.7$ Hz, 9H, SiCH₃). – ¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 205.6$ (br, BC=), 147.9 (dm, ${}^{1}J_{\text{FC}} = \sim 240 \text{ Hz}$, C₆F₅), 140.0 (dm, ${}^{1}J_{\text{FC}} = \sim 250 \text{ Hz}, \text{ C}_{6}\text{F}_{5}$), 139.1 (d, ${}^{1}J_{\text{PC}} = 27.2 \text{ Hz}, = \text{CP}$), 137.3 (dm, ${}^{1}J_{\text{FC}} = \sim 250 \text{ Hz}$, C₆F₅), 136.2 (*i*-Ph^S), 132.3 (d, ${}^{2}J_{\text{PC}} = 9.1 \text{ Hz}$, *o*-Ph^P), 131.8 (d, ${}^{4}J_{\text{PC}} = 2.7 \text{ Hz}$, *p*-Ph^P), 130.1 (*o*-Ph^S), 129.2 (*m*-Ph^S), 129.1 (d, ${}^{3}J_{PC} = 10.3$ Hz, *m*-Ph^P), 126.9 (d, ${}^{1}J_{PC} = 39.3 \text{ Hz}$, *i*-Ph^P), 126.7 (*p*-Ph^S), 116.9

Brought to you by | Rutgers University Authenticated Download Date | 6/1/15 3:23 PM (br, *i*-C₆F₅), 40.2 (br d, ${}^{3}J_{PC} = 50.0$ Hz, CH₂), 32.8 (SCH₂), 0.1 ppm (d, ${}^{1}J_{SiC} = 53.3$ Hz, ${}^{3}J_{PC} = 2.2$ Hz, SiCH₃). – ${}^{11}B{}^{1}H{}$ NMR (160 MHz, 299 K, CD₂Cl₂): $\delta = -6.7$ ppm ($v_{1/2} \sim 200$ Hz). – ${}^{19}F$ NMR (470 MHz, 299 K, CD₂Cl₂): $\delta = -130.1$ (m, 2F, *o*-C₆F₅), -158.4 (t, ${}^{3}J_{FF} = 20.2$ Hz, 1F, *p*-C₆F₅), -164.9 ppm (m, 2F, *m*-C₆F₅), [$\Delta\delta^{19}F_{m,p} = 6.5$]. – ${}^{29}Si{}^{1}H{}$ DEPT (99 MHz, 299 K, CD₂Cl₂): $\delta = -10.8$ ppm (d, ${}^{2}J_{PSi} = 6.9$ Hz). – ${}^{31}P{}^{1}H{}$ NMR (202 MHz, 299 K CD₂Cl₂): $\delta = 14.3$ ppm ($v_{1/2} \sim 100$ Hz).

Preparation of compound 7

Dimesitylvinylphosphane (48.0 mg, 0.162 mmol, 1.0 eq.) and bis(pentafluorophenyl)borane (56.1 mg, 0.162 mmol, 1.0 eq.) were dissolved in pentane (4 mL) and stirred 30 min at room temperature. Then ptolyl[(trimethylsilyl)ethynyl]sulfide (35.7 mg, 0.162 mmol, 1.0 eq.) was added. Immediately the reaction mixture turned yellow, and a colorless solid precipitated. Stirring of the suspension was continued for overnight. Subsequently the supernatant solution was removed, and the resulting residue was washed with pentane (5 mL). The obtained colorless solid was dried in vacuo to give compound 7 (65.5 mg, 0.076 mmol, 47%) as a colorless powder. Crystals suitable for the X-ray crystal structure analysis were obtained from a pentane solution of compound 7 at -32 °C. – C44H42BF10PSSi: calcd. C 61.26 H 4.91; found C 59.45 H 4.45. – ¹H NMR (500 MHz, 299 K, C₆D₆): $\delta = 6.82$ (m, 2H, o-Tol), 6.65 (d, ${}^{4}J_{PH} = 2.3$ Hz, 1H, m-Mes^a), 6.43 (m, 2H, *m*-Tol), 6.38 (d, ${}^{4}J_{PH} = 2.9$ Hz, 1H, *m*'-Mes^a), 6.08 (s, 1H, *m*-Mes^b), 5.87 (d, ${}^{4}J_{PH} = 3.2$ Hz, 1H, *m*'-Mes^b), 2.99 (s, 3H, o-CH₃^{Mes,a}), 2.89, 2.15 (each m, each 1H, PCH₂), 1.90 (s, 3H, p-CH₃^{Mes,a}), 1.89 (s, 3H, p-CH₃^{Tol}), 1.86 (s, 3H, o-CH₃^{Mes,b}), 1.85 (s, 3H, o'-CH₃^{Mes,b}), 1.76, 1.57 (each m, each 1H, BCH₂), 1.66 (s, 3H, p-CH₂^{Mes,b}), 1.45 (s, 3H, o'-CH₃^{Mes,a}), 0.39 ppm (s, 9H, SiCH₃). -¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): $\delta = 226.0$

(br, BC=), 144.7 (d, ${}^{2}J_{PC} = 7.2 \text{ Hz}$, *o*-Mes^b), 144.3 (d, $^{2}J_{PC} = 7.6 \text{ Hz}, o\text{-Mes}^{a}$), 142.4 (d, $^{4}J_{PC} = 7.9 \text{ Hz}, p\text{-Mes}^{b}$), 142.3 (d, ${}^{4}J_{PC} = 7.8 \text{ Hz}$, *p*-Mes^a), 141.8 (d, ${}^{2}J_{PC} = 12.9 \text{ Hz}$, o'-Mes^b), 140.5 (d, ²J_{PC} = 10.0 Hz, o'-Mes^a), 135.1 (p-Tol), 134.4 (*i*-Tol), 132.3 (d, ${}^{3}J_{PC} = 10.6$ Hz, *m*-Mes^a), 132.2 (d, ${}^{3}J_{PC} = 10.3$ Hz, *m*-Mes^b), 131.9 (d, ${}^{3}J_{PC} = 10.8$ Hz, *m*'-Mes^a), 131.7 (d, ${}^{3}J_{PC} = 11.2$ Hz, *m*'-Mes^b), 128.5 (*m*-Tol), 127.4 (*o*-Tol), 125.1 (d, ${}^{1}J_{PC} = 76.3$ Hz, *i*-Mes^a), 120.5 (d, ^{127.+} (*o*-101), ^{125.1} (d, $J_{PC} = 70.5 \text{ Hz}$, *t*-Mes⁻), ^{120.5} (d, ¹ $J_{PC} = 76.6 \text{ Hz}$, *i*-Mes^b), ^{117.0} (d, ¹ $J_{PC} = 58.8 \text{ Hz}$, $PC=)^{\text{t}}$, ^{29.0} (d, ¹ $J_{PC} = 41.6 \text{ Hz}$, PCH₂), ^{24.9} (d, ³ $J_{PC} = 5.4 \text{ Hz}$, *o*'-CH₃^{Mes,b}), ^{24.5} (d, ³ $J_{PC} = 3.4 \text{ Hz}$, *o*-CH₃^{Mes,b}), ^{23.4} (d, ³ $J_{PC} = 4.7 \text{ Hz}$, *o*'-CH₃^{Mes,a}), ^{22.9} (br, *o*-CH₃^{Mes,a}), ^{20.7} (*p*-CH₃^{Tol}), ^{20.6} (*p*-CH₃^{Mes,a}), ^{20.3} (*p*-CH₃^{Mes,b}), ^{15.5} (br, PCU), ²¹ $J_{PC} = 4.7 \text{ Hz}$, ³¹ $J_{PC} = 5.4 \text{ Hz}$, ³² $J_{PC} = 5.4 \text{ Hz}$, ³² $J_{PC} = 5.4 \text{ Hz}$, ³² $J_{PC} = 5.4 \text{ Hz}$, ³³ $J_{PC} = 5.4 \text{ Hz}$, ³⁴ $J_{PC} = 5.4 \text{ Hz}$, ³⁴ $J_{PC} = 5.4 \text{ Hz}$, ³⁵ $J_$ BCH₂), 3.1 ppm (SiCH₃), [C₆F₅ not listed; ^t tentative assignment]. $- {}^{11}B{}^{1}H{}$ NMR (160 MHz, 299 K, C₆D₆): $\delta = -12.4 \text{ ppm} (v_{1/2} \sim 60 \text{ Hz}). - {}^{19}\text{F} \text{ NMR} (470 \text{ MHz},$ 299 K, C₆D₆): $\delta = -124.0, -127.0, -128.4, -128.9$ (each br, each 1F, o-C₆F₅), -160.29 (t), ${}^{3}J_{\text{FF}} = 20.8$ Hz), -160.34 (t, ${}^{3}J_{\text{FF}} = 21.1$ Hz) (each 1F, p-C₆F₅), -164.1 $(2F), -165.3 (1F), -165.6 \text{ ppm} (1F) (\text{each br}, 4F, m-C_6F_5).$ $-{}^{29}$ Si{ 1 H} DEPT (99 MHz, 299 K, C₆D₆): $\delta = -3.0$ ppm $(dm, {}^{3}J_{PSi} = 25.0 \text{ Hz}). - {}^{31}P\{{}^{1}H\} \text{ NMR} (202 \text{ MHz}, 299 \text{ K},$ C₆D₆): $\delta = 5.1$ ppm ($v_{1/2} \sim 20$ Hz 1 ppm).

Supporting information

Additional experimental and analytical details, crystallographic data and pictures of spectra are given as Supporting Information (33 pages) available online (DOI: 10.5560/ZNB.2014-4190).

CCDC 1020239 to 1020242 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgement

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

- [1] B. Wrackmeyer, *Coord. Chem. Rev.* **1995**, *145*, 125–136.
- [2] B. Wrackmeyer, *Heteroat. Chem.* 2006, 17, 188–268.
- [3] G. Kehr, G. Erker, *Chem. Commun.* **2012**, *48*, 1839–1850.
- [4] J. Sreedhar Reddy, B.-H. Xu, T. Mahdi, R. Fröhlich, G. Kehr, D. W. Stephan, G. Erker, *Organometallics* 2012, *31*, 5638-5649.
- [5] B. Wrackmeyer, K. Horchler, R. Boese, Angew. Chem., Int. Ed. Engl. 1989, 28, 1500-1502.
- [6] R. Köster, G. Seidel, B. Wrackmeyer, *Chem. Ber.* 1989, 122, 1825–1850.

- [7] B. Wrackmeyer, R. Zentgraf, J. Chem. Soc., Chem. Commun. 1978, 402–403.
- [8] B. Wrackmeyer, O. L. Tok, E. V. Klimkina, W. Milius, *Eur. J. Inorg. Chem.* 2010, 2276–2282.
- [9] C. Chen, F. Eweiner, B. Wibbeling, R. Fröhlich, S. Senda, Y. Ohki, K. Tatsumi, S. Grimme, G. Kehr, G. Erker, *Chem. Asian J.* 2010, 4711–4715.
- [10] C. Jiang, O. Blacque, H. Berke, Organometallics 2010, 29, 125-133.
- [11] C. Chen, R. Fröhlich, G. Kehr, G. Erker, Org. Lett. 2011, 13, 62–65.

- [12] C. Chen, G. Kehr, R. Fröhlich, G. Erker, J. Am. Chem. Soc. 2010, 132, 13594–13595.
- [13] O. Ekkert, R. Fröhlich, G. Kehr, G. Erker, J. Am. Chem. Soc. 2011, 133, 4610–4616.
- [14] C. Eller, C. G. Daniliuc, R. Fröhlich, G. Kehr, G. Erker, Organometallics 2013, 32, 384–386.
- [15] J. Möbus, Q. Bonnin, K. Ueda, R. Fröhlich, K. Itami, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2012, 51, 1954–1957.
- [16] F. Ge, G. Kehr, C. G. Daniliuc, G. Erker, J. Am. Chem. Soc. 2014, 136, 68–71.
- [17] O. Ekkert, O. Tuschewitzki, C. G. Daniliuc, G. Kehr, G. Erker, *Chem. Commun.* **2013**, *49*, 6992–6994.
- [18] R. Liedtke, F. Scheidt, J. Ren, B. Schirmer, A. J. P. Cardenas, C. G. Daniliuc, H. Eckert, T. H. Warren, S.

Grimme, G. Kehr, G. Erker, J. Am. Chem. Soc. 2014, 136, 9014–9027.

- [19] C. Eller, K. Bussmann, G. Kehr, B. Wibbeling, R. Fröhlich, C. G. Daniliuc, G. Erker, *Chem. Commun.* 2014, 50, 1980–1982.
- [20] D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46–76.
- [21] A. Samb, B. Demerseman, P. H. Dixneuf, C. Mealli, Organometallics **1988**, 7, 26-33.
- [22] D. J. Parks, R. E. von H. Spence, W. E. Piers, Angew. Chem., Int. Ed. Engl. 1995, 34, 809-811.
- [23] W. E. Piers, T. Chivers, *Chem. Soc. Rev.* **1997**, *26*, 345–354.