Note

The use of aldonolactones for the synthesis of 2-O-methyl-L-rhamnose and 2-O-methyl-D-mannose

Lucio O. Jeroncic, Marcos L. Sznaidman, Alicia Fernandez Cirelli*, and Rosa M. de Lederkremer*

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Univesitaria, Pabellón 2, 1428-Buenos Aires (Argentina)

(Received June 16th, 1988; accepted for publication, December 28th, 1988)

We have previously reported the synthesis of partially substituted aldonolactones by benzoylation of L-rhamnono- and D-mannono-1,4-lactone¹ under controlled conditions. The facile chemoselective reduction of acylated lactones to the lactols^{2,3} suggested their use as intermediates for the synthesis of substituted furanoid sugars, including disaccharides. To test the reactivity of the free hydroxyl group, we first tried a simple methylation reaction under various conditions.

With the aim of obtaining 3-O-methyl derivatives, 2,5-di-O-benzoyl-L-rhamnono-1,4-lactone (1) was methylated under conditions reported to prevent acyl migration.

Treatment of 1 with diazomethane and boron trifluoride etherate, as described by Mastronardi *et al.*⁴, gave a fast-moving compound (t.l.c.) in very low proportion. The yield could not be improved after five successive treatments. It was isolated by column chromatography as a homogeneous syrup (8.6%) and identified by m.s. as 2,5-di-O-benzoyl-3-O-methyl-L-rhamnono-1,4-lactone (2). The fragmentation pattern showed prominent ions (105 \rightarrow 77 \rightarrow 51) for the aromatic series. The 3-methoxyl group promoted C-3-C-4 cleavage, giving rise to m/z 205 [M[±] - MeCH(OBz)CHOH; 5.1%], which subsequently loses a benzoate group (m/z 85, 9.6%).

When 2,5,6-tri-O-benzoyl-D-mannono-1,4-lactone (3) was methylated under the same conditions, a fast-moving component was observed (t.l.c.), but again in very low yield. Therefore, this method is unsuitable for the synthesis of the methyl derivatives.

Compound 1 was also treated with methyl trifluoromethansulfonate (methyl triflate) in the presence of 2,6-di-*tert*-butylpyridine⁵, with methyl iodide–silver per-

^{*}Research Members of the Consejo Nacional de Investigaciones Científicas y Técnicas.

chlorate⁶, and with methyl sulfate-aluminum oxide⁷. Chromatographic and/or spectroscopic examination indicated little or no methylation. These results might be attributable to the low acidity and steric hindrance of the 3-OH group.

Conditions more strongly alkaline would facilitate nucleophilic attack. Although acyl migrations are to be expected in basic media⁸, a selective transposition of the benzoyl group might afford a monomethylated product in good yield. The synthetic applicability of Purdie's method⁹ was assayed with compound 1. Benzoyl migration was complete, and crystalline 3,5-di-O-benzoyl-2-O-methyl-L-rhamnono-1,4-lactone (4) was obtained in 83% yield. The 3-O-methyl isomer 2 could not be detected in the mixture. The structure of compound 4 was assigned from spectroscopic data.

The H-2 doublet in the ¹H-n.m.r. spectrum of 4 (4.29 p.p.m.) is shifted to higher field (1.36 p.p.m.) while the H-3 signal appeared downfield (1.43 p.p.m.) in comparison with the respective resonances for compound¹ 1. This simultaneous shielding of H-2 and deshielding of H-3 is a clear evidence of benzoyl migration to O-3, and methylation at O-2. In the ¹³C-n.m.r. spectrum (Table I), C-2 is shifted downfield (6.4 p.p.m.) on methylation, C-3 is only slightly modified, probably because of a compensation of electric and steric factors, whereas C-4 is shifted upfield (1.8 p.p.m.) because of the benzoyl group on C-3.

The m.s. of compound 4 was clearly different from that of the 3-O-methyl isomer 2. The loss of benzoic acid from the molecular ion accounts for the radical cation at m/z 262, which underwent the typical fragmentation of furanones.

An α,β -unsaturated lactone characterized as 5-O-benzoyl-2-O-methyl-3,6-dideoxy-L-erythro-hex-2-enono-1,4-lactone (5) was obtained as a minor product from the mixture.

The H-3 doublet at δ 6.11 p.p.m. in the ¹H-n.m.r. spectrum of **5**, together with signals at 147.9 p.p.m. (C-2) and 112.7 p.p.m. (C-3) in the ¹³C-n.m.r. spectrum confirm the assigned structure. Elimination of the 3-O-benzoate after methylation, was observed by t.l.c. at early stages of the reaction, even when only partial addition of silver oxide had been made.

 β -Elimination in aldonolactones has been extensively studied in our laboratory^{3,10,11} and is considered to proceed *via* an ElcB mechanism. On this basis, a more-polar solvent, such as tetrahydrofuran, was selected in order to improve the yield of the unsaturated product **5**, and this was isolated crystalline after chromatog-

raphic purification, in 87% yield. A product of higher mobility (t.l.c.) was probably a diunsaturated derivative, as multiple elimination is a common feature in the β -elimination of aldono-1,4-lactones^{10,11}.

Catalytic hydrogenation of compound **5** afforded, quantitatively, 5-O-benzoyl-3,6-dideoxy-2-O-methyl-L-*arabino*-hexono-1,4-lactone (5-O-benzoyl-2-Omethyl-ascarylono-1,4-lactone, **6**), which was characterized on the basis of spectroscopic data. The appearance of high-field signals for H-3 (2.71 p.p.m.) and H-3' (2.18 p.p.m.) in the ¹H-n.m.r. spectrum and for C-3 (30.4 p.p.m.) in the ¹³C-n.m.r. (Table I), together with the observed coupling constants for H-2 and H-4, confirmed the postulated structure. Stereospecificity has always been observed upon catalytic hydrogenation over palladium of compounds with related structures^{3,12}. Compound **6**, obtained in three steps from L-rhamnono-1,4-lactone, is an useful intermediate for the preparation of 2-O-methylascarylose. Ascarylose is a 3,6-dideoxy sugar component of glycolipids from *Parascaris equorum*¹³ and has been characterized as a constituent of a specific polysaccharide from *Pasteurella pseudotuberculosis*¹⁴.

Reduction² of compound 4, by disiamylborane afforded 3,5-di-O-benzoyl-2-O-methyl-L-rhamnofuranose (7) as an anomeric mixture (α : β ratio 2:1) (¹³Cn.m.r.; see Table I). Upon debenzoylation with sodium methoxide in chloroform at 0°, 2-O-methylrhamnose (8) was isolated as a chromatographically homogeneous syrup having physical constants comparable to those previously reported for this compound^{15,16} (α : β ratio 3:1).

In order to determine the generality of this reaction, 2,5,6-tri-O-benzoyl-D-manno-1,4-lactone (3) was methylated under similar conditions as used with 1. After disiamylborane reduction and debenzoylation, 2-O-methyl-D-mannose was obtained crystalline in 43% overall yield.

These fact suggest that benzoyl migration is complete under the conditions of Purdie methylation, making this procedure suitable for the synthesis of 2-O-methylrhamnose and 2-O-methylmannose. 2-O-Methyl-L-rhamnose has been reported as component of the antibiotics steffimycin¹⁷, aranciamycin¹⁸, and scopamycin¹⁹; of the oligosaccharide moiety of the antigenic glycolipid (mycoside A) from *Myco-bacterium kansaii*²⁰, and of extracellular polysaccharides from *Rhizobium*²¹. 2-O-Methyl-D-mannose has been detected in the hydrolyzates from soil polysaccharides²².

The total yield of 2-O-methylrhamnose from the aldonolactone is higher than the five-step synthesis reported by MacPhillamy and Elderfield²³ and is comparable to that obtained by Poszgay and Nánási¹⁶ starting from benzyl 4-O-benzyl- α -Lrhamnopyranoside. Several synthesis were described for 2-O-methylmannose²⁴⁻²⁷. The procedure now described compares favorably in yield and simplicity to most of them.

EXPERIMENTAL

General methods. — The instrumentation used has been previously described²⁸. T.l.c. was performed on plates coated with 0.25-mm Silica Gel 60 (Merck 5626) and A, 19:1 PhMe–EtOAc; B, 9:1 PhMe–EtOAc; C, 7:1:1 1-propanol–EtOH–H₂O; D, 19:1 C₆H₆–EtOAc; E, 9:1 C₆H₆–EtOAc; and F, 4:1 CHCl₃–MeOH. Compounds were detected by spraying with 5% (v/v) H₂SO₄–EtOH followed by charring at 140° for a few min. Descending p.c. was performed on Whatman No. 1 paper with 6:4:3 (v/v) 1-butanol–C₅H₅N–H₂O; detection was effected with AgNO₃–NaOH²⁹ and aniline hydrogenphthalate³⁰.

G.l.c. was performed with glass columns (180 \times 0.2 cm) packed with 2.5% SE-30 on Chromosorb W (AW/DMCS), 80–100 mesh, with nitrogen at a flow rate of 24 mL/min, T_i 280°; T_d 280°; T_c from 240° to 280°; rate 5°/min. 2,5-Di-O-benzoyl-L-rhamnono-1,4-lactone (1) and 2,5,6-tri-O-benzoyl-D-mannono-1,4-lactone (3) were obtained by partial benzoylation of L-rhamnono-1,4-lactone and D-mannono-1,4-lactone, respectively, as already described¹. Compound 1 was obtained in 60% yield when the reaction was carried out at 0° with 10% BzCl excess.

Methylation of 2,5-di-O-benzoyl-L-rhamnono-1,4-lactone (1). — A. With diazomethane and boron trifluoride etherate. Methylation was performed according to the method describe by Mastronardi et al.⁴. To a suspension containing 200 mg (0.54 mmol) of 1 in 1.0 mL of dichloromethane cooled at -5° was added 0.02 mL BF₃·OEt₂. A solution of CH₂N₂ in CH₂Cl₂was slowly dropped in until the yellow color persisted. After 30 min at -5° , the white solid (polymethylene) formed in the reaction was filtered off, the solution was washed with saturated aq. NaHCO₃ and then water until neutrality, dried (MgSO₄) and evaporated to a syrup.

T.l.c. (solvent A) showed a main spot ($R_F 0.36$), which corresponded to the starting material, and a minor one, $R_F 0.52$. The mixture was remethylated five more times, by the same procedure, without considerable improvement in the yield of methylated product, as observed by t.l.c.

The fast-moving component (18 mg; 8.6%) was isolated by column chromatography (2 × 15 cm) on Silica Gel 60 (Merck, 230-400 mesh), eluting with solvent A. It was homogeneous by g.l.c. (T_r 5.19 min). The mass spectrum corresponded to that of 2,5-di-O-benzoyl-3-O-methyl-L-rhamnono-1,4-lactone (2): m/z(%): 384 (M⁺, 3.1), 279 (3.41), 205 (5.1), 170 (1.2), 157 (4.1), 140 (4.9), 105 (100), 101 (3.3), 35 (9.6), 84 (1.1), 77 (30.1), 69 (2.5), and 51 (8.6).

B. With methyl iodide-silver oxide⁹. 3,5-Di-O-benzoyl-2-O-methyl-L-rhamnono-1,4-lactone (4) and 5-O-benzoyl-2-O-methyl-3,6-dideoxy-L-erythro-hex-2-enonol,4-lactone (5). To a solution of 1 (1.0 g, 2.70 mmol) in chloroform (20 mL) and MeI (11 mL), freshly prepared Ag₂O (0.62 g) was added portion wise in the presence of 4 Å molecular sieves.

The mixture was stirred at 40° in the dark, under N₂, until starting material could no longer be detected by t.l.c. (3–6 h). After filtration, the solution was evaporated to a syrup; t.l.c. (solvent B) showed a main product (R_F 0.38) and a

134

TABLE I

"C-N.M.K. CHEMICAL SHIF1S" (0) OF COMPOUNDS 1 AND 3-9							
Compound	C-1	C-2	С-3	C-4	C-5	C-6	OCH ₃
1 ^b		71.1	68.2	81.2	67.2	17.3	
4	171.4	77.5	68.8	79.4	67.4	17,3	59.8
7α	100.3	86.1	71.7	80.0	68.9	17.1	58.9
7β	95.3	80.3°	70.0	80.1°	69.5	17,4	58.9
8α	91.6	81.7	70.8	73.5	69.0	17.7	59.5
8β	94.8	82.5	74.2	70.2	73.1	17.7	62.7
3 ⁶		70.8	68.5	77.1	68.2	62.8	
5	166.9	147.9	112.7	79.5	70.4	14.6	58.3
6	173.6	75.5	30.4	77.2	70.4	14.9	58.2
9	170.9	77.3	68.5	75.0	68.1	62.7	59.8

 $^{13}\text{C-N.M.R.}$ chemical shifts" (δ) of compounds 1 and 3-5

"In chloroform-d, except for compound **8** (D_2O-H_2O). ^bUnder the recording conditions, carbonyl carbon was not observed. The assignments may be interchanged.

minor one ($R_{\rm F}$ 0.27), which were separated by column chromatography (3.5 × 20 cm) on Silica Gel H (Merck) using solvent *B*. The product of higher mobility was isolated as a homogeneous syrup (0.86 g, 83%), that crystallized from MeOH-water; m.p. 87–88°; $[\alpha]_{\rm D}^{2.5}$ +106.5° (*c* 1, CHCl₃) and was characterized as 3,5-di-*O*-benzoyl-2-*O*-methyl-L-rhamnono-1,4-lactone (4); $\nu_{\rm max}^{\rm Nujol}$ 1795 (1,4-lactone CO), 1730 cm⁻¹ (benzoate CO); ¹H-n.m.r.: δ 8.07–7.30 (m, 10 aromatic H), 6.15 (dd, $J_{2.3}$ 5.0, $J_{3,4}$ 3.5 Hz, H-3), 5.48 (m, H-5), 4.67 (dd, $J_{3,4}$ 3.5, $J_{4,5}$ 8.0 Hz, H-4), 4.29 (d, H-2), 3.58 (s, MeO), 1.57 (d, $J_{5,6}$ 6.0 Hz, 3 H-6); ¹³C-n.m.r.: δ 164.8 (benzoate CO); 133.4–128.2 (aromatic C) (for other carbon resonances, see Table I), *m/z* (%): 384 (M⁺, 5.5), 354 (3.8), 262 (1.6), 234 (5.1), 230 (2.3), 219 (7.0), 218 (11.7), 191 (6.1), 178 (5.8), 158 (2.8), 149 (1.8), 140 (18.6), 137 (3.3), 122 (3.5), 113 (2.7); 111 (2.8), 106 (33.5), 105 (100), 92 (11.2), 91 (21), 85 (7.0), 84 (5.0), 83 (9.0), 77 (79.4), 57 (7.3), and 51 (12.9).

Anal. Calc. for C₂₁H₂₀O₇: C, 65.60; H, 5.25. Found: C, 65.72; H, 5.37.

The compound of $R_{\rm F}$ 0.27 was later eluted with the same solvent (0.041 g, 6%). It crystallized from 2-propanol; m.p. 79–81°, $[\alpha]_{\rm D}^{2.5}$ +3.1° (c 1.3, CHCl₃) and was characterized as 5-O-benzoyl-2-O-methyl-3,6-dideoxy-L-*erythro*-hex-2-enono-1,4-lactone (**5**); $\nu_{\rm max}^{\rm Nujol}$ 1770 (α , β -unsaturated 1,4-lactone CO); 1705 (benzoate CO); 1655 cm⁻¹ (conjugated C=C); $\lambda_{\rm max}^{\rm McOH}$ 224 (ε 36000) and 273 nm (ε 75000); ¹H-n.m.r.: δ 8.10–7.36 (m, 5 aromatic H), 6.11 (d, $J_{3,4}$ 2.0 Hz, H-3), 5.29 (m, H-5), 5.11 (dd, $J_{4,5}$ 4.5 Hz, H-4), 3.83 (s, MeO), 1.39 (d, $J_{5,6}$ 6.4 Hz, 3 H-6); ¹³C-n.m.r.: δ 165.3 (benzoate CO), 133.2, 129.4, 128.3 (aromatic C), (for other carbon resonances, see Table I).

Anal. Calc. for C₁₄H₁₅O₅: C, 64.12; H, 5.38. Found: C, 64.10; H, 5.47.

Compound 5 was obtained in 87% yield when methylation was performed using tetrahydrofuran as solvent. After 6 h, no starting material was observed by t.l.c. and the main product (R_F 0.27) was isolated and purified as described.

5-O-Benzoyl-2-O-methyl-3,6-dideoxy-L-arabino-hexono-1,4-lactone. (5-Obenzoyl-2-O-methyl-ascarylono-1,4-lactone) (6). — Compound 5 (1.05 g; 4.0 mmol) was dissolved in EtOAc (12 mL) and hydrogenated over 10% palladium-charcoal at room temperature and atmospheric pressure until no further absorption of hydrogen was observed (~18 h). T.l.c. (solvent *B*) showed only one spot ($R_{\rm F}$ 0.28), which was characterized as 6 after recrystallization from EtOH; m.p. 58–59°, [α]_D²⁵ +31.5° (*c* 2.2, CHCl₃); yield: 95%; $\nu_{\rm max}^{\rm Nujol}$ 1785 (1,4-lactone CO); 1715 (benzoate CO); ¹H-n.m.r.: δ 8.12–7.36 (m, 5 aromatic H), 5.34 (m, $J_{4,5}$ 4.4, $J_{5,6}$ 6.5 Hz, H-5), 4.52 (m, $J_{3,4}$ 6.2, $J_{3',4}$ 9.9 Hz, H-4), 4.17 (dd, $J_{2,3}$ 8.5, $J_{2,3'}$ 9.9 Hz, H-2), 3.60 (s, MeO), 2.71 (ddd, $J_{3,3'}$ 12.9 Hz, H-3), 2.18 (m, H-3'), 1.41 (d, 3 H-6), ¹³C-n.m.r.: δ 165.2 (benzoate CO), 133.3, 126.6, 129.4 and 128.2 (aromatic C) (for other carbon resonances, see Table I).

Anal. Calc. for C₁₄H₁₆O₅: C, 63.63; H, 6.10. Found: C, 63.66; H, 6.17.

3,5-Di-O-benzoyl-2-O-methyl-L-rhamnofuranose (7). — To a freshly prepared solution containing 8.8 mmol of bis(2-butyl-3-methyl)borane (disiamylborane) in tetrahydrofuran (4 mL), compound 2 (0.682 g, 1.78 mmol) in 2 mL of tetrahydrofuran was added. After stirring for 20 h at room temperature, the mixture was processed as already described³¹. Compound 3 was obtained as a chromatographically homogeneous syrup (0.665 g, 97%); $[\alpha]_D^{25}$ +62° (c 1.1, CHCl₃); ν_{max}^{film} 3500 (OH), 1715 cm⁻¹ (benzoate CO); ¹H-n.m.r.: δ 8.00–7.24 (m, 10 aromatic H), 6.00–5.83 (m, H-3 α ,3 β), 5.56–5.28 (m, H-1 α ,1 β ,5 α ,5 β), 4.55 (dd, $J_{3,4}$ 4.1, $J_{4,5}$ 8.0 Hz, H-4 α), 4.27 (dd, $J_{3,4}$ 4.8, $J_{4,5}$ 8.6 Hz, H-4 β), 4.00–3.82 (m, H- 2α ,2 β), 3.70 (s, broad, disappeared on deuteration, OH), 3.47 (s, MeO- α), 3.41 (s, MeO- β), 1.52 (d, $J_{5,6}$ 6.0 Hz, 3H-6 β), 1.48 (d, $J_{5,6}$ 6.0 Hz, 3 H-6 α); ¹³C-n.m.r.: δ 165.4, 165.2, and 165.0 (benzoate CO), 133.2, 127.9 (aromatic C) (for other carbon resonances, see Table I). The composition of the anomeric mixture was estimated from the intensities of the resonances for C-1 in the ¹³C-n.m.r. spectrum).

Anal. Calc. for C₂₁H₂₂O₇: C, 65.28; H, 5.74. Found: C, 65.34; H, 5.83.

2-O-Methyl-L-rhamnose (8). — A solution of 7 (0.389 g) in anhydrous $CHCl_3$ (8 mL) was cooled to 0° and 0.5M NaOMe in anhydrous MeOH was added. After stirring for 2 h, the solution showed no starting material by t.l.c. (solvent B).

Compound **8** was recovered by water extraction $(4 \times 10 \text{ mL})$. The aqueous phase was neutralized with Dowex 50W (H⁺) resin and evaporated to a syrup which was purified by column chromatography (1.5 × 12 cm) on Silica Gel 60 (Merck, 230-400 mesh) using 4:1 CHCl₃-MeOH as eluent. It could not be induced to crystallize. Yield 0.128 g (72%); R_{Rhamnosc} 1.79 (solvent C); $[\alpha]_D^{25} + 26^\circ$ (c 0.7, H₂O); lit.¹⁵ $[\alpha]_D + 24^\circ$ (c 3.8, H₂O); lit.¹⁶ $[\alpha]_D + 25^\circ$ (c 0.3, H₂O); ¹H-n.m.r.: δ 5.19 (d, $J_{1,2}$ 1.5 Hz, H-1 α), 4.77 (s, broad, H-1 β), 3.97-3.27 (m, H-2 α ,2 β ,3 α ,3 β ,4 α , 4 β ,5 α ,5 β , MeO- β), 3.45 (s, MeO- α), 1.25 (d, $J_{5,6}$ 6.0 Hz, 3 H-6 β), 1.22 (d, $J_{5,6}$ 6.3 Hz, 3 H-6 α); ¹³C-n.m.r., see Table I.

On demethylation with BBr₃ in CH_2Cl_2 at -78° , only rhamnose was observed by paper chromatography.

3,5,6-Tri-O-benzoyl-2-O-methyl-D-mannono-1,4-lactone (9). — To a solution

of 2,5,6-tri-O-benzoyl-D-mannono-1,4-lactone (**3**, 0.17 g) in CHCl₃ (3 mL) and MeI (5 mL), freshly prepared Ag₂O (89 mg) was slowly added. After stirring for 24 h at 40°, no starting material could be detected by t.l.c. After filtration, the solution was concentrated to a syrup, which on t.l.c. (solvent *D*) showed a main spot ($R_{\rm F}$ 0.40). The product was purified by column chromatography on Silica Gel H (Merck, 20 × 1.5 cm) using 49:1 CHCl₃–EtOAc as eluent, and isolated as a homogeneous syrup which was characterised as **9** (0.15 g, 86%). It could not be induced to crystallize; $[\alpha]_{D}^{20}$ –97.8° (*c* 1, CHCl₃) $\nu_{\rm max}^{\rm film}$ 1800 (1,4-lactone CO); 1720 cm⁻¹ (benzoyl CO); ¹H-n.m.r.: δ 8.2–7.2 (m, 15 aromatic H); 6.19 (dd; $J_{2,3}$ 5.0, $J_{3,4}$ 3.5 Hz, H-3), 5.80 (m, $J_{4,5}$ 9.0, $J_{5,6}$ 3.0, $J_{5,6'}$ 5.0 Hz, H-5), 5.05 (dd, H-4), 5.00 (dd, $J_{6,6'}$ 13.0 Hz, H-6), 4.67 (dd, H-6'), 4.35 (d, H-2), and 3.60 (s, MeO); ¹³C-n.m.r.: δ 165.7, 164.8, and 164.6 (benzoyl CO), 133.5–128.3 (aromatic C) (for other carbon resonances, see Table 1).

Anal. Calc. for C₂₈H₂₄O₉: C, 66.66; H, 4.79. Found: C, 66.85; H, 5.07.

2-O-Methyl-D-mannose (10). — To a freshly prepared solution containing 1.4 mmol of bis(2-butyl-3-methyl)borane (disiamylborane) in tetrahydrofuran (0.7 mL), compound 9 (0.14 g, 0.28 mmol) in tetrahydrofuran (2 mL) was added. After stirring for 20 h at room temperature, the mixture was processed as already described³¹. The organic layer was evaporated to a syrup, which on t.l.c. showed a main product (R_F 0.30, solvent E; R_F 0.25, solvent D). The crude product (0.12 g) was dissolved in CHCl₃ (4 mL) and 0.5M NaOMe in MeOH (4 mL) was added with external cooling. After stirring for 1 h at 0°, the solution showed no starting material by t.l.c. (solvent E). The free sugar was recovered by water extraction (3 × 5 mL) and the aqueous phase was neutralized with Dowex 50W (H⁺) resin. Evaporation gave a syrup that crystallized upon addition of EtOH (26 mg, 48% yield). It was characterised as 10 by comparison with an authentic sample; R_F 0.42 (solvent F); m.p. and mixed m.p. 135–137°; lit.²⁷ 138–139°; $[\alpha]_{D}^{20} 8.8 \rightarrow 5.0$ (24 h, c 2, H₂O); lit.²⁷ 6.6 \rightarrow 4.8 (24 h, H₂O).

ACKNOWLEDGMENTS

We thank Dr. E. G. Gros for a sample of 2-O-methyl-D-mannose, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) for financial support and UMYMFOR (CONICET-FCEN, Buenos Aires) for the microanalyses and spectra.

REFERENCES

- 1 A. FERNÁNDEZ CIRELLI, M. SZNAIDMAN, L. JERONCIC, AND R. M. DE LEDERKREMER, J. Carbohydr. Chem., 2 (1983) 167–176.
- 2 P. KOHN, R. H. SAMARITANO, AND L. M. LERNER, J. Org. Chem., 31 (1966) 1503-1506.
- 3 O. J. VARELA, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 70 (1979) 27–35.
- 4 I. O. MASTRONARDI, S. M. FLEMATTI, J. O. DEFERRARI, AND E. G. GROS, *Carbohydr. Res.*, 3 (1966) 177–183.

- 5 J. ARNARP AND J. LÖNNGREN, Acta Chem. Scand., B32 (1978) 465-467.
- 6 E. WITTENBURG, Chem. Berichte, 99 (1966) 2380-2390.
- 7 H. OGAWA, Y. ICHIMURA, T. CHIHARA, S. TERATANI, AND K. TAYA, Bull. Chem. Soc. Jpn., 59 (1986) 2481–2483.
- 8 A. H. HAINES, Adv. Carbohydr. Chem. Biochem., 33 (1976) 11-109.
- 9 E. L. HIRST AND E. PERCIVAL, Methods Carbohydr. Chem., 2 (1963) 145-150.
- 10 O. J. VARELA, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 100 (1982) 424-430.
- 11 L. JERONCIC, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Tetrahedron, 40 (1984) 1425-1430.
- 12 L. F. SALA, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 78 (1980) 61-66.
- 13 C. FOUQUEY, J. POLONSKY, AND E. LEDERER, Bull. Soc. Chim. Biol., 44 (1962) 69-81.
- 14 D. A. L. DAVIES, Nature (London), 191 (1961) 43-44.
- 15 P. ANDREWS, L. HOUGH, AND J. K. N. JONES, J. Am. Chem. Soc., 77 (1955) 125-130.
- 16 V. POZSGAY AND P. NÁNÁSI, Carbohydr. Res., 81 (1980) 184-186.
- 17 R. C. KELLY, I. SCHLETTER, J. M. KOERT, F. A. MACKELLAR, AND P. F. WILEY, J. Org. Chem., 42 (1977) 3591–3596.
- 18 W. KELLER-SCHIERLEIN AND A. M. MÜLLER, Experientia, 26 (1970) 929-930.
- 19 J. B. MCALPINE, J. W. CORCORAN, AND R. S. EGAN, J. Antibiot., 24 (1971) 51-56.
- 20 J. J. FOURNIÉ, M. RIVIÉRE, F. PAPA, AND G. PUZO, J. Biol. Chem., 262 (1987) 3180-3184.
- 21 L. D. KENNEDY, Carbohydr. Res., 87 (1980) 156-160.
- 22 S. OGNER, Soil Science, 129 (1980) 1-21.
- 23 H. B. MACPHILLAMY AND R. C. ELDERFIELD, J. Org. Chem., 4 (1939) 150-161.
- 24 A. LIPTÁK, A. BOBAK, AND P. NÁNÁSI, Acta Chim. Acad. Sci. Hung., 94 (1977) 261-266.
- 25 S. ABBAS AND A. H. HAINES, Carbohydr. Res., 41 (1975) 298-303.
- 26 H. C. SRIVASTAVA AND V. K. SRIVASTAVA, Carbohydr. Res., 58 (1977) 227-229.
- 27 J. O. DEFERRARI, E. G. GROS, AND I. O. MASTRONARDI, Carbohydr. Res., 4 (1967) 432-439.
- 28 L. O. JERONCIC, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 167 (1987) 175–186.
- 29 W. TREVELYAN, D. PROCTER, AND J. HARRISON, Nature (London), 166 (1950) 444-445.
- 30 C. M. WILSON, Anal. Chem., 31 (1959) 1199-1201.
- 31 O. J. VARELA, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 85 (1980) 130-135.