

Copper(I)-Catalyzed Enantioselective Synthesis of α -Chiral Linear or Carbocyclic (*E*)-(γ -Alkoxyallyl)boronates

Eiji Yamamoto, Yuta Takenouchi, Taichi Ozaki, Takanori Miya, and Hajime Ito*

Division of Chemical Process Engineering & Frontier Chemistry Center, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Supporting Information

ABSTRACT: A new method has been developed for the catalytic asymmetric synthesis of α -chiral linear or carbocyclic (γ -alkoxyallyl)-boronates via the copper(I)-catalyzed γ -boryl substitution of allyl acetals. This reaction afforded the products in high yields with excellent *E*:*Z* selectivities and enantioselectivities [only (*E*)-product, 91–98% ee] and also exhibited high functional group compatibility. Subsequent allylation of aldehydes with the α -chiral (γ -alkoxyallyl)boronates provided the *anti*-1,2-diol derivatives in a highly stereospecific manner, and the utility of the

 α -chiral (γ -alkoxyallyl)boronates was further demonstrated by a convergent coupling of a complex polyol derivative using a (γ -alkoxyallyl)boronate and a chiral α -oxyaldehyde. The stereoselective modular construction of a complex 3,3-disubstituted cyclopentene containing three consecutive stereocenters including a quaternary chiral carbon was also reported. Useful transformations of the α -chiral linear (γ -alkoxyallyl)boronates were also demonstrated.

INTRODUCTION

The chiral 1,2-diol structure is important and is often found in natural products such as carbohydrates and polyketides.¹ Consequently, stereoselective coupling reactions constructing chiral 1,2-diol motifs with concurrent C-C bond formation between two functionalized synthetic fragments can be powerful tools for the efficient convergent synthesis of the complex polyols containing multiple stereocenters.² Addition reactions of enantioenriched γ -alkoxyallyl organometallic reagents to a carbonyl compound have been employed for the construction of the stereodefined 3-ene-1,2-diol structure with a concomitant C-C bond formation, and the double bond in the product can be further utilized through a number of selective functionalization reactions.^{2n,o,3,4} Among the γ alkoxyallyl organometallic reagents, (y-alkoxyallyl)boron compounds are commonly used as versatile reagents for asymmetric synthesis because they react both reliably and predictably, exhibiting high levels of stability under atmospheric conditions and low toxicity.⁵ Following from the initial studies of Hoffmann⁶ and Wuts,⁷ the stereoselective allylation of aldehydes with (γ -alkoxyallyl)boron compounds⁸ has been used for the synthesis of polyoxygenated natural products and pharmaceuticals.⁹ (γ -Borylallyl)- or (γ -silylallyl)boron compounds were also reported as flexible alternative reagents for the reaction.¹⁰ In most cases, these reactions involve (γ alkoxyallyl)boron compounds bearing an achiral primary C-B bond with a chiral boron auxiliary, which give 1,2-diol derivatives containing a terminal alkene moiety via aldehyde allylation (Scheme 1a). Although these known enantioenriched $(\gamma$ -alkoxyallyl)boron compounds are highly useful, the boron compounds lack the substituent at the α -position and need a

Scheme 1. Convergent Synthesis of Complex Molecules Bearing 3-Ene-1,2-diol Structures Using Aldehyde Allylation with α -Chiral (γ -Alkoxyallyl)boronates

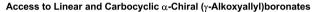
 a. Stereoselective Aldehyde Allylation of (γ-Alkoxyallyl)boron Compounds Containing an Achiral C–B Bond

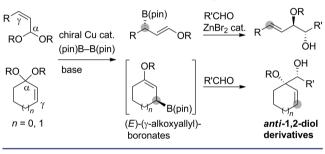
b. Approach to the Convergent Synthesis of Complex Molecules Using α -Chiral (γ -Alkoxyallyl)boronates

stoichiometric chiral auxiliary to construct the stereodefined 3ene-1,2-diol unit after the aldehyde allylation step.

In contrast, aldehyde allylation involving α -chiral (*E*)- or (*Z*)-(γ -alkoxyallyl)boronates affords stereodefined *anti*- or *syn*-1,2diols containing an internal alkene moiety, the stereochemistry of which is controlled by the chiral C–B bond structure without the use of a chiral auxiliary.^{11,12} This aldehyde allylation of the boronates is expected to be suitable for the convergent synthesis of complex molecules containing 3-ene-1,2-diol structures; it can make a new linkage between the functionalized fragments of the boronate and aldehyde moieties through the stereodefined 3-ene-1,2-diol unit in a highly stereospecific

Received: June 27, 2014

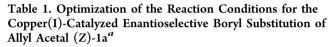

manner (Scheme 1b). However, only a few synthetic methods are available for the asymmetric construction of α -chiral (γ alkoxyallyl)boronates. In addition, synthetic methods for other related optically active α -chiral γ -alkoxyallyl organometallic reagents such as organostannane¹³ or organosilane¹⁴ compounds are also limited. Hall et al. developed two catalytic methods for the construction of the boronates, including a Cr(III)-catalyzed enantioselective inverse electron demand hetero-[4 + 2] reaction^{15a} and a Pd-catalyzed enantioselective boryl substitution^{15b} (Scheme 2). Furthermore, the utility of


Scheme 2. Enantioselective Synthesis of α -Chiral (γ -Alkoxyallyl)boronates and Subsequent Aldehyde Allylation

Hall's Catalytic Methods for Oxacyclic α-Chiral (γ-Alkoxyallyl)boronates¹⁸

 $(pin)B \longrightarrow O \xrightarrow{Cr catalyst} D \xrightarrow{B(pin)} R'CHO \xrightarrow{R'}O'$

This Work:


these chiral boronates was demonstrated in the synthesis of highly oxygenated natural products¹⁶ such as thiomarinol. These approaches, however, are limited to six-membered ring oxacyclic (*Z*)-(γ -alkoxyallyl)boronates. To the best of our knowledge, there have been no reports in the literature pertaining to the catalytic asymmetric synthesis of α -chiral linear or carbocyclic (γ -alkoxyallyl)boronates to date, and the development of an effective method for their synthesis is therefore highly desirable.

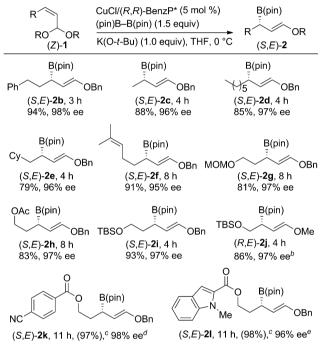
Herein, we report a novel approach to enantioenriched α chiral linear or carbocyclic (E)- $(\gamma$ -alkoxyallyl)boronates via the copper(I)/chiral bisphosphine-catalyzed γ -boryl substitution of allyl acetals and the subsequent conversion of these boronates to the corresponding anti-1,2-diol derivatives, which are generally more difficult to prepare than syn-1,2-diol derivatives, through a newly developed ZnBr₂-catalyzed aldehyde allylation (Scheme 2). This borylation/allylation process was found to be effective for the convergent synthesis of a complex polyol derivative with high stereoselectivity and functional group compatibility. The aldehyde allylation with carbocyclic (γ alkoxyallyl)boronates afforded sterically congested anti-1,2-diol derivatives,¹⁷ which were used for the unprecedented stereoselective modular synthesis of complex 3,3-disubstituted cyclopentenes containing three consecutive chiral centers, including a quaternary chiral carbon, via the iterative borylation/aldehyde allylation. We have also demonstrated useful transformations of the α -chiral linear boronates.

RESULTS AND DISCUSSION

Copper(I)-catalyzed borylation has emerged as a powerful method for the synthesis of organoboron compounds.¹⁸ We previously reported a copper(I)-catalyzed asymmetric borylation using diboron that provided optically active allylboronates.¹⁹ Guided by these successes, we proceeded to investigate the development of a copper(I)-catalyzed asymmetric synthesis of (γ -alkoxyallyl)boronates via the enantioselective γ -boryl substitution of allyl acetals (Scheme 2).²⁰ Pleasingly, while an extensive review of the literature revealed reports concerning the catalytic asymmetric α -substitution of allyl acetals, we could not find any reports describing the catalytic asymmetric γ -substitution of allyl acetals with nucleophiles of any type.²¹

We initially investigated suitable reaction conditions for the reaction of allyl acetal (Z)-1a with bis(pinacolato)diboron (Table 1). The results revealed that (R,R)-BenzP* was the best

Ph	MeO OMe (Z)-1a	catalyst (5 mo (pin)B–B(pin) K(O- <i>t</i> -Bu) (1.0 THF, 0°C	(1.5 equiv)	B(pir 	OMe
t-BL		$Me \qquad t-Bu N P t-Bu Me (h)-QuinoxP* (h)$	Mer., P P Ne R,R)-Me-Duph	۲ ۲	PPh ₂ PPh ₂
entry	cat	alyst	time (h)	yield ^{b} (%)	ee ^c (%)
1	CuCl/(R,R)-	BenzP*	3	95 (83)	97
2^d	CuCl/(R,R)-	BenzP*	24	81	96
3 ^e	Cu(O-t-Bu)/	(R,R)-BenzP*	3	88	97
4	CuCl/(R,R)-	QuinoxP*	8	63	93
5	CuCl/(R,R)-	Me-Duphos	24	14	73
6	CuCl/(R)-Se	gphos	24	38	21
7	CuCl/(R,S)-J	losiphos	45	43	11
8^{f}	CuCl/(R,R)-	BenzP*	3	86 (73)	34 (R)
9 ^{f,g}	$Ni(cod)_2/PP$	h ₃	24	0	

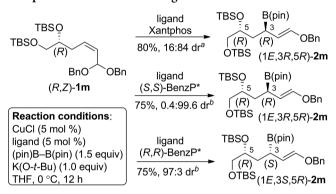

^{*a*}Reagents and conditions: CuCl (0.025 mmol), ligand (0.025 mmol), (*Z*)-**1a** (0.5 mmol), bis(pinacolato)diboron (0.75 mmol), and K(O-*t*-Bu)/THF (1.0 M, 0.5 mL, 0.5 mmol) in THF (0.5 mL) at 0 °C. ^{*b*}NMR yield. The isolated yield is shown in parentheses. ^{*c*}The ee value of (*S*,*E*)-**2a** was determined by HPLC analysis of the alcohol derived from the product boronate. ^{*d*}A 10 mol % concentration of K(O-*t*-Bu) was used. ^{*c*}Isolated Cu(O-*t*-Bu) was used, and K(O-*t*-Bu) was not added. ^{*f*}(*E*)-**1a** (*E*:*Z* = 95:5) was used as the substrate. ^{*g*}Reagents and conditions: Ni(cod)₂ (10 mol %), PPh₃ (10 mol %), and bis(pinacolato)diboron (0.5 mmol) in EtOAc (0.4 mL) at 60 °C, 24 h.

ligand for the reaction.²² The boryl substitution of (Z)-1a with CuCl/(R,R)-BenzP* (5 mol %), bis(pinacolato)diboron (1.5 equiv), and K(O-t-Bu) (1.0 equiv) in THF afforded the corresponding (S,E)-2a in excellent yield (95%) and ee (97%) (Table 1, entry 1). This reaction employed CuCl as a catalyst precursor, which can be used without a glovebox.^{19e} It is noteworthy that none of the minor (Z)-product was observed. The boryl substitution reaction also proceeded smoothly in the presence of 10 mol % K(O-t-Bu), although the yield was slightly lower than that of the reaction conducted with a stoichiometric charge of the base and required a longer reaction time (Table 1, entry 2). The use of Cu(O-t-Bu) provided

reactivity and stereoselectivity levels similar to those observed for CuCl/K(O-t-Bu) (Table 1, entry 3). The other ligands gave inferior results (Table 1, entries 4–7). Interestingly, the application of the optimum reaction conditions to (*E*)-1a instead of (*Z*)-1a resulted in a significantly lower ee (Table 1, entry 8). Recently, Morken et al. reported Ni-catalyzed γ borylation of alkenyl acetal with a terminal carbon–carbon double bond.²⁰ We thus tested the Ni-catalyzed reaction of the substrate (*E*)-1a, which has an internal carbon–carbon double bond. However, no reaction occurred after 24 h at 60 °C (Table 1, entry 9).

With the optimized conditions in hand, we examined the substrate scope of this reaction (Table 2). Pleasingly, the

Table 2. Substrate Scope of the Copper(I)-Catalyzed Enantioselective Boryl Substitution of Allyl Acetal (Z)-1^{*a*}



^{*a*}Reagents and conditions: CuCl (0.025 mmol), (*R*,*R*)-BenzP* (0.025 mmol), (*Z*)-1 (0.5 mmol), bis(pinacolato)diboron (0.75 mmol), and K(O-*t*-Bu)/THF (1.0 M, 0.5 mL, 0.5 mmol) in THF (0.5 mL) at 0 °C. The ee values of the products were determined by HPLC analysis of the saturated alcohols derived from the corresponding boronates. ^{*b*}The ee was determined after derivatization of (*R*,*E*)-2j to the related *p*-nitrobenzoyl ester. ^{*c*}NMR yield of the boronate in the crude reaction mixture. ^{*d*}The hydrogenated derivative was isolated in 62% yield after hydrogenation of crude (*S*,*E*)-2**k**. The ee value was determined by HPLC analysis of the hydrogenation of the alkene moiety and subsequent oxidation of the crude (*S*,*E*)-2**l**. The ee value was determined by HPLC analysis of the alcohol derivative.

application of the optimized conditions to allyl dibenzyl acetal (*Z*)-1**b** gave the corresponding product (*S*,*E*)-2**b** in 94% yield with 98% ee. Substrates containing a methyl, hexyl, or methylcyclohexyl group $[(Z)-1\mathbf{c}-\mathbf{e}]$ also afforded the products in high yields with excellent enantioselectivities $[(S,E)-2\mathbf{c}, 88\%$ yield, 96% ee; (*S*,*E*)-2**d**, 85% yield, 97% ee; (*S*,*E*)-2**e**, 79% yield, 96% ee]. The (γ -alkoxyallyl)boronate (*S*,*E*)-2**f**, bearing a trisubstituted alkenyl group, was also formed in 91% yield with 95% ee. The allyl acetals (*Z*)-1**g**-**j**, bearing methoxymethyl ether, acetoxy, and silyl ether groups, respectively, also

reacted smoothly to give the corresponding products in high yields and excellent enantioselectivities [(S,E)-2g, 81% yield, 97% ee; (S,E)-2h, 83% yield, 97% ee; (S,E)-2i, 93% yield, 97% ee; (R,E)-2j, 86% yield, 97% ee]. The use of nitrogencontaining substrates (Z)-1k and (Z)-1l provided the corresponding products (S,E)-2k and (S,E)-2l in high yields and excellent enantioselectivities without any degradation of the functional groups [(S,E)-2k, 97% yield, 98% ee; (S,E)-2l, 98% yield, 96% ee]. However, the products could not be fully isolated because of the presence of the byproducts; thus, the derivatizations of the crude products were conducted to check the product structure and yields (62% and 88% isolated yields, respectively). The reactions of substrate (R,Z)-1m containing an optically active silyl ether moiety are shown in Scheme 3.

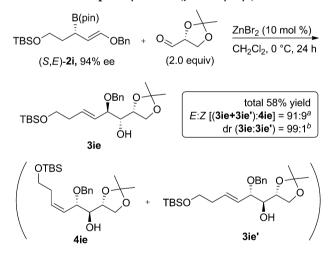
Scheme 3. γ -Borylation of Substrate (R,Z)-1m with CuCl/
Xantphos or Chiral BenzP* Ligands

"The dr values of the products were determined by ¹H NMR analysis of the crude products. ^bThe dr values of the products were determined by HPLC analysis of the alcohols derived from the corresponding boronates.

The use of the Xantphos ligand afforded (1E,3R,5R)-**2m** in 80% yield and a diastereomeric ratio of 16:84, which was attributed to the steric effect of the chiral silyl ether group. The reactions of (R,Z)-**1m** with CuCl/(S,S)- and (R,R)-BenzP* proceeded to give the corresponding (1E,3R,5R)-**2m** and (1E,3S,5R)-**2m**, respectively, in good yields and excellent catalyst-controlled stereoselectivity (75% and 75% yields, 0.4:99.6 and 97:3 dr, respectively).

To date, there have been no reports in the literature describing the allylation of aldehydes with linear enantioenriched α -chiral (E)-(γ -alkoxyallyl)boronates to give the corresponding 1,2-diol derivatives with high E:Z and anti:svn selectivities and enantioselectivities. With this in mind, we investigated the optimum reaction conditions for the aldehyde allylation with the (γ -alkoxyallyl)boronates (Table 3). Without any catalyst, the allylboronate (S,E)-2c or (S,E)-2i reacted with benzaldehyde in CH₂Cl₂ or THF to give products with low E:Z selectivity but high enantiospecificity (es)²³ (Table 3, entries 1-4). It has been reported that the selectivity of aldehyde allylation can be improved by the presence of an acid catalyst. Carreaux reported the BF₃-catalyzed reaction of racemic (E)-(γ alkoxyallyl)boronates to give products with high levels of anti:syn selectivity,11 although the E:Z ratios were still in need of improvement. With this in mind, we screened a variety of Lewis acids, including BF₃·OEt₂, AlCl₃, FeCl₃, Sc(OTf)₃, TMSOTf, and ZnBr₂. The results revealed that ZnBr₂, which had never been used as a Lewis acid catalyst for the allylation of aldehydes with allylboron reagents,^{24,25} turned out to be the

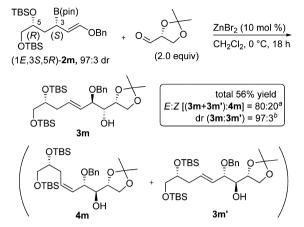
Table 3. Aldehyde Ally	vlation with Optically Ac	tive (γ -Alkoxyallyl)boronates 2
------------------------	---------------------------	--


		$\begin{array}{c} B(\text{pin}) \\ \overline{z} \\ R^1 \\ \hline \\ (S,E)-2c, 96\% ee (R^1 = Me) \\ (S,E)-2i, 97\% ee (R^1 = CH_2C) \\ (S,E)-2g, 97\% ee (R^1 = CH_2C) \\ (S,E)-2g, 97\% ee (R^1 = CH_2C) \\ \end{array}$	e or 10 mol %) 24 h CH ₂ OTBS) (<i>E</i>)-a	$\begin{array}{c} OBn \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
entry	substrate	R ² CHO	solvent	$E:Z^{a}$ (3:4)	yield ^b (%)	es ^c (%)
$1^{d,e}$	(S,E)- 2 i	PhCHO	CH_2Cl_2	34:66	94	100
2^d	(S,E)- 2c	PhCHO	CH_2Cl_2	18:82	80	100
3^d	(S,E)- 2i	PhCHO	THF	29:71	80	98
4^d	(S,E)- 2c	PhCHO	THF	15:85	78	100
5^{f}	(S,E)- 2i	PhCHO	CH_2Cl_2	98:2	68	100
6 ^f	(S,E)- 2c	PhCHO	CH_2Cl_2	92:8	81	100
$7^{e,f}$	(S,E)- 2i	PhCHO	THF	33:67	91	100
8^{f}	(S,E)-2c	PhCHO	THF	18:82	89	100
9 ^f	(S,E)-2i	C ₇ H ₁₅ CHO	CH_2Cl_2	96:4	79	97
10 ^{<i>e</i>,<i>f</i>}	(S,E)- 2 i	cinnamaldehyde	CH_2Cl_2	93:7	79	100
$11^{e,f}$	(S,E)- 2 i	2-octynal	CH_2Cl_2	87:13	73	98
12^{f}	(S,E)- 2c	C ₇ H ₁₅ CHO	CH_2Cl_2	85:15	72	100
13 ^{e,f}	(S,E)- 2g	PhCHO	CH_2Cl_2	86:14	81	100

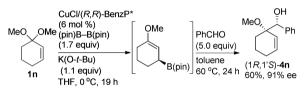
^{*a*} The *E*:*Z* ratios (3:4) of the *anti*-products were determined by ¹H NMR and HPLC analysis. ^{*b*} Isolated yield of *anti*-products. The minor *syn*-isomers of **3** and **4** were present in less than trace amounts, which could be determined by ¹H NMR analysis of the crude reaction mixtures. ^{*c*} See ref 23. The ee values of the major products were determined by HPLC analysis. ^{*d*} Reagents and conditions: (*S*,*E*)-**2** (0.2 mmol) and the aldehyde (0.4 mmol) in a solvent (0.4 mL) at 30 °C. ^{*e*}(*S*,*E*)-**2i** with 94% ee was used. ^{*f*} Reagents and conditions: (*S*,*E*)-**2** (0.2 mmol), aldehyde (0.4 mmol), and dry ZnBr₂ (10 mol %) in a solvent (0.4 mL) at 0 °C. The use of dry ZnBr₂ is necessary for the high stereoselectivity.

most effective Lewis acid catalyst for the highly stereoselective aldehyde allylation with our boron compounds (Table 3, entries 5-13). The stereoselectivities of this aldehyde allylation were in good agreement with the mechanism that had been previously postulated in the literature (see the Supporting Information).^{11,25} The use of CH_2Cl_2 solvent is necessary for the high stereoselectivity of this reaction; allylation in THF solvent in the presence of ZnBr2 catalyst afforded inferior results, which would be due to the coordination of THF to ZnBr₂ catalyst (Table 3, entry 1 vs entry 7, entry 2 vs entry 8). The reaction of (S,E)-2i with octanal, cinnamaldehyde, or 2octynal also afforded the corresponding alcohol products with high stereoselectivity (Table 3, entries 9-11). The reaction of (S,E)-2c with octanal provided the corresponding product in high selectivity and good E:Z ratio (Table 3, entry 12). The boronate (S,E)-2g bearing the methoxymethyl group also gave the product in high es and good E:Z ratio (Table 3, entry 13, E:Z = 86:14, 100% es). The reactions in entries 5, 11, and 12 resulted in slightly lower yields than those in other entries, but the anti:syn ratios were not changed. The reaction conditions were compatible with a chiral α -oxyaldehyde substrate leading to the desired product in 58% yield, high E:Z ratio, and high dr {Scheme 4, E:Z[(3ie + 3ie'):4ie] = 91:9, dr (3ie:3ie') = 99:1}. The dr value [(3ie + 3ie'):4ie = 99:1] was higher than the expected value (97:3) based on the enantiomeric purity of (S,E)-2i (94% ee). This would be attributed to the kinetic resolution upon addition of the optically active allylboronate to the chiral α -oxyaldehyde.

Having established conditions for the aldehyde allylation, we probed the feasibility of the convergent synthesis of complex polyol derivatives using the borylation/aldehyde allylation procedure (Scheme 5). The reaction of the boronate (1*E*,3*S*,5*R*)-**2m** with (*R*)-glyceraldehyde acetonide successfully proceeded to afford the desired complex allylation product **3m** in good yield and selectivity {total 56% yield, *E*:*Z* [(**3m** + **3m**'):**4m**] = 80:20, dr (**3m**:**3m**') = 97:3}.

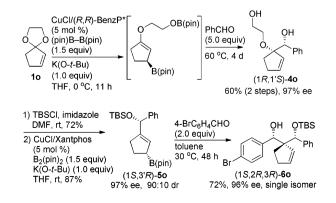

Scheme 4. Aldehyde Allylation of (R)-Glyceraldehyde Acetonide and Optically Active (γ -Alkoxyallyl)boronate 2i

^{*a*}The *E:Z* ratio [(3ie + 3ie'):4ie] was determined by ¹H NMR analysis after derivatization to the corresponding *p*-nitrobenzoic acid esters. ^{*b*}The dr (3ie:3ie') was determined by HPLC analysis of the corresponding *p*-nitrobenzoic acid esters.


We then proceeded to examine the borylation of cyclic allyl ketals, which could provide access to 1,2-diol derivatives containing sterically congested vicinal stereogenic centers through a subsequent aldehyde allylation (Scheme 6). The boryl substitution of allyl ketal **1n** proceeded smoothly under the standard conditions, although the isolation of the product boronate was not successful. Thus, we carried out borylation of **1n** and sequential allylation of aldehyde without isolation of the allylboronate, which afforded the corresponding product (1*R*,1'S)-**4n** in good yield with high levels of diastereo- and enantioselectivity without the need for a Lewis acid catalyst. No proton signals of the minor diastereomer were detected in the

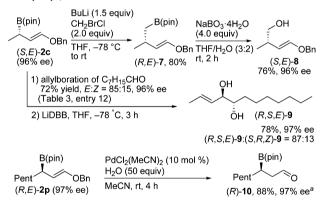
Scheme 5. Convergent Coupling for Polyol Derivative Synthesis via Aldehyde Allylation of Complex Boronates and Aldehydes

^{*a*}The *E*:*Z* ratio [(3m + 3m'):4m] was determined by ¹H NMR analysis after derivatization to the corresponding *p*-nitrobenzoic acid esters. ^{*b*}The dr (3m:3m') was determined by HPLC analysis of the corresponding *p*-nitrobenzoic acid esters.


Scheme 6. Enantioselective Boryl Substitution/Aldehyde Allylation of Allyl Ketal 1n

¹H NMR spectra of the crude reaction mixture. The single isomeric product was isolated in 60% yield with 91% ee after chromatographic purification.

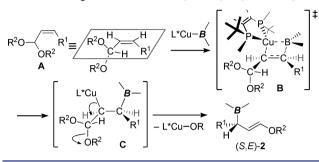
The above borylation/aldehyde allylation procedure generated an allyl ether moiety in the products, and it was envisaged that this structural feature could be used as a reactive site for the subsequent copper(I)-catalyzed borylation. With this in mind, we proceeded to investigate the stereoselective modular construction of an optically active 3,3-disubstituted cyclopentene scaffold, which contained three consecutive chiral centers, including a quaternary carbon, using an iterative borylation/aldehyde allylation procedure^{19c} (Scheme 7). Substrate **10** underwent the first borylation/aldehyde allylation


Scheme 7. Stereoselective Modular Construction of a Complex 3,3-Disubstituted Cyclopentene

to give the diol (1R,1'S)-40 in good yield, with excellent diastereo- and enantioselectivity (dr of the crude reaction mixture, 98:2; 60% isolated yield after recrystallization as a single isomer with 97% ee). In this reaction, the allylation of benzaldehyde proceeded with high diastereoselectivity. Following TBS protection of the hydroxy groups in (1R,1'S)-40, a second diastereoselective borylation with the achiral copper(I)/ Xantphos catalyst^{19e} was conducted to give the corresponding allylboronate (1S,3'R)-**50** via a *syn*-S_N2' mechanism (90:10 dr), which occurred as a consequence of the steric effect imposed by the bulky silvl group.²⁶ The configurations of (1R, 1'S)-40 and (1S.3'R)-**50** were determined by X-ray crystallographic analysis (see the Supporting Information). Finally, a second allylation of p-bromobenzaldehyde with (1S,3'R)-50 provided monoprotected 1,3-diol (1S,2R,3R)-60 in good yield with high diastereoand enantioselectivity (72% yield, single diastereomer, 96% ee). During the allylation of *p*-bromobenzaldehyde with (1S,3'R)-**50**, the reaction of the major isomer of (1S,3'R)-**50** proceeded selectively prior to that of the minor isomer, which led to the observed higher diastereomeric ratio of the product. The absolute configuration of the product (1S,2R,3R)-60 was determined by X-ray crystallographic analysis of the corresponding deprotected 1,3-diol (see the Supporting Information). This synthetic method could be used as a general strategy to provide novel chirally functionalized cycloalkene scaffolds for drug discovery.27

We further demonstrated the transformations of these α chiral linear (*E*)-(γ -alkoxyallyl)boronates (Scheme 8). The

Scheme 8. Transformations of α -Chiral Linear (*E*)-(γ -Alkoxyallyl)boronates


^{*a*}The ee value was determined by HPLC analysis after derivatization to a known compound.

boronate (S,E)-**2c** underwent homologation to give the corresponding homoallylboronate (R,E)-7 in 80% yield followed by oxidation to afford alcohol (S,E)-8 in 76% yield with 96% ee, where the alkenyl ether moiety remained intact. In addition, the feasibility of 3-ene-*anti*-1,2-diols was also confirmed by using lithium di-*tert*-butylbiphenyl (LiDBB) reagent. Deprotection of the benzyl group in the allylation product from (S,E)-**2c** and octyl aldehyde provided the corresponding diol in 78% yield without lowering its enantiomeric purity and *anti:syn* and *E:Z* ratios [97% ee, (R,S,E)-**9**:(S,R,Z)-**9** = 87:13; the *syn*-isomer could not be observed by ¹H NMR]. The boronate (R,E)-**2p** prepared by the present enantioselective borylation was subjected to a Pd-catalyzed hydrolysis²⁸ to give the β -boryl aldehyde (R)-**10** in 88% yield.²⁹ We further carried out a total synthesis of

(–)-massoialactone from (R)-10 (Supporting Information, p S50).

A reaction mechanism has been proposed to account for the stereochemical outcome of this boryl substitution (Scheme 9).

Scheme 9. Proposed Mechanism $[L^* = (R,R)$ -BenzP*]

The selective enantiofacial addition of the Cu–B bond of the in situ generated borylcopper(I) species to the C–C double bond of the allyl acetal **A** would occur through the transition structure **B** to give the alkylcopper intermediate **C**. The conformation of the allyl acetal would be fixed due to 1,3-allylic strain, which would also account for the observed preferential formation of (*E*)-products. Subsequent β -alkoxy elimination would afford the optically active (γ -alkoxyallyl)boronate (*S*,*E*)-**2**.

In conclusion, we have developed a copper(I)-catalyzed enantioselective boryl substitution of allyl acetals, providing a novel approach to optically active α -chiral linear or carbocyclic (E)- $(\gamma$ -alkoxyallyl)boronates. Furthermore, we have developed a highly stereoselective, zinc Lewis acid-catalyzed aldehyde allylation with these boronates. This borylation represents the first example of an enantioselective γ -substitution of allylic acetals. The utility of the borylation/aldehyde allylation procedure has been demonstrated by the convergent synthesis of the complex polyol derivatives and the stereoselective modular construction of a complex cyclopentene scaffold. Furthermore, we have demonstrated the useful transformations of the enantioenriched linear (E)- $(\gamma$ -alkoxyallyl)boronate.

ASSOCIATED CONTENT

Supporting Information

General experimental procedures, preparation of allyl acetal substrates, characterization of boryl substitution products, procedures for aldehyde allylations and characterization of the products, single-crystal X-ray structural analyses, application of linear (γ -alkoxyallyl)boronates, chiral stationary-phase HPLC charts, ¹H and ¹³C NMR spectra, and CIF data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author hajito@eng.hokudai.ac.jp

najito(u eng

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. T. Seki and K. Sakurada (Hokkaido University) for their great technical assistance with the X-ray crystallographic analysis. We thank Prof. K. Tanino (Hokkaido University) for a fruitful discussion. We appreciate Prof. M. Sawamura and S. Ito for their assistance. The Funding Program for Next Generation World-Leading Researchers (NEXT Program, GR002) is gratefully acknowledged. This work was supported by JSPS KAKENHI Grant 26.2447. E.Y. was supported by a Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows.

REFERENCES

(1) For selected reviews, see: (a) Casiraghi, G.; Zanardi, F. *Chem. Rev.* **1995**, 95, 1677. (b) Marco, J. A.; Carda, M.; Murga, J.; Falomir, E. *Tetrahedron* **2007**, 63, 2929. (c) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. *Chem. Rev.* **2009**, 109, 3012.

(2) For examples of reactions constructing stereodefined 1,2-diols with concomitant C-C bond formation, see: (a) Han, S. B.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 1760 (for Ir-catalyzed alkoxyallylation). (b) Park, J. K.; McQuade, D. T. Angew. Chem., Int. Ed. 2012, 51, 2717 (for cross-metathesis/asymmetric allylic substitution). (c) Kim, D.; Lee, J. S.; Kong, S. B.; Han, H. Angew. Chem., Int. Ed. 2013, 52, 4203. For examples of chiral auxiliary-mediated or diastereoselective aldol reactions affording anti-1,2-diols, see: (d) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1984, 753. (e) Andrus, M. B.; Sekhar, B. B. V. S.; Meredith, E. L.; Dalley, N. K. Org. Lett. 2000, 2, 3035. (f) Luanphaisarnnont, T.; Ndubaku, C. O.; Jamison, T. F. Org. Lett. 2005, 7, 2937 (for Ni-catalyzed reductive couplings of alkyne and α -oxyaldehyde). (g) Sa-ei, K.; Montgomery, J. Org. Lett. 2006, 8, 4441. (h) Marshall, J. A.; Eidam, P. Org. Lett. 2004, 6, 445 (for diastereoselective organozinc addition to α -oxyaldehydes). (i) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 320 (for allylboration of α -oxyaldehyde). (j) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186. (k) Savall, B. M.; Powell, N. A.; Roush, W. R. Org. Lett. 2001, 3, 3057 (for (α alkoxypropargyl)stannane addition to aldehydes). For examples of catalytic asymmetric aldol reactions, see: (1) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386. (m) Denmark, S. E.; Chung, W.-J. Angew. *Chem., Int. Ed.* **2008**, 47, 1890. For a review about α -hydroxyallylation reactions, see: (n) Lombardo, M.; Trombini, C. Chem. Rev. 2007, 107, 3843. For a review about allylation of α -oxyaldehydes, see: (o) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595. (3) For references on the allylation of carbonyl compounds, see: (b) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723.

(4) For a review about the synthetic utility of allylic alcohols, see: Lumbroso, A.; Cooke, M. L.; Breit, B. *Angew. Chem., Int. Ed.* **2013**, *52*, 1890.

(5) (a) Chemler, S. R.; Roush, W. R. Recent applications of the allylation reaction to the synthesis of natural products. In *Modern Carbonyl Chemistry*; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000; pp 403–490. (b) Kennedy, J. W. J.; Hall, D. G. Recent advances in the preparation of allylboronates and their use in tandem reactions with carbonyl compounds. In *Boronic Acids*; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005.

(6) Hoffmann, R. W.; Kemper, B. Tetrahedron Lett. 1981, 22, 5263.

(7) Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1982, 47, 2498.

(8) For references on stereoselective aldehyde allylation with (γ -alkoxyallyl)boronates, see: (a) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. **1988**, 110, 1535. (b) Moriya, T.; Suzuki, A.; Miyaura, N. Tetrahedron Lett. **1995**, 36, 1887. (c) Ganesh, P.; Nicholas, K. M. J. Org. Chem. **1997**, 62, 1737. (d) Yamamoto, Y.; Miyairi, T.; Ohmura, T.; Miyaura, N. J. Org. Chem. **1999**, 64, 296. (e) Hoffmann, R. W.; Krüger, J.; Brückner, D. New J. Chem. **2001**, 25, 102. (f) Muñoz-Hernández, L.; Soderquist, J. A. Org. Lett. **2009**, 11, 2571.

(9) For several examples of applications for natural product synthesis, see: (a) Burgess, K.; Chaplin, D. A.; Henderson, I. J. Org. Chem. **1992**, 57, 1103. (b) Jadhav, P. K.; Woerner, F. J. *Tetrahedron Lett.* **1994**, 35, 8973. (c) Ramachandran, P. V.; Chandra, J. S.; Reddy, M. V. R. J. Org. Chem. **2002**, 67, 7547. (d) Yin, N.; Wang, G.; Qian, M.; Negishi, E.

Angew. Chem., Int. Ed. 2006, 45, 2916. (e) Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1988, 53, 5023.

(10) (a) Tamao, K.; Nakajo, E.; Ito, Y. J. Org. Chem. 1987, 52, 957.
(b) Barrett, A. G. M.; Malecha, J. W. J. Org. Chem. 1991, 56, 5243.
(c) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. (d) Roush, W. R.; Pinchuk, A. N.; Micalizio, G. C. Tetrahedron Lett. 2000, 41, 9413. (e) Vincent, G.; Mansfield, D. J.; Vors, J.-P.; Ciufolini, M. A. Org. Lett. 2006, 8, 2791. (f) Chen, M.; Handa, M.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14602. (g) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14174. (h) Mukherjee, P.; Roy, S. J. S.; Sarkar, T. K. Org. Lett. 2010, 12, 2472. (i) Han, J.-L.; Chen, M.; Roush, W. R. Org. Lett. 2012, 14, 3028.

(11) Possémé, F.; Deligny, M.; Carreaux, F.; Carboni, B. J. Org. Chem. 2007, 72, 984.

(12) (a) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308.
(b) Lessard, S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 9612.

(13) Marshall, J. A.; Welmaker, G. S.; Gung, B. W. J. Am. Chem. Soc. 1991, 113, 647.

(14) (a) Rehders, F.; Hoppe, D. Synthesis **1992**, 859. (b) Su, Q.; Panek, J. S. J. Am. Chem. Soc. **2004**, 126, 2425. (c) Nakazaki, A.; Nakai, T.; Tomooka, K. Angew. Chem., Int. Ed. **2006**, 45, 2235.

(15) (a) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308.
(b) Lessard, S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 9612.

(16) (a) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628.
(b) Gao, X.; Hall, D. G.; Deligny, M.; Favre, A.; Carreaux, F.; Carboni, B. Chem.—Eur. J. 2006, 12, 3132. (c) Penner, M.; Rauniyar, V.; Kaspar, L. T.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 14216.

(17) Christoffers, J.; Baro, A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2005.

(18) For selected examples, see: (a) Ito, H.; Yamanaka, H.; Tateiwa, J.-i.; Hosomi, A. *Tetrahedron Lett.* 2000, 41, 6821. (b) Takahashi, K.; Takagi, J.; Ishiyama, T.; Miyaura, N. *Chem. Lett.* 2000, 126. (c) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196. (d) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887. (e) Lillo, V.; Fructos, M. R.; Ramírez, J.; Braga, A. A. C.; Maseras, F.; Díaz-Requejo, M. M.; Pérez, P. J.; Fernández, E. Chem.—Eur. J. 2007, 13, 2614. (f) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2009, 48, 5350. (g) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (h) Park, J. K.; Lackey, H. H.; Ondrusek, B. A.; Mcquade, D. T. J. Am. Chem. Soc. 2011, 133, 2410. (i) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem.—Eur. J. 2012, 18, 4179.

(19) (a) Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc.
2005, 127, 16034. (b) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856. (c) Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560. (d) Ito, H.; Kunii, S.; Sawamura, M. Nat. Chem. 2010, 2, 972. (e) Ito, H.; Miya, T.; Sawamura, M. Tetrahedron 2012, 68, 3423.

(20) Morken et al. reported on γ -selective boryl substitution of an allyl acetal containing a terminal alkene moiety using an achiral nickel(0) catalyst; see: Zhang, P.; Roundtree, I. A.; Morken, J. P. *Org. Lett.* **2012**, *14*, 1416.

(21) Several asymmetric α -selective allylic substitution reactions of allyl acetals have been reported; see: (a) Trost, B. M.; Lee, C. B.; Weiss, J. M. J. Am. Chem. Soc. **1995**, 117, 7247. (b) Umebayashi, N.; Hamashima, Y.; Hashizume, D.; Sodeoka, M. Angew. Chem., Int. Ed. **2008**, 47, 4196. (c) Kobayashi, S.; Arai, K.; Yamakawa, T.; Chen, Y.-J.; Salter, M. M.; Yamashita, Y. Adv. Synth. Catal. **2011**, 353, 1927. (d) Rueping, M.; Volla, C. M. R.; Atodiresei, I. Org. Lett. **2012**, 14, 4642. (e) Moquist, P. N.; Kodama, T.; Schaus, S. E. Angew. Chem., Int. Ed. **2010**, 49, 7096. See also ref 2a.

(22) (R,R)-BenzP* is available commercially; see: Tamura, K.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Imamoto, T. Org. Lett. 2010, 12, 4400.

(23) The term enantiospecificity [es (%) = (product ee/starting material ee) \times 100] has been used to describe the conservation of optical purity over the course of stereospecific reactions: (a) Denmark,

S. E.; Vogler, T. Chem.—Eur. J. 2009, 15, 11737. (b) Denmark, S. E.; Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc. 2010, 132, 1232.

(24) For basic zinc(II)-catalyzed α -selective aldehyde allylation through transmetalation, see: Kobayashi, S.; Endo, T.; Schneider, U.; Ueno, M. *Chem. Commun.* **2010**, *46*, 1260.

(25) (a) Carosi, L.; Lachance, H.; Hall, D. G. *Tetrahedron Lett.* 2005, 46, 8981. (b) Rauniyar, V.; Hall, D. G. *J. Am. Chem. Soc.* 2004, 126, 4518. (c) Ishiyama, T.; Ahiko, T.; Miyaura, N. *J. Am. Chem. Soc.* 2002, 124, 12414. (d) Kennedy, J. W. J.; Hall, D. G. *J. Am. Chem. Soc.* 2002, 124, 11586.

(26) Examples of syn-S_N2' selectivity were reported in our previous study; see refs 19c and 19d.

(27) (a) Morton, D.; Leach, S.; Cordier, C.; Warriner, S.; Nelson, A. Angew. Chem., Int. Ed. 2009, 48, 104. (b) Wu, J.; Becerril, J.; Lian, Y.; Davies, H. M. L.; Porco, J. A., Jr.; Panek, J. S. Angew. Chem., Int. Ed. 2011, 50, 5938. (c) MacLellan, P.; Nelson, A. Chem. Commun. 2013, 49, 2383.

(28) Aoyama, H.; Tokunaga, M.; Hiraiwa, S.; Shirogane, Y.; Obora, Y.; Tsuji, Y. Org. Lett. 2004, 6, 509.

(29) For synthesis of β -borylaldehydes via asymmetric β -borylations of the α,β -enals, see: (a) Lillo, V.; Prieto, A.; Bonet, A.; Díaz-Requejo, M. M.; Ramírez, J.; Pérez, P. J.; Fernández, E. Organometallics **2009**, 28, 659. (b) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. **2012**, 134, 8277. (c) Ibrahem, I.; Breistein, P.; Córdova, A. Angew. Chem., Int. Ed. **2011**, 50, 12036.