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A concise and efficient method for synthesizing the Taxol side chain via the corresponding oxazoline
intermediate was developed. The oxazoline ring is formed via an SN1 mechanism to ensure that the
trans-oxazoline stereochemistry is retained. This process was induced by intramolecular benzylic substi-
tution of a 1,2-bis-trichloroacetimidate, which was obtained from a known, enantiomerically pure diol.
Demethoxy-4-epi-cytoxazone was also obtained from the intermediary trans-oxazoline 3b.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

Chiral b-amino a-hydroxy acid moieties are frequently found in
various biologically important compounds and natural products
[1], and also serve as chiral ligands and auxiliaries for asymmetric
synthesis [2]. For example, the side chain present in the anticancer
drug Taxol and its derivatives is the most well-known example of a
chiral b-amino a-hydroxy acid; therefore the synthesis of Taxol
analogues has attracted considerable attention [3]. Extensive
efforts have been made to develop enantioselective routes for the
synthesis of optically active b-amino a-hydroxy acids. Successful
approaches include the following: Sharpless asymmetric aminohy-
droxylation [4], Sharpless asymmetric dihydroxylation [5], ring-
opening of chiral epoxides [6], asymmetric nitroaldol reactions
[7], asymmetric 1,3-dipolar cycloaddition [8], asymmetric Mannich
reactions [9], and other synthetic strategies [10]. Although these
methods are currently available for the enantioselective synthesis
of chiral b-amino a-hydroxy acids, including vicinal amino alcohol
moieties, simple and efficient approaches toward these classes of
compounds are still greatly desired.

In our attempt to synthesize the Taxol side chain (1), we applied
our nitrogen-introducing method that employs an intramolecular
cyclization process using a trichloroacetimidate. Trichloroacetimi-
dates are well-known leaving groups and can serve as efficient gly-
cosyl donors for glycosylation reactions. Moreover, several useful
reactions involving the use of trichloroacetimidates for the intro-
duction of a nitrogen functionality have been reported, wherein
the trichloroacetimidate nitrogen atom acts as a nucleophile. These
include (1) electrophile-promoted intramolecular aminations of
trichloroacetimidates derived from allylic and homoallylic alcohols
[11], (2) acid-promoted intramolecular epoxide-opening reactions
of trichloroacetimidates [12], (3) Overman rearrangements in
which trichloroacetimidates also act as leaving groups [13], (4)
rearrangement of benzylic trichloroacetimidates to benzylic
trichloroacetamides [14], and (5) intramolecular conjugate addi-
tions of trichloroacetimidates [15]. In addition to these reactions,
intramolecular allylic substitution by a bis-trichloroacetimidate
during the synthesis of staurosporine was reported by Danishefsky
[16]. This reaction can be viewed as a vinylogous intramolecular
Schmidt glycosylation reaction [17]. A few examples of other, sim-
ilar reactions have also been reported [18]. Furthermore,
intramolecular benzylic substitutions by 1,3-bis-trichloroacetimi-
dates have reportedly provided dihydrooxazine ring systems
[19], while 1,2-bis-trichloroacetimidates have induced intramolec-
ular propargylic substitutions [20]. Recently, we reported the syn-
thesis of 4-epi-cytoxazone via oxazoline formation that proceeded
through the intramolecular benzylic substitution of 1,2-bis-
trichloroacetimidates [21]. We were not only interested in
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demonstrating the usefulness of this method, but also in evaluating
the effect it had on the reactivity of the benzene ring substituents
and the functional groups adjacent to the trichloroacetimidate
moiety.

Herein, we report a concise and effective route for the synthesis
of 1 (Fig. 1), which was developed by investigating the reactivity of
bis-trichloroacetimidates. Additionally, we detail the synthesis of
demethoxy-4-epi-cytoxazone (2) from an intermediary compound
(3b). Cytoxazone is a microbial metabolite originally isolated from
a Streptomyces species [22]. It has been identified as a selective
cytokine modulator that inhibits cytokine production via the sig-
naling pathway of Th2 cells, but not Th1 cells [22]. Inhibitors of
Th2-dependent cytokine production have significant potential for
use as potent chemotherapeutic agents for immunotherapy. There-
fore, various methods for the synthesis of cytoxazone and its
derivatives have been reported [23].

The purpose of this study was to utilize trichloroacetimidate-
mediated functionalization to introduce a nitrogen functionality
during the stereoselective synthesis of b-amino a-hydroxy acids
with 1,2-amino alcohol moieties, such as 1.
Scheme 1. Retrosynthesis of 1.

Scheme 2. Synthetic protocol beginning from diol 5a.
Results and discussion

Based on the retrosynthetic analysis of 1, as shown in Scheme 1,
we envisaged that 1 could be obtained from compounds 3a or 3b
bearing an oxazoline moiety. The desired trans-oxazoline interme-
diates 3a or 3b could be obtained by the key intramolecular ben-
zylic substitution of the corresponding bis-trichloroacetimidates
4a or 4b, respectively. These trichloroacetimidates can be prepared
from known chiral diols 5a or 5b, respectively, which can be
obtained by Sharpless asymmetric dihydroxylation (AD).

Due to its ester moiety, diol 5a is more similar in structure to 1
than diol 5b is; therefore, we decided to start our synthetic studies
with this compound (Scheme 2). The starting diol, (2R,3S)-5a [24],
was obtained by Sharpless AD from the corresponding a,b-unsatu-
rated ester (ethyl cinnamate) using dihydroquinine phthalazine
((DHQ)2PHAL) as the chiral ligand (denoted as the AD-mix-a proto-
col). First, diol 5a was transformed into the corresponding bis-
trichloroacetimidate 4a by treatment with a catalytic amount of
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and an excess amount
of trichloroacetonitrile in acetonitrile at a low temperature. Bis-
trichloroacetimidate 4a was stable on silica gel; however, the yield
was only moderate (up to 59%) and could not be improved. In fact,
using a stoichiometric amount of DBU considerably decreased the
yield. Subsequent cyclization was performed using Lewis acids
(BF3�OEt2 or trimethylsilyl trifluoromethanesulfonate (TMSOTf)).
The reactivity of bis-trichloroacetimidate 4a was low, as expected,
and the starting bis-imidate remained practically unchanged under
conditions employing a catalytic amount of BF3�OEt2. The desired
cyclization was found to proceed with a catalytic amount of
TMSOTf or a stoichiometric amount of BF3�OEt2. However, the oxa-
zoline rings of the resultant 3a and 3aʹwere easily hydrolyzed dur-
ing the reaction to afford the corresponding isomers 6a and 6aʹ
[25], which could not be separated, in moderate yield (up to
Fig. 1. Structures of the Taxol side chain (1) and demethoxy-4-epi-cytoxazone (2).
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78%). Unfortunately, the selectivities of the desired 6a and its iso-
mer 6aʹ were quite low (ca. 1:2 to 1:1) [26].

Due to the low-yielding trichloroacetimidation, poorly selective
cyclization, and inseparable isomer products, we attempted the
same synthesis but with diol (2S,3S)-5b [27,28], as shown in
Scheme 3. Diol 5b was also easily obtained by Sharpless AD from
the corresponding O-TBS-allyl alcohol using the AD-mix-a
protocol.

Diol 5b was treated with a stoichiometric amount of DBU and
an excess amount of trichloroacetonitrile in acetonitrile at low
temperature to afford bis-trichloroacetimidate 4b. The correspond-
ing p-methoxy-isomer of 4bwas not stable on silica gel, thus it was
prone to cyclizing into an oxazoline during silica-gel chromatogra-
phy [21]. In stark contrast, 4bwas fairly stable on silica gel and was
obtained in high yield (98%) after typical silica-gel chromatography
[14].

Bis-trichloroacetimidate 4b was then cyclized to form the cor-
responding oxazoline (3b) by treatment with Lewis acids. Specifi-
cally, treatment of 4b with a catalytic amount (0.4 eq) of
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Scheme 3. Synthesis of 1.
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BF3�OEt2 resulted in the recovery of almost all the starting bis-imi-
date, while this same treatment resulted in complete conversion of
the p-methoxy isomer [21,14]. However, treatment of 4b with a
stoichiometric amount (1.1 eq) of BF3�OEt2 resulted in the forma-
tion of oxazoline 3b with moderate selectivity (ca. 3:1) along with
a substantial amount of hydrolyzed trichloroacetamide 7. The
addition of water to the reaction mixture did not improve the yield
of the trichloroacetamide, and further treatment with triethy-
lamine was not effective in preventing ring-opening.

Next, we attempted to use TMSOTf, which has been reported as
a good Lewis acid in the reactions of the bis-trichloroacetimidates
of alkynyl-glycinols [20]. Consequently, 4b was treated with a cat-
alytic amount (0.4 eq) of TMSOTf followed by quenching with tri-
ethylamine [20], which afforded the corresponding oxazoline
(3b) with good selectivity (ca. 3.4:1) and in a relatively high yield
(combined, 96%) without any ring-opening occurring. Fortunately,
the trans (3b) and cis (3bʹ) isomers were easily separated due to the
former being less polar than the latter. This resulted in 3b and 3bʹ
being isolated in 74% and 22% yield, respectively. Regarding the
oxazoline rings of these isomers, it was reported that a small cou-
pling constant (�6–7 Hz) corresponds to the trans isomer while a
large coupling constant (�9–10 Hz) represents the cis form
[21,29]. Therefore, the relatively small coupling constant (JH-

4,5 = 6.9 Hz) that we observed for 3b, the major compound, implies
that it exhibits trans stereochemistry, while the large coupling con-
stant (JH-4,5 = 10.1 Hz) noted for 3bʹ, the minor compound, suggests
that it has a cis configuration.

The mechanism of this reaction seems to be the same as that
reported for a methoxy-substituted substrate, where an SN1-type
reaction and the steric repulsion of the substituents exclusively
give the trans-oxazoline product (sterically retained) [21]. In the
absence of the methoxy group (4b), the intermediary carbocation
might not be stably generated, and the isomeric ratio may become
poor due to the mixture of compounds presumably generated from
the SN2 mechanism. In the case of the 1,2-bis-trichloroacetimi-
3

dates of alkynyl-glycinols [20], the reactions generally proceed
via an SN2 mechanism; however, when the substituent at the end
of the alkyne is a Ph group, an SN1-type reaction occurs. The occur-
rence of the SN1-type reaction is suppressed by adding the elec-
tron-withdrawing chlorine substituent to the Ph group.

With the target intermediary oxazoline (3b) in hand, the next
step was to transform it into N-benzoylated diol 8, the exact pre-
cursor of 1. Acidic hydrolysis of trans-oxazoline 3b with aqueous
HCl and successive N-benzoylation was unsuccessful. However,
partial hydrolysis of the oxazoline ring of 3b was successfully per-
formed with p-TsOH in wet CH3CN to give to trichloroacetamide 7
(82% yield), which was then hydrolyzed under basic conditions and
successively N-benzoylated to give diol 8 in 70% yield (2 steps).
Upon examining the alkaline hydrolysis of oxazoline 3b or
trichloroacetamide 7, we noted that 2, which is relatively resistant
to alkaline hydrolysis, was obtained as a byproduct in low yield.
Therefore, we performed the same hydrolysis under stronger con-
ditions that employed 1,4-dioxane as a co-solvent. Consequently,
the alkaline hydrolysis and N-benzoylation of 3b could be success-
fully executed in a one-pot reaction to give the target diol (8) in
good yield (72%). Diol 8 has been reported as a decomposition pro-
duct of the reaction of Taxol with sodium borohydride [30], and the
melting point and 1H NMR spectrum of 8 obtained from that reac-
tion were consistent with those observed for our diol (8). This con-
firmed our isolation of the desired product.

Finally, the selective oxidation of 8 with 2,2,6,6-tetram-
ethylpiperidin-1-oxyl (TEMPO) [31] afforded the crude product
(1), which was directly recrystallized (avoiding column chro-
matography) to give the pure product as fine needle-like crystals
in 39% yield. The spectroscopic properties (1H and 13C NMR) of 1
obtained in this work were consistent with those of the known
compound reported in the literature [6(c),8a,10a].

Additionally, intermediate trichloroacetamide 7 was trans-
formed into 2 (Scheme 4). We successfully obtained 2 in 95% yield
through a one-step process involving the treatment of 7 with
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tetrabutylammonium fluoride (TBAF).[21,32] The spectroscopic
properties (1H and 13C NMR) of 2 obtained in our work were con-
sistent with those reported for the racemate of 2 in the literature
[33].

Conclusion

We successfully synthesized the Taxol side chain (1) and
demethoxy-4-epi-cytoxazone (2) using a protocol where the intro-
duction of a stereoselective nitrogen functional group via 1,2-bis-
trichloroacetimidate was the key reaction. This facile synthetic
route requires only four steps to isolate 1 (20%) from the known,
enantiomerically pure diol 5b. Not only can our strategy construct
b-amino a-hydroxy acid derivatives and other compounds pos-
sessing oxazoline rings, oxazolidinone rings, or amino alcohol moi-
eties, but it can do so without an azide reagent. This is significant
as azides are potentially toxic and hazardous. Furthermore, the 1,2-
amino alcohol motif is present in various natural products and
other biologically active compounds [34]; thus, its fabrication
using a simple protocol such as the one reported here is very ben-
eficial. There are currently no reports on the bioassays of 2, but it
has been reported that there is no significant difference between
its four stereoisomers in terms of their bioactivity [35]. Due to
the interesting biological activity of the p-methoxy and non-substi-
tuted forms of cytoxazone, we plan to conduct bioassays on these
compounds in future studies.
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