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Abstract : Enantiopure C2-symmetric bis(cyclic isothioureas), considered as potent inhibitors 
of glycosidases, have been synthesized from D-mannitol. The key step involved a mercuric- 
catalyzed transformation of a cyclic 1,3-thiazolidine-2-thione into a 2-N-tert-butylamino-1,3- 
thiazoline. © 1999 Elsevier Science Ltd. All rights reserved. 

Keywords : Glycosidase, Isothiourea, Thioformamide, Thiazolidinethione, Mercuric chloride. 

Glycosidases are involved in many biological processes, such as glycoprotein t r imming,  catabolism of 

glycoconjugates and degradat ion of polysaccharides.  As a consequence,  specific inhibitors of these enzymes 
2 

are of great interest as possible therapeutic agents to treat many diseases such as diabete,  1 cancer or viral 
3 

infections. 

Most  inhibi tors  of g lycosidases  descr ibed to date are mimics  of  the supposed  t ransi t ion state 
• 4 

oxocarbentum. Among  sugar mimics,  5 azasugars are structures that are the most  widely used. However,  we 

focused our attention to other structures, namely isoureas 6 . . 7 and tsothtoureas which were already combined with 

an aminocyclitol or a sugar and revealed to be active against glycosidases. Our goal was to examine the potent 

inhibitory activity of such compounds  in the absence of the sugar-like moiety. 

As a matter  of fact, we decided to synthesize some cyclized C2-symmetr ic  bis(isothioureas) from D- 

mannitol.  We  report here prel iminary results concerning the syntheses of  the enant iopure bis(2-amino-l,3- 

thiazolines) 1 and 2, as potent inhibitors of glycosidases : 

1 HO ~ \ 
NH2 

H2N x 

2 Ho 
NH2 

Three different methods for the synthesis of 2-amino-l ,3- thiazol ine f rom 13-aminoalcohol are depicted 

in Scheme 1 : 1) reaction with thiocyanate ion, and subsequent  cyclization; 2) reaction with an alkyl-, aryl- or 
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acyl-isothiocyanate, and cyclization; or 3) reaction with carbon disulfide to intermediately form a cyclic 1,3- 

thiazolidine-2-thione, followed by S-methylation and subsequent displacement of the resulting methylthio 

group with either ammonia or a primary amine. Among those three pathways, only a procedure derived from 

the last one was successful with our compounds derived from D-mannitol. 

-SCN = '~NH2 
H ~ N H R  

H ,SH 

Scheme 1 : A = OH or leaving group, R = H or alkyl. 

S 2) R N H  2 

The synthesis of 1 began  with the 1,6-diazido compound 5 (Scheme 2), obtained from the 

commercially available 3,4-O-methylethylidene-D-mannitol 3 by selective tosylation of primary hydroxyl 

groups with p-toluenesulfonyl chloride (86%), 8 followed by nucleophilic substitution of the resulting tosylates 
• 9 

with sodium azide (75%). Heterogeneous catalytic reduction of 5 in the presence of di-tert-butyl dlcarbonate 

led to the protected 1,6-diamine 6 (83%). Mesylation of the secondary hydroxyl groups followed by 

deprotection of the amines with 

trifluoroacetate 8 in quantitative yield. 

PO OH HO OP 

trifluoroacetic acid led to the 

N 3 OH HO N 3 

~ 3 P = H  5 
a 4 P = T s  

1,6-diammonium-2,5-dimesylate bis- 

A OP PO A 

d ~ 6 P = H ; A = N H B o c  
7 P= Ms ; A = NHBoc [ 

e 
~' 8 P = Ms ; A = NH3 +. CF3COO 

9 10 1 

Scheme 2 : (a) TsC1, pyridine, 0°C ; (b) NaN 3, DMF, A ; (c) H2, 10% Pd/C, (Boc)20, EtOAc, rt, 2h ; 
(d) MsC1, NEt3, CH2Cl 2 ; (e) TFA / CH2C12, rt, lh ; (f) CS2, NEt3, CH2CI2, rt, 15h ; (g) tBuNH2, NEt3, 
HgCl2, DMF, 80°C, 15h ; (h) concentrated HCI, reflux, 15h 

Direct transformation of 8 into the bis(1,3-thiazolidine-2-thione) 9 with inversion of configuration at 

C2 and C5 cleanly occurred in presence of carbon disulfide and slow addition of triethylamine (90%). Under 
CS to these conditions, involving the good electrophile 2, nucleophilic addition of the primary amines and 
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subsequent formation of the thiazolidine rings was much faster than the intramolecular formation of aziridine 

rings. Although methylation at the exocyclic sulfur atoms of 9 with methyl iodide was easily achieved, all 

attempts to substitute the thiomethyl groups with ammonia were unsuccessful. To overcome this problem, by 
• . 11  1 2  

analogy with transformation of thiourea or thioamide into guanldme or amidine, respectively, direct 

substitution of the thioxo groups of 9 was examined. As expected, tert-butylamine treatment of 9 in DMF in the 

presence of mercuric dichloride and triethylamine led to the bis(2-N-tert-butylamino-l,3-thiazoline) 10 in 

quantitative yield. The final acetonide hydrolysis and N-tert-butyl cleavage were carried out in refluxing 

concentrated aqueous HCI and led to compound 1 (70%), isolated as its bis-chlorhydrate salt.13 

Furthermore, from the N-Boc protected 2,5-diamine 15 the synthesis of 2, which is a N,S-isomer of 

position of 1, was efficiently carried out (Scheme 3). The diamine 15 was easily obtained from the 3,4-0- 

methylethylidene-D-mannitol 3 as follows : selective benzylation of both primary hydroxyl groups through 

stannylidene activation with Bu2SnO and treatment with benzyl bromide (86%), then mesylation of the 

secondary hydroxyl groups and nucleophilic substitution with sodium azide (57%). Heterogeneous catalytic 

reduction of the diazido compound 13 in the presence of di-tert-butyl dicarbonate 9 led to the protected 2,5- 

diamine 14 (76%) which was subsequently debenzylated with sodium in liquid ammonia in quantitative yield 

to afford 15. This bis(N-Boc-aminoalcohol) was successively subjected, as above, to mesylation, N-Boc 

deprotection and cyclization into bis(1,3-thiazolidine-2-thione) with carbone disulfide, then HgC12-catalyzed 

transformation into bis(2-N-tert-butylamino-l,3-thiazoline), prior to the final removal of all protecting 
14 

groups. 

2<o 
p 1 0 ~ O P  1 c 

a f  3 p I = p 2 = H  
b 11 pI=Bn ;p2=H 

12 PJ= Bn ; p2 = Ms 

Uo 
la 

s s 
18 

d I= ]l, 

BnO N 3 N 3 OBn PO A A OP 

13 

la. 

tBuHN NHtBu 

]9  

( 1 4 P =  Bn ; A =NHBoc 
e ?15 P= H ; A = NHBoc 

f ~ 1 6 P = M s ; A = N H B o c  

g ~17 P = Ms ; A = NH3 +. CF3COO 

H2N, 

v 

NO 
NH 2 

2 
Scheme 3 : (a) i- Bu2SnO, toluene, A, 15h; ii- BnBr, nBu4NI, toluene, 70°C, 15h ; (b) MsCI, NEt3, 

CH2C12 ; (c) NAN3, DMF, 120°C, 15h ; (d) H2, 10% Pd/C, (Boc)20, EtOAc, rt, 2h30 ; (e) Na / NH3 liq., 

lh ; (f) MsCI, NEt 3, CH2CI 2 ; (g) TFA / CH2C12, rt, lh ; (h) CS 2, NEt 3, CH2C12, rt, 15h ; (i) tBuNH2, 
NEt3, HgC12, DMF, 80°C, 15h ; (j) concentrated HC1, reflux, 15h. 

In summary, this study presents an efficient synthetic way to construct enantiopure C2-symmetrical 

bis(2-amino-l,3-thiazolines) from D-mannitol. The key step involves the HgCl2-catalyzed transformation of a 
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cyclic 1,3-thiazolidine-2-thione into a 2-N-tert-butylamino-l,3-thiazoline. The biological activity of the new 

compounds described here has been studied; full results will be reported in due course. 
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