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Abstract—A new method for the construction of the side chain of anti-cancer drugs adriamycins is demonstrated by the synthesis
of 4-demethoxyadriamycinone. The key step is the ruthenium-catalyzed oxidation of allyl acetates to the corresponding
�-hydroxyketones. © 2001 Elsevier Science Ltd. All rights reserved.

Anthracyclines are of extreme importance in chemical
anti-cancer therapy; daunomycin (1a) and adriamycin
(1b) provide a broad range of activity towards different
types of tumors, and hence many methods for synthesis
of natural and non-natural anthracyclines have been
reported.1 Among modified anthracyclines, 4-
demethoxyanthracyclines2 such as idarubicin (1c)3 and
annamycin (1d)4 are of interest because of higher
potency, particularly in the latter case of strongly
decreased cardiotoxicity and activity against some nor-
mally anthracyclin-resistant cancer cell lines. Introduc-
tion of a functional group of �-ketol to the A ring
would be the most important problem involved in the
synthesis of aglycons of anthracyclines.

We wish to report synthesis of 4-demethoxyadriamy-
cinone based on a process which includes ruthenium-
catalyzed oxidation of trisubstituted alkenes to the
corresponding �-ketols.5 The reported method for
introduction of the �-ketol group is limited to the
hydration of tertiary propargyl alcohol with an excess
of environmentally destructive mercury oxide under
strongly acidic conditions.6

First, we examined synthesis of �-ketol quinone (9) as
shown in Scheme 1. Diels–Alder reaction of benzo-
quinone with diene 2 in THF,7 followed by hydrolysis
with a 0.1 M HCl solution gave the adduct 3. Acetyla-
tion of 3 upon treatment with acetic anhydride in the

presence of triethylamine in THF gave the diacetate 4
(mp 118°C) (88%). Addition of vinyl magnesium bro-
mide to a solution of 4 in THF gave no desired product
due to enolization; however, in the presence of cerium
chloride the reaction occurred smoothly under the strict
reaction conditions.8 Thus, use of dry CeCl3 is crucial.9

Quenching the reaction mixture with acetic anhydride
at −78°C, the acetate 5 (mp 108°C) was obtained in
62% yield after recrystallization. Treatment of 5 with a
catalytic amount of PdCl2(MeCN)2 in toluene gave the
rearranged allyl acetate 6 (97%).10 The oxidation of 6
with peracetic acid in acetonitrile/water (1:1) in the
presence of a ruthenium chloride catalyst afforded a
mixture of diastereomers (7+8) (1:7).11 The desired cis
isomer 8 (mp 138°C) was isolated in 60% yield.12 Trans-
formation of 8 to the benzoquinone 9 was quite
difficult. The best result was obtained upon treatment
with zinc dust in methanol, followed by oxidation of
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Scheme 1. Reagents: (a) i. THF, rt, 4 h; ii. 0.1 M HCl, THF, rt, 15 min, 74%. (b) Ac2O, NEt3, THF, 45°C, 5 h, 88%. (c) i.
CH2�CHMgBr, CeCl3, THF, 1 h, −78°C; ii. Ac2O, −78°C to rt, 1 h, 62%. (d) PdCl2(MeCN)2 cat., toluene, rt, 97% for 6, 98% for
11. (e) CH3CO3H, RuCl3 cat., MeCN/H2O, 60% for 8, 30% for 9. (f) i. Zn, MeOH, rt, 24 h; ii. CAN, MeCN/H2O, 0°C, 15 min,
47%. (g) i. NaBH4, THF/H2O, 0°C, 38 h. ii. CAN, MeCN/H2O, 0°C, 74%, 1 h.

the intermediate hydroquinone with CAN (47%).13 The
low yield is due to the high lability of 9. An alternative
method for the synthesis of 9 is as follows. Removal of
the acetyl groups of 5 upon treatment with NaBH4 in
water/THF followed by oxidation with CAN gave 10
(74%), which underwent allylic rearrangement to give
11 as a quite stable yellow solid (mp 115°C) in 98%
yield. However, the ruthenium-catalyzed oxidation of
11 gave the unstable 9 in low yield.

We examined a route which includes a coupling reac-
tion of the CD ring as shown in Scheme 2. A solution
of the compound 12 was treated with sodium hydride,
to which was added a solution of 10 at −40°C accord-
ing to the procedure of Kita et al.14 Stirring at room
temperature for an additional 3 h was necessary to
allow the extrusion of carbon dioxide of 12. The desired
yellow tetracycle 14 (mp 168–173°C), in which the
acetyl group at O-5 of 13 was shifted to O-6, could be

Scheme 2. (a) NaH, THF, −40°C to rt, 3 h, 70%. (b) PdCl2(MeCN)2 cat., toluene, rt, 24 h, 99%. (c) RuCl3 cat., CH3CO3H,
MeCN/CH2Cl2/H2O, rt, 24 h, 60%. (d) 1.2 M HCl, i-PrOH, reflux, 2 h, 50%.
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obtained in 70% yield as a single product.15 Such
migration of the acyl group takes place readily
because of higher thermodynamic stability of the
naphthacenedione 14 in comparison with its tautomer
13.16 The palladium-catalyzed allylic rearrangement of
14 gave the allyl acetate 15 (mp 187–189°C) in 99%
yield.17 Oxidation of 15 with CH3CO3H in the pres-
ence of RuCl3 catalyst in a mixture of water, acetoni-
trile and dichloromethane (1:1:1) afforded 16 (mp
209–213°C) in 60% yield after crystallization.18 The
relative configuration between the t-BuO group at C-
7 and the OH group at C-9 of 16 was determined to
be trans using NOESY experiments. The stereochem-
istry is also deduced by measuring the width of the
7-H proton signal at half height; a very broad signal
(18.3 Hz) indicates trans configuration.19 Strong tem-
perature dependence of the shift of this peak also
indicates an intramolecular hydrogen bonding with
the OH group at C-9, which is only possible for the
trans isomer. The presence of an acetoxy group at
C-5 in the compound 6 seems to affect the stereo-
chemistry of the oxidation products 8, making them
cis because of the attractive interaction of the acetoxy
group with the ruthenium, while the oxidation of 15
affords trans-16. Deprotection and epimerization at
C-7 was readily achieved in one step by heating 16
with diluted hydrochloric acid in isopropanol/water to
yield 4-demethoxyadriamycinone (17), which showed
the same spectroscopic data to those reported.20,21

Conventional treatment of 17, including oxyiodination
with L-rhamnal diacetate in the presence of N-iodo-
succinimide, gave 1d, where resolution of the racemic
aglycon 17 took place to furnish the optically pure
(7S,9S) -4-demethoxy-7-O - (2,6-dideoxy-2- iodo-� -L-
mannopyranosyl)adriamycinone (1d) and its 7R,9R
isomer.3

Our present approach using ruthenium-catalyzed oxi-
dation of alkenes to the corresponding �-ketols can
be also applied to the synthesis of other anthracy-
clinones.
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