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b-Lactams are quite susceptible to ring opening when exposed to nucleophilic reagents. The robustness of
a variety of bromo- and iodoarenes containing electrophilic functional groups toward alkyllithium
reagents during the halogen–lithium exchange process was first described by Parham, Bradsher, and
co-workers. These observations led us to consider the behavior of bromoaryl-substituted b-lactams when
treated with n-butyllithium at �100 �C in tetrahydrofuran. The work discussed herein describes success-
ful halogen–metal exchange reactions on haloarene-substituted b-lactams thereby permitting a method
for aromatic ring elaborations in the presence of the highly electrophilic b-lactam ring.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

In the 1970s, Parham and Bradsher demonstrated that halogen–
metal exchange reactions were possible on aryl bromides to form
aryl compounds bearing electrophilic groups (Scheme 1).1 These
reactions were conducted at low temperatures (typically
�100 �C) using either n-butyllithium or t-butyllithium as the ex-
change reagent. These studies established a new reaction para-
digm: halogen–lithium exchange reactions can occur at low
temperatures chemoselectively with little to no formation of un-
wanted side products resulting from reaction of the electrophilic
groups contained in the molecule with the alkylithium reagents.
Typically, these side reactions are observed at higher temperatures.

To the best of our knowledge, such reactions in the presence of
the b-lactam electrophilic moiety have yet to be investigated. As
previously indicated, these systems are of interest due to their
inherent biological activity with possible uses as anti-fungal agents
or b-lactamase inhibitors.2,3 While biological activity stems from
the very reactive four-membered b-lactam ring due to strain, the
same strain is also responsible for the reactivity of the system as
an electrophilic moiety (Scheme 2–penicillin reactivity).4 Nucleo-
philes, particularly oxygen nucleophiles, can attack the carbonyl
carbon5 leading to ring opening and a concomitant loss of biologi-
cal activity. The ability to perform chemical transformations on an
assembled b-lactam system, especially through the use of organo-
metallic reagents which function as potent nucleophiles under
normal conditions, would be of possible value toward the design
of new b-lactam derivatives, thereby serving as a tool in designing
b-lactam compounds as novel pharmaceutical agents (Scheme 2).

Results and discussion

Compounds containing the basic structure illustrated below (4)
are known to possess biological activity against some strains
of bacteria as well as fungi and constitute a new generation of
b-lactams.6 In addition, closely related analogs have proven effec-
tive as cholesterol absorption inhibitors.7 The preparation of
bromoaryl b-lactams within this series serves as a starting point
for the study described herein and involves a straightforward
two-step process as shown in Scheme 3. 8,9

While bromine substitution can occur at any position in either
aromatic ring, for the purpose of this study we prepared deriva-
tives containing bromine at the ortho- or meta-positions relative
to the point of attachment to the b-lactam due to ready availability
of the requisite starting materials (1, 2).

Halogen–lithium exchange was conducted at �100 �C in tetra-
hydrofuran using n-butyllithium as the organometallic exchange
reagent (Scheme 4). In order to determine whether the exchange
reaction occurred, the reaction mixture was quenched with various
electrophiles at low temperatures (H2O, CH3I, benzaldehyde, and
CO2/H3O+). Analysis of the reaction mixtures confirmed that inter-
mediates (5) did indeed form in the presence of the reactive
b-lactam ring, thereby proving that the b-lactam is indeed robust
enough to withstand the reaction conditions. The structures of
the elaborated b-lactams were confirmed by 1H NMR, 13C NMR,
IR, and GC/Mass spectra. (See Table 1)
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The reaction of the bromoaryl b-lactams 4 in which a halogen–
metal exchange occurred at low temperatures to generate the reac-
tive intermediates 5 proved successful. The aryllithium which
formed was quenched with various electrophiles (including H2O,
CH3I, PhCHO, and CO2/H3O+) to afford the elaborated intermediates
in moderate to low yield with no products resulting from ring
opening of the highly reactive b-lactam ring observed.10
While these results indicate that halogen–metal exchange can
indeed occur at low temperatures without opening the b-lactam
ring system, efforts directed toward better understanding the reg-
ioselectivity effects of ring position (i.e., 4a vs 4b) with regard to
the efficiency of the exchange reaction remain to be studied. In
addition, further optimization work is necessary in order to fully
ascertain the potential of this method.



Table 1

Entry Compound E+ X/Y % Yield (isolated)

1 6c H2O H 62
2 6c CH3I CH3 66
3 6c PhCHO CH(Ph)OH 9
4 6a H2O H 46
5 6c C2H5I C2H5 62
6 6b H2O H 69
7 6a CH3I CH3 50
8 6d CH3I CH3 47
9 6a CO2/HCl CO2H 67
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