Tetrahedron 69 (2013) 4311-4324

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthetic transformation of homopropargylic selenides to conjugated diene-substituted alcohols and amines using diisopropoxy(η^2 -alkyne)titanium intermediates

Tetrahedror

Kazuki Shintaku, Yoko Nishino, Hajime Maeda, Masahito Segi*

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

ARTICLE INFO

Article history: Received 4 December 2012 Received in revised form 12 March 2013 Accepted 15 March 2013 Available online 20 March 2013

Keywords: Homopropargylic selenide Carbotitanation Titanium–alkyne complexes Phenylseleno group Selenoxide elimination Conjugated dienes

ABSTRACT

The reaction of homopropargylic selenides with the low-valent titanium reagent, derived from $Ti(O-i-Pr)_4$ and 2 equiv of *i*-PrMgCl, proceeded via titanium—alkyne complexes, followed by the reaction with electrophiles, such as aldehydes and imines to afford allylic alcohols and amines having a phenylseleno group in moderate to high yields with excellent regioselectivity (up to >99:1). Especially, the reaction of the silyl-substituted alkynes with imines provided the desired products in almost complete regioselectivity. The resulting products were subjected to oxidation with H_2O_2 to lead conjugated diene-substituted alcohols and amines via selenoxide elimination in high yields. In addition, the isomer ratio of products was nearly completely maintained under the oxidative deselenation conditions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Titanium–alkyne complexes are very valuable intermediates in organic synthesis.¹ In 1995, Sato and co-workers reported that the titanium complexes known as diisopropoxy(η^2 -alkyne)titaniums are readily prepared from internal alkynes and the low-valent titanium reagent, generated in situ from Ti(O-*i*-Pr)₄ and 2 equiv of *i*-PrMgCl. These complexes can react with various electrophiles, such as aldehydes,² ketones,² imines,³ and so on,⁴ to afford a variety of di-, tri-, and tetrasubstituted alkenes. Internal alkynes are suitable substrates for this reaction, and the reports of the use of terminal alkynes are limited.⁵ In addition, for a titanium complexes arising from an unsymmetrical alkyne, the reaction with ketones, unsaturated, and aromatic aldehydes indicated generally significantly high regioselectivity, which raised with increasing the steric hindrance when saturated aldehydes was used.²

On the other hand, organoselenium chemistry has become a very powerful tool in organic synthesis.⁶ In particular, 3-phenylseleno-1-propyne **1** (propargylic selenide) and 4-phenylseleno-1-butyne **2** (homopropargylic selenide) are expected to be versatile intermediates

for synthesis of polyfunctionalized compounds (Scheme 1), because several reactive moieties of them will play important roles in functional group transformations.^{7,8} Those are (1) carbon–carbon bond formation via hydrometallation of a terminal triple bond, (2) formation of olefins and allylic alcohols via selenoxide elimination and [2,3]sigmatropic rearrangement, respectively, and (3) elongation of carbon chain via abstraction of acidic protons.

Scheme 1. Terminal alkynes having a phenylseleno group.

Especially, the CH_2CH_2SePh moiety of **2** can be converted into the $CH=CH_2$ functional group via selenoxide elimination by oxidation, and thus is regarded as a vinylic equivalent. On the other hand, it has been reported that the reaction of conjugated enyne-titanium alkoxide complex with aldehydes gave the allenyl alcohol derivatives.⁹ In this reported reaction, conjugated diene derivatives are not obtained. We herein present the efficient and facile synthetic procedure of conjugated dienes having an allylic alcohol or amine moiety, in combination with titanium–alkyne

^{*} Corresponding author. Tel.: +81 76 234 4787; fax: +81 76 234 4800; e-mail addresses: segi@se.kanazawa-u.ac.jp, segi@t.kanazawa-u.ac.jp (M. Segi).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.03.060

complex formation by the reaction of homopropargylic selenide derivatives with the low-valent titanium reagent and selenoxide elimination via oxidation of phenylseleno group.

2. Results and discussion

The internal alkynes **3a**–**e** were prepared by the introduction of some groups to the terminal alkyne carbon of 4-phenylseleno-1-butyne **2** (Scheme 2). Treatment of **2** with 1.1 equiv of *n*-BuLi in THF at -78 °C generated the alkynyl anion, followed by reacting with silyl chlorides to give the corresponding silyl-substituted alkynes **3a**–**c** in excellent yields. According to Linstrumelle's procedure, the phenyl-substituted alkyne **3d** was prepared by the reaction with iodobenzene in the presence of 5 mol % of Pd(PPh₃)₄ in pyrrolidine at 50 °C in 99% yield.¹⁰ The alkyl-substituted alkyne **3e** was obtained in 95% yield by abstraction of terminal acidic proton on **2** and the subsequent reaction with *n*-octyl bromide in the presence of hexamethylphosphoric triamide (HMPA).

Scheme 2. Introduction of some groups to the terminal alkyne carbon of 4-phenylseleno-1-butyne **2**.

The internal alkynes **3a**–**d** reacted with the low-valent titanium reagent 4, generated in situ from Ti(O-*i*-Pr)₄ (2 equiv) and *i*-PrMgCl (4 equiv), in Et₂O at -50 °C for 2 h to produce titanium–alkyne complexes 5, which were then reacted with various aldehydes at -70 °C for 1 h to give allylic alcohols 7 and 8 via oxatitanacyclopentene intermediates **6** and **6**′, respectively (Scheme 3, Table 1).¹¹ However, when the octyl-substituted alkyne 3e was used as a substrate, the reaction did not proceed and the starting alkyne **3e** was completely recovered. These results are summarized in Table 1. The regioselectivity of giving products **7** and **8** was depended on both the substituent groups (R^1) of internal alkynes **3** and the steric hindrance of aldehydes. Namely, the silvl-substituted alkynes **3a**-c selectively underwent the addition of aldehydes at β -carbon to the silyl group to lead intermediates 6, whereas the phenyl-substituted alkyne **3d** preferentially reacted at α -carbon to the phenyl group to give allylic alcohols 8 via intermediates 6', accompanying the regioisomer 7. It was revealed that the combination of the alkynes **3a**–**c** bearing a silvl group and sterically hindered aldehydes provided allylic alcohols 7 in extremely high regioselectivity, but the selectivity decreased when primary aliphatic aldehyde was used (entries 2, 5, and 8). In the case of the alkyl-substituted alkyne **3e**, the starting alkyne was completely recovered (entries 13 and 14). This may be due to no stabilizing advantages arising from alkyl substituent influences for the complex 5. Accordingly, the alkyne complex 5 substituted by an alkyl group was not formed from the treatment of the low-valent titanium reagent and 3e, and the subsequent quench by H₂O afforded the starting alkyne **3e**.

Scheme 3. Synthetic transformation to conjugated diene-substituted alcohols from 3.

The plausible mechanism for the carbotitanation of **3** with benzaldehyde is shown in Scheme 4. The titanium-alkyne complex 5 is formed by ligand exchange of coordinated propene in the lowvalent titanium reagent **4** with the internal alkyne **3** (**3a**: R^1 =SiMe₃, **3d**: R¹=Ph). When the carbonyl group of aldehydes inserts to one of the two carbon-titanium bonds, a couple of presumable oxatitanacyclopentene intermediates A and B are possible. When the silylsubstituted alkyne 3a was used, the addition of a carbonyl carbon to the C–Ti bond at β -position to the silyl group would selectively proceed via the intermediate A1 to prevent forming B1 because of steric interruption between silvl and phenyl groups, followed by the treatment with H₂O to obtain the corresponding allylic alcohol 7aa. In contrast, the complex 5 from phenyl-substituted alkyne 3d preferentially reacted with benzaldehyde at the carbon having the phenyl group to give the intermediate **B2**, followed by treatment with H₂O to afford mainly the allylic alcohol 8da. This notable regioselectivity is consistent with the previous reports using unsymmetrical alkynes.^{1e,2}

In this way, the resulting products **7** and **8** having a phenylseleno group were oxidized by H_2O_2 in THF to give conjugated diene derivatives **9** and **10** bearing an allylic alcohol moiety in high to excellent yields via *syn* elimination of the corresponding selenoxides without isomerization of alkene (Scheme 3). The results are shown in Table 2. The structure of products **9** and **10** was identified by ¹H NMR analysis and that ratio of the isomers (**9**, **10**) was almost completely maintained under the oxidative deselenation conditions.

The results on the reaction of alkynes **3** with various imines instead of aldehydes as electrophiles using the low-valent titanium reagent were summarized in Table 3. In this reaction, two possible allylic amine derivatives **11** and **12** were produced. Similar to the above results using aldehydes, the reaction of the silyl-substituted alkynes **3a**–**c** with imines showed excellent regioselectivity (>96:4), of which titanium–alkyne complexes underwent electrophilic addition by imines at β -carbon to the silyl group regardless of the size of imines, to give the corresponding allylic amines **11**

 Table 1

 Synthesis of allylic alcohol derivatives using various alkynes 3 and aldehydes

	Rl	1) Ti(O- <i>i</i> -Pr) ₄ , <i>i</i> -PrMgCl Et₂O, -50 °C, 2 h	1) Ti(O- <i>i</i> -Pr) ₄ , <i>i</i> -PrMgCl R ¹ R ¹ Et ₂ O, -50 °C, 2 h SePh R ²	
		SePh 2) R ² CHO, -70 °C, 1 h	Serii + R ² SePh	
	3	3) H ₂ O	T 8	
Entry	3	R ²	Product (Major) (7:8) ^a	Yield ^b (%)
			ŞiMe ₃	
1	3a	Ph	HO Ph 7aa (>99 : 1)	66
2	3a	<i>n</i> -C ₅ H ₁₁	SiMe ₃ HO n -C ₅ H ₁₁ 7ab (93:7)	62
3	3a	t-Bu	SiMe ₃ HO <i>t</i> -Bu 7ac (>99 : 1)	48
4	3b	Ph	SiMe ₂ <i>t</i> -Bu SePh HO Ph 7ba (>99 : 1)	89
5	3b	<i>n</i> -C ₅ H ₁₁	SiMe ₂ t-Bu HO n -C ₅ H ₁₁ 7bb (80 : 20)	87
6	3b	t-Bu	SiMe ₂ <i>t</i> -Bu HO <i>t</i> -Bu 7bc (>99 : 1)	47
7	3c	Ph	SiMe ₂ Ph SePh HO Ph 7ca (>99 : 1)	78
8	3c	<i>n</i> -C ₅ H ₁₁	$HO - n - C_5 H_{11}$	61
9	3с	<i>t-</i> Bu	SiMe ₂ Ph SePh HO <i>t</i> -Bu 7cc (>99 : 1)	43
10	3d	Ph	Ph Ph OH 8da (17:83)	68
11	3d	<i>n</i> -C ₅ H ₁₁	$\begin{array}{c} Ph \\ n-C_5H_{11} \\ OH \\ \mathbf{8db} (14:86) \end{array}$	75 (continued on next page)

Table 1 (continued)

Entry	3	R ²	Product (Major) (7:8) ^a	Yield ^b (%)
12 13 14	3d 3e 3e	<i>t-</i> Bu Ph <i>n-</i> C ₅ H ₁₁	Ph SePh OH 8dc (43 : 57)	63 0 ^c 0 ^c

^a Product ratio of **7** and **8** was determined by ¹H NMR.

^b Isolated yield.

^c The starting alkyne **3e** was recovered.

Scheme 4. Plausible mechanism for carbotitanation of alkynes **3** with benzaldehyde.

Table 2

Synthesis of conjugated diene alcohols via selenoxide elimination

 Table 2 (continued)

Entry	Substrate (7:8)	Product (Major) (9:10) ^a	Yield ^b (%)
3	ac (>99:1)	SiMe ₃ HO <i>t</i> -Bu 9ac (>99 : 1)	69
4	ba (>99:1)	SiMe ₂ <i>t</i> ·Bu HO Ph 9ba (>99 : 1)	94
5	bb (80:20)	SiMe ₂ t-Bu HO n -C ₅ H ₁₁ 9bb (80 : 20)	81
6	bc (>99:1)	SiMe ₂ t-Bu HO t -Bu 9bc (>99 : 1)	92
7	ca (>99:1)	SiMe ₂ Ph HO Ph 9ca (>99 : 1)	78
8	cb (64:36)	SiMe ₂ Ph HO n -C ₅ H ₁₁ 9cb (64 : 36)	88
9	cc (>99:1)	SiMe ₂ Ph HO <i>t</i> -Bu 9cc (>99 : 1)	76
10	da (17:83)	Ph Ph OH 10da (17 : 83)	98
11	db (14:86)	$\begin{array}{c} Ph \\ n - C_5 H_{11} \\ OH \\ 10 db (14:86) \end{array}$	99
12	dc (43:57)	Ph t-Bu OH 10dc (43 : 57)	99

^b Isolated yield.

in good yields (entries 1-9).¹² When the phenyl-substituted alkyne **3d** was used as the starting alkyne, isomeric allylic amines **12** were preferentially obtained in moderate yields through the addition of imines at the carbon having phenyl group in complex **5** (entries 10-12).¹¹ These outcomes are similar to the above results using aldehyde as an electrophile. The reaction using alkyl-substituted

alkyne **3e** and imine did not proceed at all (entry 13). Subsequently, the oxidative deselenation of obtained allylic amine derivatives **11** and **12** with H_2O_2 efficiently proceeded to afford the corresponding conjugated dienes **13** and **14** having an allylic amine moiety in good to excellent yields (Table 4). The ratios of the isomers **13** and **14** were also maintained through oxidation.

 Table 3

 Synthesis of allylic amine derivatives using various alkynes 3 and imines

5	R ¹	1) Ti(O- <i>i</i> -Pr) ₄ Et ₂ O, -50 °	, <i>i</i> -PrMgCl R ¹ ℃, 2 h	R ¹	
		SePh 2) R ⁴ N R ³ 3) H ₂ O	³ , -50 °C, 1 h	NHR ⁴ SePh	
		3	11	12	
Entry	3	R ³	R ⁴	Product (Major) (11:12) ^a	Yield ^b (%)
1	3a	Ph	PhCH ₂	SiMe ₃ SePh Ph N Ph H 11ad (>99 : 1)	61
2	3a	Ph	n-Pr	SiMe ₃ SePh n-PrHN Ph 11ae (>99 : 1)	72
3	3a	C ₅ H ₁₁	PhCH ₂	Ph N_H C_5H_{11} 11af (>99 : 1)	57
4	3b	Ph	PhCH ₂	$\begin{array}{c} \text{SiMe}_2 t\text{-Bu} \\ \text{SePh} \\ \text{Ph} \\ \text{H} \\ 11bd (>99:1) \end{array}$	71
5	3b	Ph	n-Pr	SiMe ₂ +Bu SePh n-PrHN Ph 11be (>99 : 1)	65
6	3b	C ₅ H ₁₁	PhCH ₂	$\begin{array}{c} \text{SiMe}_2 t\text{-Bu} \\ \text{SePh} \\ \text{Ph} \\ \text{H} \\ 11bf (96:4) \end{array}$	62
7	3c	Ph	PhCH ₂	SiMe ₂ Ph Ph N Ph 11cd (>99:1)	56
8	3c	Ph	n-Pr	SiMe ₂ Ph n-PrHN Ph 11ce (>99 : 1)	69
9	3c	C ₅ H ₁₁	PhCH ₂	SiMe ₂ Ph SePh Ph N C_5H_{11} 11cf (>99:1)	60
10	3d	Ph	PhCH ₂	$\begin{array}{c} Ph \\ Ph \\ HN \\ HN \\ 12dd (9:91) \end{array}$	49

Table 3 (continued)

Entry	3	R ³	\mathbb{R}^4	Product (Major) (11:12) ^a	Yield ^b (%)
11	3d	Ph	n-Pr	Ph Ph NH <i>n</i> -Pr 12de (19:81)	43
12	3d	C ₅ H ₁₁	PhCH ₂	$\begin{array}{c} Ph \\ C_5H_{11} \\ HN \\ Ph \end{array}$	32
13	3e	Ph	PhCH ₂		0 ^c

^a Product ratio of **11** and **12**.
 ^b Isolated yield.
 ^c The starting alkyne **3e** was recovered.

Table 4

Synthesis of conjugated diene amines via selenoxide elimination

	$\begin{array}{c} R^{1} \\ \hline \\ R^{4}HN \\ R^{3} \end{array} \xrightarrow{\text{SePh}} + \\ R^{4}HN \\ R^{4$				
	11 12	13 14			
Entry	Substrate (11:12)	Product (Major) (13:14) ^a	Yield ^b (%)		
1	ad (>99:1)	Ph N Ph H 13ad (>99 : 1)	85		
2	ae (>99:1)	SiMe ₃ <i>n</i> -PrHN Ph 13ae (93 : 7)	93		
3	af (>99:1)	$\begin{array}{c} \text{SiMe}_3\\ \text{Ph} \\ \text{N}\\ \text{H}\\ \textbf{H}\\ \textbf{H}\\ \textbf{C}_5\text{H}_{11}\\ \textbf{13af} (>99:1) \end{array}$	89		
4	bd (>99:1)	$\begin{array}{c} \text{SiMe}_2 t \text{-Bu} \\ \text{Ph} \\ \text{N} \\ \text{H} \\ \textbf{13bd} (>99:1) \end{array}$	97		
5	be (>99:1)	SiMe ₂ <i>t</i> -Bu <i>n</i> -PrHN Ph 13be (>99 : 1)	99		
6	bf (96:4)	$Ph \underbrace{\bigvee_{H}}_{H} C_{5}H_{11}$	80		
		13bf (96 : 4)	(continued on next page)		

 Table 4 (continued)

Entry	Substrate (11:12)	Product (Major) (13:14) ^a	Yield ^b (%)
7	cd (>99:1)	$ \begin{array}{c} \operatorname{SiMe_2Ph}\\ & \\ \operatorname{Ph} & \\ \operatorname{Ph} \\ & \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \operatorname{Ph} \\ \end{array} \\ \begin{array}{c} \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \operatorname{H} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \operatorname{Ph} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{Ph} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{SiMe_2Ph} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{SiMe_2Ph} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \operatorname{SiMe_2Ph} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{SiMe_2Ph} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	63
8	ce (>99:1)	SiMe ₂ Ph <i>n</i> -PrHN Ph 13ce (>99 : 1)	99
9	cf (>99:1)	Ph C_5H_{11} 13cf (>99 : 1)	76
10	dd (9:91)	$ \begin{array}{c} Ph \\ Ph \\ HN \\ HN \\ Ph \\ HN \\ 14dd (9:91) \end{array} $	79
11	de (19:81)	Ph Ph NH <i>n</i> -Pr 14de (19 : 81)	68
12	df (14:86)	$ \begin{array}{c} Ph\\ C_{5}H_{11} \checkmark \qquad Ph\\ HN \searrow Ph\\ \mathbf{14df} (14:86) \end{array} $	73

^a Product ratio of **9** and **10** was determined by ¹H NMR.

^b Isolated yield.

On the other hand, we attempted to similar reactions by using propargylic selenide **1**. The carbotitanation of trimethylsilylsubstituted alkyne **15** with low-valent titanium reagent **4** and benzaldehyde did not proceed, resulting in the recovery of starting alkyne. To confirm the formation of titanium–alkyne complex generated from **15** and **4**, the protonolysis of that complex with H_2O was carried out and resulted in the formation of *cis* allylic selenide **16** in 15% yield and the almost recovery of starting alkyne **15** (Scheme 5).¹³ This different reactivity between **1** and **2** would be due to the stabilization in the corresponding alkyne complexes.¹⁴ In the case of the homopropargyl selenide **2**, the alkyne complex stabilized by intramolecular coordination of the selenium

*cis-***16**, Yield = 15%

Scheme 5. Reaction of propargylic selenide 15 with low-valent titanium reagent.

functional group is in situ efficiently formed. On the other hand, the complex formed from propargyl selenide **1** is difficult to coordinate with the intramolecular selenium atom because of the shortage of spatial length.

3. Conclusion

In conclusion, an efficient and useful method for stereoselective syntheses of conjugated dienes having oxygen or nitrogen functionality was developed by the electrophilic addition of aldehydes or imines to titanium—alkyne complexes, generated from internal alkyne bearing a phenylseleno group and low-valent titanium reagent, followed by selenoxide elimination via oxidation.

4. Experimental section

4.1. General

¹H, ¹³C, and ⁷⁷Se NMR spectra were recorded on JEOL JNM-FX-270 (¹H; 270.1 MHz and ¹³C; 67.8 MHz) and JNM-GX-400 (¹H; 399.7 MHz, ¹³C; 100.4 MHz, and ⁷⁷Se; 76.2 MHz, respectively) spectrometers. Chemical shifts were reported in parts per million relative to tetramethylsilane as internal standard, and were referenced to diphenyl diselenide as external standard for ⁷⁷Se (464.1 ppm in CDCl₃). IR spectra were obtained on a SHIMADZU FTIR-8300 spectrometer. Mass spectra (EI) were recorded on a JEOL JMS-700 or JMS-SX 102A mass spectrometer. Column chromatography was conducted by using Fuji Silysia Chemical silica gel BW-127ZH. THF and Et₂O were distilled from sodium benzophenone ketyl under nitrogen. Other reagents were commercially available and used without further purification. Isopropylmagnesium chloride (2.0 M solution in Et₂O) was purchased from Sigma–Aldrich Co., Inc. and *n*-butyllithium (1.6 M solution in hexane) was purchased from Kanto Chemical Co., Inc. All reactions were performed under argon atmosphere with flame-dried glassware using a vacuum pump unless otherwise described. Propargylic selenide **1** and homopropargylic selenide **2** were synthesized according to published procedure.^{7,8}

4.2. General procedure for the preparation of silylsubstituted alkynes 3a-c

To a stirred solution of 4-phenylseleno-1-butyne **2** (2.0 mmol) in THF (10 mL) was added *n*-BuLi (1.6 M solution in hexane, 2.2 mmol) dropwise at -78 °C. The reaction mixture was stirred 20 min at -78 °C, and then a silyl chloride (2.4 mmol) was slowly added. After stirring for 10 min, the mixture was warmed up to 0 °C and quenched with H₂O. The organic layer was separated and the aqueous layer was further extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography on silica gel to afford alkyne **3a–c**.

4.2.1. Trimethyl[4-(phenylselanyl)but-1-yn-1-yl]silane (**3a**). Pale yellow oil, 99% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.14 (s, 9H), 2.59 (t, *J*=7.7 Hz, 2H), 3.02 (t, *J*=7.7 Hz, 2H), 7.26–7.27 (m, 3H), 7.52–7.53 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.01, 21.7, 25.8, 85.7, 105.6, 127.2, 129.1, 129.4, 133.2; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 317.0; $\nu_{\rm max}$ (neat) 3071, 2959, 2897, 2176, 1578, 1477, 1250, 760, 737, 691 cm⁻¹; *m*/z (EI) 73 (93), 109 (47), 158 (23), 267 (15), 282 (100%, M⁺). HRMS (EI): M⁺, found 282.0335. C₁₃H₁₈Si⁸⁰Se requires 282.0343.

4.2.2. tert-Butyldimethyl[4-(phenylselanyl)but-1-yn-1-yl]silane (**3b**). Pale yellow oil, 97% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.08 (s, 6H), 0.93 (s, 9H), 2.60 (t, *J*=7.7 Hz, 2H), 3.02 (t, *J*=7.7 Hz, 2H), 7.25–7.27 (m, 3H), 7.50–7.53 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –4.5, 16.5, 21.6, 26.1, 84.0, 106.1, 127.2, 129.1, 129.5, 133.2; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.8; $\nu_{\rm max}$ (neat) 3071, 2951, 2928, 2855, 2172, 1578, 1474, 1250, 837, 775, 737, 691 cm⁻¹; *m/z* (EI) 109 (58), 129 (31), 239 (15), 267 (100), 324 (20%, M⁺). HRMS (EI): M⁺, found 324.0820. C₁₆H₂₄Si⁸⁰Se requires 324.0812.

4.2.3. Dimethyl(phenyl)[4-(phenylselanyl)but-1-yn-1-yl]silane (**3c**). Pale yellow oil, 99% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.38 (s, 6H), 2.64 (t, *J*=7.8 Hz, 2H), 3.04 (t, *J*=7.8 Hz, 2H), 7.25–7.27 (m, 3H), 7.36–7.38 (m, 3H), 7.51–7.54 (m, 2H), 7.61–7.63 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –0.8, 21.7, 25.8, 83.8, 107.4, 127.2, 127.8, 129.1, 129.3, 133.2, 133.7, 137.2; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 317.0; $\nu_{\rm max}$ (neat) 3067, 2959, 2176, 1578, 1477, 1427, 1250, 818, 733, 698 cm⁻¹; *m/z* (EI) 135 (81), 159 (100), 171 (74), 329 (22), 344 (97%, M⁺). HRMS (EI): M⁺, found 344.0495. C₁₈H₂₀Si⁸⁰Se requires 344.0499.

4.3. General procedure for the preparation of the phenyl-substituted alkyne 3d

To a stirred solution of iodobenzene (0.071 g, 1.2 mmol) and tetrakis(triphenylphosphine)palladium (0.060 g, 0.05 mmol) in pyrrolidine (1.0 mL) was added a solution of 4-phenylseleno-1-butyne **2** (0.210 g, 1.0 mmol) in pyrrolidine (1.5 mL). After stirring at room temperature for 15 min, the mixture was hydrolyzed with a satd NH₄Cl and extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography on silica gel to afford phenyl(4-phenylbut-3-yn-1-yl)selane **3d** (0.282 g, 99% yield) as pale yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.79 (td, *J*=3.3, 7.6 Hz, 2H), 3.11 (td, *J*=3.4), 3.11 (td, *J*

7.6 Hz, 2H), 7.27–7.28 (m, 6H), 7.37–7.39 (m, 2H), 7.55–7.57 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 21.2, 26.0, 81.6, 88.7, 123.5, 127.2, 127.8, 128.2, 129.1, 129.5, 131.6, 133.1; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.4; $\nu_{\rm max}$ (neat) 3055, 2936, 1578, 1477, 1439, 1072, 1022, 756, 734, 691 cm⁻¹; *m/z* (EI) 77 (20), 91 (24), 128 (100), 158 (10), 171 (11), 205 (19), 286 (78%, M⁺). HRMS (EI): M⁺, found 286.0268. C₁₆H_{40}^{80}Se requires 286.0261.

4.4. General procedure for carbotitanation of internal alkynes with low-valent titanium reagent and various aldehydes

To a stirred solution of an internal alkyne **3** (0.30 mmol) and Ti(O-*i*-Pr)₄ (0.154 g, 0.54 mmol) in Et₂O (5 mL) was added *i*-PrMgCl (2.0 M solution in Et₂O, 0.6 mL, 1.2 mmol) dropwise at -78 °C. The reaction mixture was warmed up to -50 °C over 30 min and stirred for 2 h at this temperature. Then an aldehyde (0.50 mmol) was added at -78 °C and the reaction mixture was stirred for 1 h at -70 °C. The reaction was quenched with H₂O at -70 °C. The organic layer was separated and the aqueous layer was further extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography on silica gel to afford allyl alcohols **7** and **8**.

4.4.1. (*E*)-1-Phenyl-4-(phenylselanyl)-2-[(trimethylsilyl)methylene] butan-1-ol (**7aa**). Pale yellow oil, 66% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.10 (s, 9H), 2.01 (br s, 1H), 2.29–2.36 (m, 1H), 2.46–2.53 (m, 1H), 2.77–2.82 (m, 2H), 5.14 (s, 1H), 5.89 (s, 1H), 7.24–7.44 (m, 10H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.1, 27.2, 33.8, 78.4, 125.6, 126.8, 127.0, 127.8, 128.5, 129.0, 129.6, 133.2, 141.9, 157.5; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 314.8; $\nu_{\rm max}$ (neat) 3418, 3059, 2955, 2897, 1616, 1477, 1450, 1250, 1022, 837, 737, 698 cm⁻¹; *m*/*z* (EI) 73 (100), 107 (43), 143 (40), 233 (64), 375 (9), 390 (13%, M⁺). HRMS (EI): M⁺, found 390.0920. C₂₀H₂₆OSi⁸⁰Se requires 390.0918.

4.4.2. (*E*)-1-(*Phenylselanyl*)-3-[(trimethylsilyl)methylene]nonan-4-ol (**7ab**). Mixture of regioisomers (**7ab**:**8ab**=93:7). Pale yellow oil, 62% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.06 (s, 9H), 0.88 (t, *J*=6.8 Hz, 3H), 1.26–1.51 (m, 8H), 1.53 (br s, 1H), 2.39–2.47 (m, 1H), 2.55–2.63 (m, 1H), 2.90–3.03 (m, 2H), 4.04 (dd, *J*=4.6, 7.6 Hz, 1H), 5.56 (s, 1H), 7.23–7.29 (m, 3H), 7.50–7.55 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.1, 14.0, 22.6, 25.4, 27.5, 31.7, 33.8, 36.2, 76.4, 125.1, 127.1, 129.0, 129.7, 133.3, 159.4; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 313.1; $\nu_{\rm max}$ (neat) 3402, 3071, 2955, 2858, 1612, 1578, 1477, 1439, 1250, 1022, 856, 733, 691 cm⁻¹; *m*/*z* (EI) 73 (98), 211 (53), 227 (100), 369 (16), 384 (26%, M⁺). HRMS (EI): M⁺, found 384.1389. C₁₉H₃₂OSi⁸⁰Se requires 384.1388.

4.4.3. (*Z*)-1-(*Phenylselanyl*)-4-(*trimethylsilyl*)*dec*-3-*en*-5-*ol* (**8ab**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.11 (s, 9H), 0.88 (t, *J*=6.8 Hz, 3H), 1.26–1.51 (m, 8H), 1.53 (br s, 1H), 2.39–2.47 (m, 1H), 2.55–2.63 (m, 1H), 2.90–3.03 (m, 2H), 4.12 (dd, *J*=2.6, 7.1 Hz, 1H), 6.18 (t, *J*=7.4 Hz, 1H), 7.23–7.29 (m, 3H), 7.50–7.55 (m, 2H).

4.4.4. (*E*)-2,2-Dimethyl-6-(phenylselanyl)-4-[(trimethylsilyl)methylene]hexan-3-ol (**7ac**). Yellow oil, 48% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.08 (s, 9H), 0.85 (s, 9H), 2.29–2.36 (m, 1H), 2.62–2.69 (m, 1H), 2.90–3.02 (m, 2H), 3.75 (s, 1H), 5.56 (s, 1H), 7.25–7.28 (m, 3H), 7.52–7.55 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.2, 26.1, 28.3, 35.8, 36.1, 82.4, 127.1, 127.6, 129.0, 129.8, 133.3, 158.9; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 308.6; $\nu_{\rm max}$ (neat) 3476, 3059, 2955, 2870, 1609, 1477, 1439, 1250, 1007, 860, 841, 737, 691 cm⁻¹; *m*/*z* (EI) 73 (99), 213 (100), 313 (83), 355 (27), 370 (37%, M⁺). HRMS (EI): M⁺, found 370.1235. C₁₈H₃₀OSi⁸⁰Se requires 370.1231.

4.4.5. (*E*)-2-[(tert-Butyldimethylsilyl)methylene]-1-phenyl-4-(phenyl-selanyl)butan-1-ol (**7ba**). Pale yellow oil, 89% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.037 (s, 3H), 0.042 (s, 3H), 0.88 (s, 9H), 1.97 (br s, 1H),

2.26–2.33 (m, 1H), 2.46–2.53 (m, 1H), 2.81 (t, *J*=8.6 Hz, 2H), 5.15 (s, 1H), 5.90 (s, 1H), 7.24–7.33 (m, 8H), 7.41–7.44 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –4.4, –4.3, 17.0, 26.5, 27.3, 33.9, 78.6, 122.6, 126.7, 127.0, 127.8, 128.5, 129.0, 129.7, 133.2, 142.0, 158.4; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 314.9; $\nu_{\rm max}$ (neat) 3429, 3059, 2951, 2855, 1616, 1578, 1474, 1250, 1022, 826, 737, 698 cm⁻¹; *m*/*z* (El) 143 (35), 187 (19), 217 (15), 375 (100), 417 (2), 432 (1%, M⁺). HRMS (El): M⁺, found 432.1379. C₂₃H₃₂OSi⁸⁰Se requires 432.1388.

4.4.6. (*E*)-3-[(tert-Butyldimethylsilyl)methylene]-1-(phenylselanyl) nonan-4-ol (**7bb**). Mixture of regioisomers (**7bb:8bb**=80:20). Pale yellow oil, 87% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.02 (s, 6H), 0.85 (s, 9H), 0.85–0.89 (m, 3H), 1.26–1.62 (m, 12H), 2.38–2.46 (m, 1H), 2.52–2.64 (m, 1H), 2.88–3.04 (m, 2H), 4.07 (dd, *J*=5.5, 6.9 Hz, 1H), 5.58 (s, 1H), 7.24–7.39 (m, 3H), 7.50–7.55 (m, 2H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 313.3; $\nu_{\rm max}$ (neat) 3422, 3059, 2928, 2855, 1612, 1578, 1470, 1250, 1022, 837, 737, 691 cm⁻¹; *m/z* (El) 369 (100), 411 (3), 426 (2%, M⁺). HRMS (EI): M⁺, found 426.1861. C₂₂H₃₈OSi⁸⁰Se requires 426.1857.

4.4.7. (*Z*)-4-(*tert-Butyldimethylsilyl*)-1-(*phenylselanyl*)*dec-3-en-5-ol* (**8bb**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.06 (s, 3H), 0.10 (s, 3H), 0.88 (s, 9H), 0.85–0.89 (m, 3H), 1.26–1.62 (m, 12H), 2.38–2.46 (m, 1H), 2.52–2.64 (m, 1H), 2.88–3.04 (m, 2H), 4.08–4.13 (m, 1H), 6.41 (t, *J*=7.3 Hz, 1H), 7.24–7.39 (m, 3H), 7.50–7.55 (m, 2H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 302.0.

4.4.8. (*E*)-4-[(tert-Butyldimethylsilyl)methylene]-2,2-dimethyl-6-(phenylselanyl)hexan-3-ol (**7bc**). Pale yellow oil, 47% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.03 (s, 3H), 0.05 (s, 3H), 0.86 (s, 9H), 0.87 (s, 9H), 1.60 (br s, 1H), 2.28–2.35 (m, 1H), 2.63–2.71 (m, 1H), 2.90–3.00 (m, 2H), 3.77 (s, 1H), 5.59 (s, 1H), 7.26–7.30 (m, 3H), 7.52–7.55 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –4.2, 17.0, 26.2, 26.5, 28.2, 36.0, 36.4, 82.4, 124.5, 127.1, 129.0, 129.8, 133.3, 160.1; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 309.6; $\nu_{\rm max}$ (neat) 3476, 3059, 2943, 2855, 1609, 1578, 1477, 1250, 1007, 837, 737, 698 cm⁻¹; *m*/z (EI) 73 (65), 75 (91), 215 (11), 285 (6), 355 (100), 412 (1%, M⁺). HRMS (EI): M⁺, found 412.1695. C₂₁H₃₆OSi⁸⁰Se requires 412.1701.

4.4.9. (*E*)-2-[(Dimethylphenylsilyl)methylene]-1-phenyl-4-(phenylselanyl)butan-1-ol (**7ca**). Pale yellow oil, 78% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.36 (s, 6H), 2.01 (br s, 1H), 2.18–2.25 (m, 1H), 2.37–2.44 (m, 1H), 2.53–2.66 (m, 2H), 5.13 (s, 1H), 6.06 (s, 1H), 7.17–7.35 (m, 13H), 7.49–7.52 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –1.09, –1.06, 26.7, 33.9, 78.4, 123.3, 126.80, 126.85, 127.88, 127.92, 128.5, 128.95, 129.01, 129.8, 132.9, 133.7, 139.1, 141.8, 159.2; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.7; $\nu_{\rm max}$ (neat) 3425, 3067, 2955, 1612, 1578, 1477, 1250, 1111, 1022, 833, 733, 698 cm⁻¹; *m*/*z* (EI) 135 (100), 203 (41), 217 (60), 295 (30), 437 (3), 452 (2%, M⁺). HRMS (EI): M⁺, found 452.1077. C₂₅H₂₈OSi⁸⁰Se requires 452.1075.

4.4.10. (E)-3-[(Dimethylphenylsilyl)methylene]-1-(phenylselanyl) nonan-4-ol (**7cb**). Mixture of regioisomers (**7cb:8cb**=64:36). Pale yellow oil, 61% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.32 (s, 6H), 0.87 (t, *J*=6.1 Hz, 3H), 1.25–1.53 (m, 8H), 1.71 (br s, 1H), 2.30–2.38 (m, 1H), 2.47–2.55 (m, 1H), 2.75–2.81 (m, 2H), 4.05 (dd, *J*=4.9, 7.3 Hz, 1H), 5.73 (d, *J*=1.0 Hz, 1H), 7.18–7.49 (m, 10H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 313.5; $\nu_{\rm max}$ (neat) 3425, 3067, 2955, 2928, 2858, 1612, 1578, 1477, 1427, 1250, 1111, 1022, 837, 733, 698 cm⁻¹; *m*/*z* (EI) 135 (99), 197 (40), 211 (98), 289 (34), 446 (12%, M⁺). HRMS (EI): M⁺, found 446.1553. C₂₅H₂₈OSi⁸⁰Se requires 446.1544.

4.4.11. (*Z*)-4-(*Dimethylphenylsilyl*)-1-(*phenylselanyl*)*dec*-3-*en*-5-*ol* (**8***cb*). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.37 (s, 6H), 0.87 (t, *J*=6.1 Hz, 3H), 1.25–1.53 (m, 8H), 1.71 (br s, 1H), 2.30–2.38

(m, 2H), 2.70 (t, J=7.4 Hz, 2H), 4.14 (dd, J=4.8, 7.2 Hz, 1H), 6.27 (t, J=7.4 Hz, 1H), 7.18–7.49 (m, 10H); δ_{Se} NMR (76 MHz, CDCl₃) 300.5.

4.4.12. (E)-4-[(Dimethylphenylsilyl)methylene]-2,2-dimethyl-6-(phenylselanyl)hexan-3-ol (**7cc**). Pale yellow oil, 43% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.35 (s, 6H), 0.86 (s, 9H), 1.61 (br s, 1H), 2.20–2.27 (m, 1H), 2.54–2.62 (m, 1H), 2.71–2.84 (m, 2H), 3.76 (s, 1H), 5.74 (s, 1H), 7.22–7.23 (m, 3H), 7.33–7.35 (m, 3H), 7.41–7.44 (m, 2H), 7.49–7.51 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) – 1.0, 26.2, 27.8, 35.9, 36.1, 82.5, 125.6, 126.9, 127.9, 129.0, 129.9, 133.0, 133.7, 139.2, 160.8; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 308.7; $\nu_{\rm max}$ (neat) 3464, 3067, 2955, 2870, 1607, 1578, 1477, 1250, 1111, 1007, 833, 733, 698 cm⁻¹; m/z (EI) 75 (43), 135 (100), 197 (50), 297 (47), 417 (6), 432 (7%, M⁺). HRMS (EI): M⁺, found 432.1387. C₂₃H₃₂OSi⁸⁰Se requires 432.1388.

4.4.13. (*E*)-1,2-Diphenyl-5-(phenylselanyl)pent-2-en-1-ol (**8da**). Mixture of regioisomers (**7da:8da**=17:83). Pale yellow oil, 68% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.96 (br s, 1H), 2.35 (q, *J*=7.6 Hz, 2H), 2.90 (t, *J*=7.6 Hz, 2H), 5.39 (s, 1H), 5.91 (td, *J*=1.0, 7.6 Hz, 1H), 6.87–6.89 (m, 2H), 7.18–7.39 (m, 13H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 297.1; $\nu_{\rm max}$ (neat) 3414, 3055, 3028, 2928, 2870, 1578, 1477, 1439, 1072, 1022, 733, 702 cm⁻¹; *m*/*z* (El) 237 (100), 287 (17), 394 (26%, M⁺). HRMS (EI): M⁺, found 394.0839. C₂₃H₂₂O⁸⁰Se requires 394.0836.

4.4.14. (*E*)-2-Benzylidene-1-phenyl-4-(phenylselanyl)butan-1-ol (**7da**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 2.46–2.54 (m, 1H), 2.57–2.65 (m, 1H), 2.70–2.88 (m, 2H), 5.32 (s, 1H), 6.81 (s, 1H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 314.8.

4.4.15. (*E*)-4-Phenyl-1-(phenylselanyl)dec-3-en-5-ol (**8db**). Mixture of regioisomers (**7db**:**8db**=14:86). Pale yellow oil, 75% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.84–0.90 (m, 3H), 1.23–1.55 (m, 8H), 1.63 (br s, 1H), 2.87 (q, *J*=7.3 Hz, 2H), 2.88 (t, *J*=7.3 Hz, 2H), 4.26 (s, 1H), 5.71 (t, *J*=7.3 Hz, 1H), 7.10–7.40 (m, 10H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 297.1; $\nu_{\rm max}$ (neat) 3418, 3055, 2955, 2858, 1578, 1439, 1022, 737, 702 cm⁻¹; *m*/*z* (EI) 231 (100), 289 (55), 388 (42%, M⁺). HRMS (EI): M⁺, found 388.1299. C₂₂H₂₈O⁸⁰Se requires 388.1305.

4.4.16. (*E*)-4-Benzylidene-2,2-dimethyl-6-(phenylselanyl)hexan-3-ol (**7db**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signal: 6.54 (s, 1H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 314.1.

4.4.17. (*E*)-2,2-Dimethyl-4-phenyl-7-(phenylselanyl)hept-4-en-3-ol (**8dc**). Mixture of regioisomers (**7dc:8dc**=43:57). Pale yellow oil, 63% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.79 (s, 9H), 1.64 (br s, 1H), 2.39–2.59 (m, 2H), 2.87–2.94 (m, 2H), 4.14 (s, 1H), 5.75 (t, *J*=7.4 Hz, 1H), 7.16–7.39 (m, 10H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 296.8; $\nu_{\rm max}$ (neat) 3464, 3055, 3020, 2955, 2866, 1578, 1477, 1439, 1003, 737, 702 cm⁻¹; *m*/*z* (EI) 159 (100), 317 (83), 374 (51%, M⁺). HRMS (EI): M⁺, found 374.1146. C₂₁H₂₆O⁸⁰Se requires 374.1149.

4.4.18. (E)-4-Benzylidene-2,2-dimethyl-6-(phenylselanyl)hexan-3-ol (**7dc**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.95 (s, 9H), 1.64 (br s, 1H), 2.39–2.59 (m, 2H), 2.87–2.94 (m, 2H), 3.91 (s, 1H), 6.53 (s, 1H), 7.16–7.39 (m, 10H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 308.9.

4.5. General procedure for carbotitanation of internal alkynes with low-valent titanium reagent and various imines

To a solution of an internal alkynes **3** (0.30 mmol) and Ti(O-*i*-Pr)₄ (0.153 g, 0.54 mmol) in Et₂O (10 mL) was added *i*-PrMgCl (2.0 M solution in Et₂O, 0.6 mL, 1.2 mmol) dropwise at -78 °C. The reaction mixture was warmed up to -50 °C over 30 min and stirred for 2 h at this temperature. Then an imine (0.5 mmol) was added at -50 °C. After stirring for 1 h, the mixture was slowly warmed up to

-10 °C and quenched with H₂O. The organic layer was separated and the aqueous layer was further extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography on silica gel to afford allyl amine **11** and **12**.

4.5.1. (*E*)-*N*-Benzyl-1-phenyl-4-(phenylselanyl)-2-[(trimethylsilyl) methylene]butan-1-amine (**11ad**). Pale yellow oil, 61% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.07 (s, 9H), 2.22–2.29 (m, 1H), 2.41–2.48 (m, 1H), 2.68–2.76 (m, 2H), 3.65 (d, *J*=5.6 Hz, 2H), 4.13 (s, 1H), 5.90 (d, *J*=1.0 Hz, 1H), 7.19–7.34 (m, 13H), 7.38–7.41 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.2, 27.3, 34.8, 51.6, 68.3, 125.4, 126.9, 127.0, 127.3, 127.7, 128.2, 128.37, 128.38, 129.0, 129.8, 133.3, 140.4, 142.1, 157.4; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 314.7; $\nu_{\rm max}$ (neat) 3059, 3024, 2951, 1609, 1454, 1250, 837, 737, 698 cm⁻¹; *m*/z (EI) 196 (100), 322 (16), 388 (27), 406 (7), 479 (30%, M⁺). HRMS (EI): M⁺, found 479.1544. C₂₇H₃₃NSi⁸⁰Se requires 479.1747.

4.5.2. (*E*)-1-Phenyl-4-(phenylselanyl)-N-propyl-2-[(trimethylsilyl) methylene]butan-1-amine (**11ae**). Pale yellow oil, 72% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.11 (s, 9H), 0.88 (t, *J*=7.7 Hz, 3H), 1.48 (sext, *J*=7.7 Hz, 2H), 2.23–2.29 (m, 1H), 2.37–2.48 (m, 3H), 2.74–2.79 (m, 2H), 4.09 (s, 1H), 5.84 (s, 1H), 7.18–7.29 (m, 8H), 7.41–7.44 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.2, 11.8, 23.2, 27.3, 34.9, 49.8, 69.3, 124.8, 126.9, 127.2, 127.7, 128.3, 129.0, 129.8, 133.2, 142.4, 157.6; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 314.7; $\nu_{\rm max}$ (neat) 3058, 3024, 2955, 1612, 1582, 1477, 1454, 1250, 837, 733, 698 cm⁻¹; *m*/z (EI) 58 (64), 73 (26), 84 (50), 148 (100), 200 (24), 273 (17), 431 (10%, M⁺). HRMS (EI): M⁺, found 431.1546. C₂₃H₃₃NSi⁸⁰Se requires 431.1547.

4.5.3. (*E*)-*N*-Benzyl-1-(phenylselanyl)-3-[(trimethylsilyl)methylene] nonan-4-amine (**11af**). Colorless liquid, 57% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.07 (s, 9H), 0.85 (t, *J*=7.0 Hz, 3H), 1.19–1.46 (m, 9H), 2.38 (td, *J*=5.2, 12.6 Hz, 1H), 2.53 (td, *J*=5.2, 12.6 Hz, 1H), 2.88 (td, *J*=5.2, 12.6 Hz, 1H), 2.94–3.01 (m, 3H), 3.62 (ABq, *J*=13.4 Hz, 2H), 5.53 (s, 1H), 7.23–7.30 (m, 8H), 7.48–7.50 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.2, 14.0, 22.5, 26.0, 27.5, 31.8, 34.4, 35.5, 51.4, 65.5, 126.3, 126.8, 126.9, 128.1, 128.3, 129.0, 129.9, 133.2, 140.7, 158.3; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.0; $\nu_{\rm max}$ (neat) 3059, 3028, 2955, 2928, 2855, 1609, 1578, 1454, 1246, 853, 694 cm⁻¹; *m*/*z* (EI) 91 (94), 190 (91), 244 (100), 402 (16), 473 (2%, M⁺). HRMS (EI): M⁺, found 473.2022. C₂₆H₃₉NSi⁸⁰Se requires 473.2017.

4.5.4. (*E*)-*N*-Benzyl-2-[(tert-butyldimethylsilyl)methylene]-1-phenyl-4-(phenylselanyl)butan-1-amine (**11bd**). Pale yellow oil, 71% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.03 (s, 3H), 0.04 (s, 3H), 0.88 (s, 9H), 2.22–2.27 (m, 1H), 2.42–2.50 (m, 1H), 2.67–2.78 (m, 2H), 3.67 (ABq, *J*=13.4 Hz, 2H), 4.14 (s, 1H), 5.98 (s, 1H), 7.19–7.34 (m, 13H), 7.39–7.41 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –4.3, –4.2, 17.1, 26.6, 27.3, 34.8, 51.6, 68.5, 122.4, 126.92, 126.94, 127.2, 127.7, 128.1, 128.33, 128.35, 128.9, 129.8, 133.3, 140.4, 142.3, 157.9; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.3; $\nu_{\rm max}$ (neat) 3069, 3028, 2928, 2855, 1612, 1454, 1250, 833, 737 cm⁻¹; *m*/z (EI) 196 (100), 248 (44), 364 (9), 521 (12%, M⁺). HRMS (EI): M⁺, found 521.2012. C₃₀H₃₉NSi⁸⁰Se requires 521.2017.

4.5.5. (*E*)-2-[(tert-Butyldimethylsilyl)methylene]-1-phenyl-4-(phenylselanyl)-N-propylbutan-1-amine (**11be**). Pale yellow oil, 65% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.02 (s, 3H), 0.03 (s, 3H), 0.88 (m, 9H), 0.88 (t, *J*=7.3 Hz, 3H), 1.48 (sextd, *J*=2.0, 7.3 Hz, 2H), 2.20–2.27 (m, 1H), 2.38–2.52 (m, 3H), 2.73–2.80 (m, 2H), 4.10 (s, 1H), 5.90 (s, 1H), 7.20–7.28 (m, 8H), 7.43–7.45 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –4.3, –4.2, 11.8, 17.1, 23.2, 26.6, 27.4, 35.0, 49.8, 69.6, 121.9, 126.9, 127.2, 127.6, 128.3, 129.0, 129.9, 133.2, 142.5, 158.1; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.2; $\nu_{\rm max}$ (neat) 3059, 3024, 2955, 2928, 2855, 1612, 1458, 1250, 833, 733, 702 cm⁻¹; *m*/z (EI) 58 (78), 148 (100), 200 (46), 315 (20),

473 (17%, M⁺). HRMS (EI): M⁺, found 473.2020. C₂₆H₃₉NSi⁸⁰Se requires 473.2017.

4.5.6. (*E*)-*N*-Benzyl-3-[(tert-butyldimethylsilyl)methylene]-1-(phenylselanyl)nonan-4-amine (**11bf**). Mixture of regioisomers (**11bf**:**12bf** =96:4). Pale yellow oil, 62% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.03 (s, 6H), 0.85 (t, *J*=7.2 Hz, 3H), 0.87 (s, 9H), 1.19–1.48 (m, 9H), 2.37 (td, *J*=5.6, 12.8 Hz, 1H), 2.54 (td, *J*=5.6, 12.8 Hz, 1H), 2.87–3.04 (m, 3H), 3.63 (ABq, *J*=13.2 Hz, 2H), 5.57 (s, 1H), 7.22–7.30 (m, 8H), 7.48–7.50 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –4.25, –4.21, 14.0, 17.0, 22.6, 26.0, 26.5, 27.5, 31.8, 34.7, 35.7, 51.4, 65.6, 123.2, 126.9, 128.2, 128.4, 129.0, 129.9, 133.2, 140.6, 158.9; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.6; $\nu_{\rm max}$ (neat) 3063, 3028, 2951, 2855, 1609, 1462, 1250, 837, 733, 694 cm⁻¹; *m*/z (EI) 91 (81), 190 (62), 244 (72), 286 (100), 515 (1%, M⁺). HRMS (EI): M⁺, found 515.2491. C₂₉H₄₅NSi⁸⁰Se requires 515.2486.

4.5.7. (*Z*)-*N*-Benzyl-4-(tert-butyldimethylsilyl)-1-(phenylselanyl)dec-3-en-5-amine (**12bf**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signal: 6.44 (t, *J*=7.4 Hz, 1H).

4.5.8. (*E*)-*N*-Benzyl-2-[(dimethylphenylsilyl)methylene]-1-phenyl-4-(phenylselanyl)butan-1-amine (**11cd**). Pale yellow oil, 56% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.35 (s, 6H), 2.14–2.21 (m, 1H), 2.34–2.42 (m, 1H), 2.47–2.58 (m, 2H), 3.66 (ABq, *J*=13.4 Hz, 2H), 4.14 (s, 1H), 6.12 (s, 1H), 7.16–7.34 (m, 18H), 7.47–7.50 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) -0.97, -0.89, 26.7, 35.0, 51.6, 68.4, 123.1, 126.8, 126.9, 127.3, 127.7, 127.8, 128.1, 128.35, 128.37, 128.88, 128.90, 129.9, 133.0, 133.7, 139.4, 140.3, 141.9, 159.1; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 316.0; $\nu_{\rm max}$ (neat) 3063, 3024, 2951, 2847, 1609, 1578, 1454, 1250, 1111, 837, 733, 698 cm⁻¹; m/z (El) 248 (100), 307 (14), 383 (38), 541 (3%, M⁺). HRMS (El): M⁺, found 541.1706. C₃₂H₃₅NSi⁸⁰Se requires 541.1704.

4.5.9. (*E*)-2-[(Dimethylphenylsilyl)methylene]-1-phenyl-4-(phenylselanyl)-*N*-propylbutan-1-amine (**11ce**). Pale yellow oil, 69% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.34 (s, 6H), 0.87 (t, *J*=7.4 Hz, 3H), 1.41 (br s, 1H), 1.42–1.52 (m, 2H), 2.14–2.21 (m, 1H), 2.34–2.42 (m, 2H), 2.44–2.64 (m, 3H), 4.09 (s, 1H), 6.04 (d, *J*=1.0 Hz, 1H), 7.17–7.33 (m, 13H), 7.48–7.50 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –1.0, –0.9, 11.8, 23.2, 26.7, 35.0, 49.8, 69.4, 122.4, 126.7, 127.2, 127.6, 127.7, 128.3, 128.8, 128.9, 129.9, 132.8, 132.9, 133.7, 139.5, 142.3, 159.6; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 316.0; $\nu_{\rm max}$ (neat) 3067, 2955, 2932, 1609, 1477, 1454, 1250, 1111, 833, 733, 698 cm⁻¹; *m*/z (EI) 135 (54), 148 (100), 200 (99), 306 (68), 335 (34), 493 (10%, M⁺). HRMS (EI): M⁺, found 493.1705. C₂₈H₃₅NSi⁸⁰Se requires 493.1704.

4.5.10. (E)-N-Benzyl-3-[(dimethylphenylsilyl)methylene]-1-(phenylselanyl)nonan-4-amine (**11cf**). Pale yellow oil, 60% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.34 (s, 6H), 0.86 (t, J=7.1 Hz, 3H), 1.21–1.44 (m, 9H), 2.31 (td, J=5.6, 12.4 Hz, 1H), 2.47 (td, J=5.6, 12.4 Hz, 1H), 2.75 (td, J=5.6, 12.4 Hz, 2H), 3.03 (t, J=7.1 Hz, 1H), 3.64 (ABq, J=13.2 Hz, 2H), 5.72 (s, 1H), 7.17–7.38 (m, 13H), 7.50–7.52 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –1.0, –0.9, 14.0, 22.6, 26.0, 26.9, 31.8, 34.6, 35.5, 51.5, 65.5, 124.0, 126.7, 126.8, 127.8, 128.1, 128.3, 128.86, 128.93, 130.0, 132.76, 132.81, 132.9, 133.7, 129.6, 140.7, 160.4; $\delta_{\rm Se}$ (76 MHz, CDCl₃) 315.7; $\nu_{\rm max}$ (neat) 3067, 3024, 2955, 2928, 2855, 1609, 1578, 1454, 1427, 1250, 1111, 837, 698 cm⁻¹; *m*/z (EI) 91 (98), 190 (100), 306 (99), 535 (1%, M⁺). HRMS (EI): M⁺, found 535.2179. C₃₁H₄₁NSi⁸⁰Se requires 535.2173.

4.5.11. (*E*)-*N*-Benzyl-1,2-diphenyl-5-(phenylselanyl)pent-2-en-1amine (**12dd**). Mixture of regioisomers (**11dd:12dd**=9:91). Pale yellow oil, 49% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.34 (q, J=7.4 Hz, 2H), 2.89 (t, J=7.4 Hz, 2H), 3.71–3.86 (m, 2H), 4.43 (s, 1H), 5.89 (t, J=7.4 Hz, 1H), 6.79–6.81 (m, 2H), 7.16–7.34 (m, 18H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 295.7; $\nu_{\rm max}$ (neat) 3059, 3024, 2928, 1578, 1493, 1477, 1454, 1119, 1072, 1026, 737, 698 cm⁻¹; *m/z* (EI) 91 (99), 196 (100), 326 (28), 483 (7%, $M^+).$ HRMS (EI): $M^+,$ found 483.1460. $C_{30}H_{29}N^{80}Se$ requires 483.1465.

4.5.12. (E)-N-Benzyl-2-benzylidene-1-phenyl-4-(phenylselanyl)butan-1-amine (**11dd**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 4.31 (s, 1H), 6.88 (s, 1H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 316.6.

4.5.13. (*E*)-1,2-Diphenyl-5-(phenylselanyl)-N-propylpent-2-en-1amine (**12de**). Mixture of regioisomers (**11de**:**12de**=19:81). Pale yellow oil, 43% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.90 (t, *J*=7.4 Hz, 3H), 1.40 (br s, 1H), 1.48–1.54 (m, 2H), 2.31 (q, *J*=7.4 Hz, 2H), 2.47–2.68 (m, 2H), 2.88 (t, *J*=7.4 Hz, 2H), 4.37 (s, 1H), 5.84 (t, *J*=7.4 Hz, 1H), 6.78–6.79 (m, 2H), 7.16–7.33 (m, 13H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 296.3; $\nu_{\rm max}$ (neat) 3055, 3024, 2959, 2928, 2870, 1578, 1477, 1454, 1072, 1022, 737, 702 cm⁻¹; *m/z* (EI) 91 (58), 148 (100), 250 (49), 278 (48), 435 (33%, M⁺). HRMS (EI): M⁺, found 435.1475. C₂₆H₂₉N⁸⁰Se requires 435.1465.

4.5.14. (E)-2-Benzylidene-1-phenyl-4-(phenylselanyl)-N-propylbutan-1-amine **(11de**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 4.25 (s, 1H), 6.83 (s, 1H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 316.6.

4.5.15. (*E*)-*N*-Benzyl-4-phenyl-1-(phenylselanyl)dec-3-en-5-amine (**12df**). Mixture of regioisomers (**11df**:**12df**=14:86). Pale yellow oil 32% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.85 (t, *J*=7.0 Hz, 3H), 1.24–1.53 (m, 9H), 2.33 (q, *J*=7.5 Hz, 2H), 2.86–2.94 (m, 3H), 3.86 (ABq, *J*=13.2 Hz, 2H), 5.59 (t, *J*=7.5 Hz, 1H), 7.07–7.41 (m, 15H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 295.1; $\nu_{\rm max}$ (neat) 3059, 3024, 2928, 2855, 1578, 1492, 1454, 1072, 1022, 733, 698 cm⁻¹; *m*/*z* (EI) 91 (75), 190 (55), 248 (87), 320 (13), 406 (100), 477 (2%, M⁺). HRMS (EI): M⁺, found 477.1937. C₂₆H₂₉N⁸⁰Se requires 477.1935.

4.5.16. (*E*)-*N*-Benzyl-3-benzylidene-1-(phenylselanyl)nonan-4amine (**11df**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 3.72 (ABq, *J*=13.2 Hz, 1H), 6.48 (s, 1H); $\delta_{\rm Se}$ (76 MHz, CDCl₃) 318.4.

4.6. General procedure for oxidative deselenation of allylic selenides

To a solution of allylic selenides (0.15 mmol) in THF (2 mL) was added 10 equiv of H_2O_2 (30% in H_2O) at 0 °C. After stirring for 4 h at this temperature, the reaction was quenched with satd NaHCO₃ and extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography on silica gel to afford conjugated dienes.

4.6.1. (*E*)-1-Phenyl-2-[(trimethylsilyl)methylene]but-3-en-1-ol (**9aa**). Pale yellow oil, 98% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.20 (s, 9H), 1.98 (br s, 1H), 5.10 (d, *J*=11.2 Hz, 1H), 5.15 (d, *J*=17.6 Hz, 1H), 5.51 (s, 1H), 6.12 (s, 1H), 6.56 (dd, *J*=11.2, 17.6 Hz, 1H), 7.28–7.38 (m, 5H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.2, 74.9, 116.4, 127.0, 127.8, 128.5, 130.4, 135.4, 142.4, 153.9; $\nu_{\rm max}$ (neat) 3356, 3090, 3063, 3028, 2955, 2897, 1566, 1454, 1250, 988, 837, 768, 698 cm⁻¹; *m*/z (EI) 73 (100), 107 (63), 216 (9), 232 (17%, M⁺). HRMS (EI): M⁺, found 232.1280. C₁₄H₂₀OSi requires 232.1283.

4.6.2. (*E*)-3-[(*Trimethylsily*))*methylene*]*non*-1-*en*-4-*ol* (**9ab**). Mixture of regioisomers (**9ab**: **10ab**=93:7). Colorless liquid, 75% yield; Minor regioisomer (**10ab**) was not isolated by column chromatography on silica gel; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.15 (s, 9H), 0.89 (t, *J*=7.6 Hz, 3H), 1.25-1.51 (m, 7H), 1.63-1.70 (m, 2H), 4.46 (dd, *J*=3.9, 7.6 Hz, 1H), 5.16 (d, *J*=11.2 Hz, 1H), 5.30 (d, *J*=17.8 Hz, 1H), 5.85 (s, 1H), 6.57 (dd, *J*=11.2, 17.8 Hz, 1H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.01, 14.0,

22.6, 25.6, 31.7, 37.0, 72.2, 114.8, 128.1, 135.9, 156.5; ν_{max} (neat) 3348, 3090, 2955, 2932, 2858, 1566, 1250, 906, 852, 768, 691 cm⁻¹; *m/z* (El) 73 (79), 139 (12), 156 (70), 226 (4%, M⁺). HRMS (El): M⁺, found 226.1757. C₁₃H₂₆OSi requires 226.1753.

4.6.3. (*E*)-2,2-Dimethyl-6-(phenylselanyl)-4-[(trimethylsilyl)methylene]hexan-3-ol (**9ac**). Pale yellow oil, 69% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.16 (s, 9H), 0.90 (s, 9H), 1.55 (br s, 1H), 4.31 (s, 1H), 5.14 (d, *J*=11.2 Hz, 1H), 5.32 (d, *J*=17.6 Hz, 1H), 5.79 (s, 1H), 6.60 (dd, *J*=11.2, 17.6 Hz, 1H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.3, 26.4, 35.5, 77.7, 115.2, 131.0, 138.0, 155.3; $\nu_{\rm max}$ (neat) 3472, 2955, 2905, 1558, 1477, 1362, 1250, 991, 841, 756, 691 cm⁻¹; *m*/*z* (EI) 75 (100), 140 (23), 156 (3), 212 (5%, M⁺). HRMS (EI): M⁺, found 212.1599. C₁₂H₂₄OSi requires 212.1596.

4.6.4. (*E*)-2-[(tert-Butyldimethylsilyl)methylene]-1-phenylbut-3-en-1-ol (**9ba**). Pale yellow oil, 94% yield; $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.18 (s, 3H), 0.19 (s, 3H), 0.94 (s, 9H), 2.00 (br s, 1H), 5.10 (d, *J*=13.5 Hz, 1H), 5.18 (d, *J*=16.2 Hz, 1H), 5.55 (d, *J*=2.7 Hz, 1H), 6.14 (s, 1H), 6.58 (dd, *J*=13.5, 16.2 Hz, 1H), 7.26–7.39 (m, 5H); $\delta_{\rm C}$ (68 MHz, CDCl₃) –4.0, -3.9, 17.3, 26.5, 75.0, 116.3, 127.0, 127.7, 128.0, 128.5, 135.7, 142.5, 154.7; $\nu_{\rm max}$ (neat) 3402, 3063, 3028, 2951, 2855, 1566, 1470, 1250, 906, 779, 698 cm⁻¹; *m*/*z* (EI) 107 (52), 145 (46), 173 (98), 218 (100), 259 (4), 274 (3%, M⁺). HRMS (EI): M⁺, found 274.1757. C₁₇H₂₆OSi requires 274.1753.

4.6.5. (*E*)-3-[(tert-Butyldimethylsilyl)methylene]non-1-en-4-ol (**9bb**). Mixture of regioisomers (**9bb**: **10bb**=80:20). Pale yellow oil, 81% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.13 (d, *J*=7.1 Hz, 6H), 0.89 (t, *J*=7.1 Hz, 3H), 0.91 (s, 9H), 1.26-1.72 (m, 9H), 4.51 (dd, *J*=4.1, 7.6 Hz, 1H), 5.16 (dt, *J*=1.1, 11.4 Hz, 1H), 5.30 (d, *J*=17.9 Hz, 1H), 5.88 (s, 1H), 6.58 (dd, *J*=11.4, 17.9 Hz, 1H); $\nu_{\rm max}$ (neat) 3356, 3090, 2955, 2928, 2858, 1566, 1466, 1250, 907, 833, 779, 687 cm⁻¹; *m/z* (EI) 141 (97), 194 (95), 211 (75), 268 (10%, M⁺). HRMS (EI): M⁺, found 268.2220. C₁₆H₃₂OSi requires 268.2222.

4.6.6. (*Z*)-4-(*tert-Butyldimethylsilyl*)*deca*-1,3-*dien*-5-*ol* (**10bb**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 0.15 (s, 3H), 0.23 (s, 3H), 0.93 (s, 9H), 4.25 (d, *J*=8.3 Hz, 1H), 7.00 (d, *J*=11.2 Hz, 1H).

4.6.7. (*E*)-4-[(tert-Butyldimethylsilyl)methylene]-2,2-dimethylhex-5en-3-ol (**9bc**). Pale yellow oil, 92% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.12 (s, 3H), 0.16 (s, 3H), 0.91 (s, 18H), 1.58 (br s, 1H), 4.37 (s, 1H), 5.14 (d, *J*=11.6 Hz, 1H), 5.33 (d, *J*=17.6 Hz, 1H), 5.84 (s, 1H), 6.63 (dd, *J*=11.6, 17.6 Hz, 1H); $\delta_{\rm C}$ (100 MHz, CDCl₃) -4.0, -3.8, 17.2, 26.47, 26.50, 35.7, 77.5, 115.0, 128.5, 138.3, 156.2; $\nu_{\rm max}$ (neat) 3472, 2955, 2858, 1558, 1466, 1362, 1254, 826 cm⁻¹; *m*/*z* (EI) 180 (60), 197 (46), 254 (1%, M⁺). HRMS (EI): M⁺, found 254.2070. C₁₅H₃₀OSi requires 254.2066.

4.6.8. (*E*)-2-[(Dimethylphenylsilyl)methylene]-1-phenylbut-3-en-1ol (**9ca**). Pale yellow oil, 78% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.45 (s, 6H), 2.02 (br s, 1H), 5.02 (d, *J*=11.5 Hz, 1H), 5.14 (d, *J*=17.8 Hz, 1H), 5.54 (s, 1H), 6.28 (s, 1H), 6.48 (dd, *J*=11.5, 17.8 Hz, 1H), 7.25–7.39 (m, 8H), 7.55–7.57 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –0.68, –0.72, 74.9, 116.9, 127.0, 127.7, 127.9, 128.6, 129.0, 133.8, 135.4, 139.1, 142.3, 155.3; $\nu_{\rm max}$ (neat) 3383, 3024, 2955, 2897, 1562, 1427, 1250, 1111, 910, 826, 729, 698 cm⁻¹; *m*/*z* (EI) 75 (100), 135 (100), 203 (62), 278 (3), 294 (2%, M⁺). HRMS (EI): M⁺, found 294.1438. C₁₉H₂₂OSi requires 294.1440.

4.6.9. (*E*)-3-[(Dimethylphenylsilyl)methylene]non-1-en-4-ol (**9cb**). Mixture of regioisomers (**9cb**:10cb=64:36). Pale yellow oil, 88% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.40 (s, 3H), 0.41 (s, 3H), 0.89 (t, *J*=7.0 Hz, 3H), 1.27–1.75 (m, 9H), 4.52 (dd, *J*=3.8, 7.7 Hz, 1H), 5.09 (d, *J*=11.5 Hz, 1H), 5.28 (d, *J*=17.8 Hz, 1H), 6.00 (s, 1H), 6.49 (dd, *J*=11.5, 17.8 Hz, 1H), 7.34–7.36 (m, 3H), 7.52–7.54 (m, 2H); $\nu_{\rm max}$ (neat) 3360, 3051, 2955, 2932, 2858, 1562, 1427, 1250, 1111, 818,

775, 729, 702 cm⁻¹; *m*/*z* (EI) 135 (100), 217 (25), 288 (46%, M⁺). HRMS (EI): M⁺, found 288.1906. C₁₈H₂₈OSi requires 288.1909.

4.6.10. (*Z*)-4-(*Dimethylphenylsilyl*)*deca*-1,3-*dien*-5-*ol* (**10cb**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.46 (s, 6H), 0.87 (t, *J*=7.0 Hz, 3H), 1.27-1.75 (m, 9H), 4.29 (dd, *J*=3.9, 7.8 Hz, 1H), 5.10 (d, *J*=10.0 Hz, 1H), 5.22 (dd, *J*=1.7, 16.6 Hz, 1H), 6.48 (ddd, *J*=10.0, 11.2, 16.6 Hz, 1H), 6.90 (d, *J*=11.2 Hz, 1H), 7.34-7.36 (m, 3H), 7.52-7.54 (m, 2H).

4.6.11. (*E*)-4-[(Dimethylphenylsilyl)methylene]-2,2-dimethylhex-5en-3-ol (**9cc**). Pale yellow oil, 70% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.41 (s, 3H), 0.42 (s, 3H), 0.93 (s, 9H), 1.58 (br s, 1H), 4.35 (s, 1H), 5.06 (d, *J*=11.2 Hz, 1H), 5.31 (d, *J*=17.6 Hz, 1H), 5.95 (s, 1H), 6.52 (dd, *J*=11.2, 17.6 Hz, 1H), 7.34–7.36 (m, 3H), 7.52–7.55 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –0.8, –0.6, 26.5, 35.7, 77.8, 115.7, 127.8, 128.4, 128.9, 133.7, 138.0, 139.3, 156.9; $\nu_{\rm max}$ (neat) 3472, 3051, 2955, 2905, 2870, 1728, 1558, 1427, 1362, 1250, 1111, 991, 814, 779, 702 cm⁻¹; *m*/*z* (EI) 135 (99), 140 (98), 203 (62), 217 (100), 274 (1%, M⁺). HRMS (EI): M⁺, found 274.1749. C₁₇H₂₆OSi requires 274.1745.

4.6.12. (*E*)-1,2-*Diphenylpenta-2,4-dien-1-ol* (**10***da*). Mixture of regioisomers (**9da**:**10da**=17:83). Pale yellow oil, 98% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.09 (br s, 1H), 5.09 (dd, *J*=1.8, 10.8 Hz, 1H), 5.33 (dd, *J*=1.8, 17.0 Hz, 1H), 5.51 (s, 1H), 6.26 (dt, *J*=10.8, 17.0 Hz, 1H), 6.52 (d, *J*=10.8 Hz, 1H), 6.99–7.01 (m, 2H), 7.24–7.32 (m, 8H); $\nu_{\rm max}$ (neat) 3371, 3082, 3055, 3020, 2932, 2858, 1713, 1466, 999, 906, 702 cm⁻¹; *m/z* (EI) 105 (100), 129 (50), 236 (99%, M⁺). HRMS (EI): M⁺, found 236.1209. C₁₇H₁₆O requires 236.1201.

4.6.13. (*E*)-2-*Benzylidene-1-phenylbut-3-en-1-ol* (**9***da*). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 5.15 (d, *J*=11.5 Hz, 1H), 5.29 (d, *J*=17.6 Hz, 1H), 5.67 (s, 1H), 6.71 (dd, *J*=11.5, 17.6 Hz, 1H).

4.6.14. (*E*)-4-*Phenyldeca*-1,3-*dien*-5-*ol* (**10db**). Mixture of regioisomers (**9db**:**10db**=14:86). Pale yellow oil, 99% yield; Minor regioisomer (**9db**) was not isolated by column chromatography on silica gel; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.85 (t, *J*=7.0 Hz, 3H), 1.19–1.51 (m, 8H), 1.62 (br s, 1H), 4.39 (t, *J*=5.4 Hz, 1H), 5.05 (dd, *J*=2.0, 11.1, 1H), 5.29 (dd, *J*=2.0, 16.5 Hz, 1H), 6.27 (dd, *J*=11.1, 16.5 Hz, 1H), 6.35 (d, *J*=11.1 Hz, 1H), 7.19–7.38 (m, 5H); $\nu_{\rm max}$ (neat) 3371, 3082, 3055, 3020, 2932, 2858, 1713, 1466, 999, 907, 702 cm⁻¹; *m/z* (EI) 99 (100), 129 (76), 159 (57), 230 (16%, M⁺). HRMS (EI): M⁺, found 230.1676. C₁₆H₂₂O requires 230.1671.

4.6.15. (*E*)-2,2-Dimethyl-4-phenylhepta-4,6-dien-3-ol (**10dc**). Mixture of regioisomers (**9dc**:**10dc**=43:57). Pale yellow oil, 99% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.82 (s, 9H), 4.28 (s, 1H), 5.08 (d, *J*=8.8, 1H), 5.32 (dd, *J*=1.8, 16.0 Hz, 1H), 6.36–6.42 (m, 2H), 7.25–7.35 (m, 5H); $\nu_{\rm max}$ (neat) 3456, 3082, 3055, 3024, 2955, 2905, 2870, 1477, 1366, 1072, 1003, 910, 732 cm⁻¹; *m*/*z* (EI) 58 (100), 159 (59), 216 (10%, M⁺). HRMS (EI): M⁺, found 216.1513. C₁₅H₂₀O requires 216.1514.

4.6.16. (*E*)-4-*Benzylidene-2,2-dimethylhex-5-en-3-ol* (**9dc**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 0.99 (s, 9H), 4.48 (s, 1H), 5.19 (d, *J*=11.5 Hz, 1H), 5.43 (d, *J*=17.9 Hz, 1H), 6.78 (dd, *J*=11.5, 17.9 Hz, 1H).

4.6.17. (*E*)-*N*-Benzyl-1-phenyl-2-[(trimethylsilyl)methylene]but-3en-1-amine (**13ad**). Pale yellow oil, 85% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.10 (s, 9H), 1.55 (br s, 1H), 3.63 (ABq, *J*=13.1 Hz, 2H), 4.51 (s, 1H), 4.98 (d, *J*=11.2 Hz, 1H), 5.13 (d, *J*=17.6 Hz, 1H), 6.04 (s, 1H), 6.48 (dd, *J*=11.2, 17.6 Hz, 1H), 7.15–7.28 (m, 10H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.4, 51.9, 64.2, 115.4, 126.9, 127.0, 127.7, 128.29, 128.33, 130.7, 136.6, 140.5, 142.7, 153.5; $\nu_{\rm max}$ (neat) 3063, 3028, 2955, 1562, 1493, 1454, 1250, 907, 748, 698 cm⁻¹; *m*/*z* (EI) 91 (30), 196 (100), 321 (14%, M⁺). HRMS (EI): M⁺, found 321.1915. C₂₁H₂₇NSi requires 321.1913.

4.6.18. (*E*)-1-Phenyl-N-propyl-2-[(trimethylsilyl)methylene]but-3en-1-amine (**13ae**). Mixture of regioisomers (**13ae**:1**4ae**=97:3). Pale yellow oil, 93% yield; Minor regioisomer (**14ae**) was not isolated by column chromatography on silica gel; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.17 (s, 9H), 0.90 (t, *J*=7.4 Hz, 3H), 1.50 (sextd, *J*=2.6, 7.4 Hz, 2H), 2.43–2.56 (m, 2H), 4.53 (s, 1H), 5.06 (d, *J*=11.2 Hz, 1H), 5.25 (d, *J*=17.6 Hz, 1H), 6.04 (s, 1H), 6.54 (dd, *J*=11.2, 17.6 Hz, 1H), 7.22–7.33 (m, 5H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.3, 11.9, 23.3, 50.1, 65.0, 115.2, 126.9, 127.6, 128.3, 130.2, 136.8, 142.9, 153.8; $\nu_{\rm max}$ (neat) 3059, 3024, 2955, 1562, 1454, 1250, 907, 841, 752, 698 cm⁻¹; *m*/*z* (EI) 73 (18), 106 (29), 148 (100), 273 (13%, M⁺). HRMS (EI): M⁺, found 273.1915. C₁₇H₂₇NSi requires 273.1913.

4.6.19. (*E*)-*N*-*Benzyl*-3-[(*trimethylsily*])*methylene*]*non*-1-*en*-4-*amine* (**13af**). Pale yellow oil, 89% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.17 (s, 9H), 0.85 (t, *J*=7.1 Hz, 3H), 1.19–1.57 (m, 9H), 3.43 (t, *J*=7.1 Hz, 1H), 3.62 (ABq, *J*=12.9 Hz, 2H), 5.12 (d, *J*=11.2 Hz, 2H), 5.31 (d, *J*=17.8 Hz, 1H), 5.77 (s, 1H), 6.61 (dd, *J*=11.2, 17.8 Hz, 1H), 7.20–7.33 (m, 5H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 0.4, 14.0, 22.5, 26.0, 31.8, 36.0, 51.3, 60.6, 114.6, 126.7, 128.3, 137.3, 140.9, 155.5; $\nu_{\rm max}$ (neat) 3028, 2955, 2928, 2855, 1558, 1454, 1250, 853, 737, 698 cm⁻¹; *m*/*z* (EI) 91 (48), 190 (100), 244 (65), 315 (13%, M⁺). HRMS (EI): M⁺, found 315.2378. C₂₀H₃₃NSi requires 315.2382.

4.6.20. (*E*)-*N*-Benzyl-2-[(tert-butyldimethylsilyl)methylene]-1-phenylbut-3-en-1-amine (**13bd**). Pale yellow oil, 99% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.16 (s, 6H), 0.93 (s, 9H), 3.73 (ABq, *J*=13.2 Hz, 2H), 4.62 (s, 1H), 5.03 (d, *J*=11.2 Hz, 1H), 5.17 (d, *J*=17.3 Hz, 1H), 6.21 (s, 1H), 6.56 (dd, *J*=11.2, 17.3 Hz, 1H), 7.19–7.38 (m, 10H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –3.88, –3.86, 17.4, 26.6, 52.0, 64.3, 115.2, 126.9, 127.0, 127.6, 128.26, 128.35, 137.0, 140.5, 142.8, 154.0; $\nu_{\rm max}$ (neat) 3063, 3028, 2951, 2855, 1562, 1493, 1454, 1250, 907, 833, 737, 698 cm⁻¹; *m*/*z* (EI) 91 (80), 196 (100), 363 (21%, M⁺). HRMS (EI): M⁺, found 363.2379. C₂₄H₃₃NSi requires 363.2382.

4.6.21. (*E*)-2-[(tert-Butyldimethylsilyl)methylene]-1-phenyl-N-propylbut-3-en-1-amine (**13be**). Pale yellow oil, 99% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.15 (s, 6H), 0.88 (t, *J*=5.4 Hz, 3H), 0.91 (s, 9H), 1.51 (sextd, *J*=1.5, 7.6 Hz, 2H), 2.46–2.58 (m, 2H), 4.59 (s, 1H), 5.05 (d, *J*=11.5 Hz, 1H), 5.25 (d, *J*=17.8 Hz, 1H), 6.12 (s, 1H), 6.56 (dd, *J*=11.5, 17.8 Hz, 1H), 7.22–7.36 (m, 5H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –3.90, –3.87, 11.9, 17.4, 23.3, 26.6, 50.2, 65.1, 115.0, 126.9, 127.6, 127.9, 128.3, 137.2, 143.1, 154.2; $\nu_{\rm max}$ (neat) 3063, 3024, 2955, 2928, 2855, 1562, 1462, 1250, 907, 833, 779, 698 cm⁻¹; *m*/*z* (EI) 148 (100), 200 (62), 286 (68), 315 (74%, M⁺). HRMS (EI): M⁺, found 315.2390. C₂₀H₃₃NSi requires 315.2382.

4.6.22. (*E*)-*N*-Benzyl-3-[(tert-butyldimethylsilyl)methylene]non-1en-4-amine (**13bf**). Mixture of regioisomers (**13bf**: **14bf**=96:4). Pale yellow oil, 80% yield; Minor regioisomer (**14bf**) was not isolated by column chromatography on silica gel; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.15 (s, 6H), 0.85 (t, *J*=7.1 Hz, 3H), 0.92 (s, 9H), 1.21–1.56 (m, 9H), 3.49 (t, *J*=6.0 Hz, 1H), 3.62 (ABq, *J*=12.7 Hz, 2H), 5.10 (d, *J*=11.2 Hz, 1H), 5.32 (d, *J*=17.6 Hz, 1H), 5.83 (s, 1H), 6.63 (dd, *J*=11.2, 17.6 Hz, 1H), 7.12–7.30 (m, 5H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –3.83, -3.80, 14.0, 17.3, 22.6, 26.6, 31.9, 36.3, 51.4, 60.4, 114.3, 126.4, 126.8, 128.27, 128.30, 137.7, 140.9, 156.1; $\nu_{\rm max}$ (neat) 3063, 3028, 2955, 2928, 2855, 1562, 1462, 1250, 906, 829, 694 cm⁻¹; *m*/*z* (EI) 91 (22), 190 (100), 286 (47), 357 (12%, M⁺). HRMS (EI): M⁺, found 357.2845. C₂₃H₃₉NSi requires 357.2852.

4.6.23. (*E*)-*N*-Benzyl-2-[(dimethylphenylsilyl)methylene]-1-phenylbut-3-en-1-amine (**13cd**). Pale yellow oil, 63% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.10 (s, 6H), 1.67 (br s, 1H), 3.73 (ABq, *J*=13.1 Hz, 2H), 4.63 (s, 1H), 4.97 (d, *J*=11.2 Hz, 1H), 5.19 (d, *J*=17.6 Hz, 1H), 6.31 (s, 1H), 6.48 (dd, *J*=11.2, 17.6 Hz, 1H), 7.21–7.39 (m, 13H), 7.52–7.55 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –0.57, –0.54, 51.9, 64.2, 115.9, 127.0, 127.1, 127.7, 127.8, 128.1, 128.3, 128.4, 128.8, 133.8, 136.6, 139.4, 140.2, 142.5, 154.9; $\nu_{\rm max}$ (neat) 3063, 3024, 2955, 1562, 1493, 1454, 1427, 1250, 1111, 837, 729, 698 cm⁻¹; *m/z* (EI) 91 (42), 135 (17), 196 (100), 383 (11%, M⁺). HRMS (EI): M⁺, found 383.2075. C₂₆H₂₉NSi requires 383.2069.

4.6.24. (*E*)-2-[(*Dimethylphenylsilyl*)*methylene*]-1-*phenyl*-*N*-*propylbut*-3-*en*-1-*amine* (**13ce**). Pale yellow oil, 99% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.42 (s, 3H), 0.43 (s, 3H), 0.95 (t, *J*=7.4 Hz, 3H), 1.51 (sextd, *J*=1.2, 7.6 Hz, 2H), 2.51–2.65 (m, 2H), 4.57 (s, 1H), 5.03 (d, *J*=11.2 Hz, 1H), 5.30 (d, *J*=17.8 Hz, 1H), 6.23 (s, 1H), 6.52 (dd, *J*=11.2, 17.8 Hz, 1H), 7.20–7.36 (m, 8H), 7.52–7.54 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –0.57, –0.54, 11.8, 23.3, 50.2, 65.2, 115.7, 127.0, 127.4, 127.6, 127.8, 128.3, 128.8, 133.8, 136.8, 139.5, 142.9, 155.4; $\nu_{\rm max}$ (neat) 3067, 3024, 2959, 1562, 1454, 1427, 1250, 1111, 907, 833, 729, 698 cm⁻¹; *m*/*z* (EI) 135 (37), 148 (100), 335 (14%, M⁺). HRMS (EI): M⁺, found 335.2067. C₂₂H₂₉NSi requires 335.2069.

4.6.25. (*E*)-*N*-Benzyl-3-[(dimethylphenylsilyl)methylene]non-1-en-4-amine (**13cf**). Pale yellow oil, 76% yield; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.42 (s, 6H), 0.86 (t, *J*=7.0 Hz, 3H), 1.22–1.58 (m, 9H), 3.50 (t, *J*=6.5 Hz, 1H), 3.65 (ABq, *J*=12.9 Hz, 2H), 5.04 (d, *J*=11.2 Hz, 1H), 5.31 (d, *J*=16.8 Hz, 1H), 5.95 (s, 1H), 6.54 (dd, *J*=11.2, 16.8 Hz, 1H), 7.22–7.35 (m, 8H), 7.54–7.56 (m, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) –0.6, –0.5, 14.0, 22.6, 26.0, 31.8, 36.2, 51.4, 60.5, 115.1, 126.4, 126.8, 127.8, 128.3, 128.8, 133.8, 137.2, 139.7, 140.8, 157.1; $\nu_{\rm max}$ (neat) 3067, 3024, 2955, 2928, 2855, 1562, 1454, 1250, 1111, 841, 729, 698 cm⁻¹; *m*/*z* (EI) 91 (70), 190 (100), 306 (55), 377 (25%, M⁺). HRMS (EI): M⁺, found 377.2542. C₂₅H₃₅NSi requires 377.2539.

4.6.26. (*E*)-*N*-Benzyl-1,2-diphenylpenta-2,4-dien-1-amine (**14dd**). Mixture of regioisomers (**13dd**:1**4dd**=9:91). Pale yellow oil, 79% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.81 (ABq, *J*=13.4 Hz, 2H), 4.52 (s, 1H), 5.03 (dd, *J*=1.8, 10.1 Hz, 1H), 5.30 (dd, *J*=1.8, 17.0 Hz, 1H), 6.27 (dt, *J*=10.1, 17.0 Hz, 1H), 6.53 (d, *J*=10.1 Hz, 1H), 7.21–7.36 (m, 5H); $\nu_{\rm max}$ (neat) 3082, 3059, 3024, 2831, 1701, 1601, 1493, 1454, 910, 702 cm⁻¹; *m*/*z* (EI) 91 (78), 196 (100), 234 (30), 325 (86%, M⁺). HRMS (EI): M⁺, found 325.1828. C₂₄H₂₃N requires 325.1830.

4.6.27. (*E*)-*N*-Benzyl-2-benzylidene-1-phenylbut-3-en-1-amine (**13dd**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 4.73 (s, 1H), 5.10 (d, *J*=11.2 Hz, 1H), 6.72 (dd, *J*=11.2, 17.8 Hz, 1H), 6.99 (s, 1H).

4.6.28. (*E*)-1,2-Diphenyl-N-propylpenta-2,4-dien-1-amine (**14de**). Mixture of regioisomers (**13de**:**14de**=19:81). Pale yellow oil, 68% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.91 (t, *J*=7.3 Hz, 3H), 1.48 (br s, 1H), 1.50–1.57 (m, 2H), 2.50–2.68 (m, 2H), 4.47 (s, 1H), 5.02 (dd, *J*=2.0, 10.0, 1H), 5.29 (dd, *J*=2.0, 17.0 Hz, 1H), 6.22 (dt, *J*=10.0, 17.0 Hz, 1H), 6.49 (d, *J*=10.0 Hz, 1H), 6.90–6.93 (m, 2H), 7.18–7.34 (m, 8H); $\nu_{\rm max}$ (neat) 3059, 3024, 2957, 2870, 1601, 1493, 1450, 907, 745, 702 cm⁻¹; *m*/*z* (EI) 148 (82), 277 (100%, M⁺). HRMS (EI): M⁺, found 277.1829. C₂₀H₂₃N requires 277.1830.

4.6.29. (*E*)-2-Benzylidene-1-phenyl-N-propylbut-3-en-1-amine (**13de**). Minor regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃), characteristic signals: 4.67 (s, 1H), 5.11 (d, *J*=11.5 Hz, 1H), 5.36 (d, *J*=17.8 Hz, 1H), 6.71 (dd, *J*=11.5, 17.8 Hz, 1H), 6.99 (s, 1H).

4.6.30. (*E*)-*N*-*Benzyl*-4-*phenyldeca*-1,3-*dien*-5-*amine* (**14df**). Mixture of regioisomers (**13df**:**14df**=14:86). Pale yellow oil, 73% yield; Major regioisomer; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.86 (t, *J*=7.0 Hz, 3H), 1.18–1.40 (m, 8H), 1.53 (br s, 1H), 3.57 (t, *J*=6.5 Hz, 1H), 3.74 (ABq, *J*=13.2 Hz,

2H), 5.17 (d, *J*=11.5 Hz, 1H), 5.45 (d, *J*=18.1 Hz, 1H), 6.23–6.28 (m, 1H), 6.76 (dd, *J*=11.5, 18.1 Hz, 1H), 7.16–7.36 (m, 10H); ν_{max} (neat) 3059, 3028, 2928, 2855, 1600, 1493, 1454, 907, 698 cm⁻¹; *m/z* (EI) 91 (100), 190 (29), 248 (79), 319 (6%, M⁺). HRMS (EI): M⁺, found 319.2306. C₂₃H₂₉N requires 319.2300.

4.6.31. (*E*)-*N*-*Benzyl*-4-*phenyldeca*-1,3-*dien*-5-*amine* (**13df**). Minor regioisomer; δ_{H} (400 MHz, CDCl₃), characteristic signals: 3.32 (t, *J*=6.2 Hz, 1H), 3.84 (ABq, *J*=13.3 Hz, 1H), 4.99–5.02 (m, 1H), 5.21–5.26 (m, 1H), 6.74 (s, 1H).

Acknowledgements

This work was partially supported by Grant-in-Aids for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and by the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant # 2012-9).

References and notes

- (a) Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789–2834; (b) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835–2886; (c) Sato, F.; Urabe, H. In Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim, 2002; pp 319–354; (d) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Eur, J. Org. Chem. 2010, 391–409; (e) Wolan, A.; Six, Y. Tetrahedron 2010, 66, 3097–3133.
- (a) Harada, K.; Urabe, H.; Sato, F. Tetrahedron Lett. **1995**, *36*, 3203–3206; (b) Yamashita, K.; Sato, F. Tetrahedron Lett. **1996**, *37*, 7275–7278; (c) Takayanagi, Y.; Yamashita, K.; Yoshida, Y.; Sato, F. Chem. Commun. **1996**, 1725–1726; (d) Launary, V.; Beaudet, I.; Quintard, J.-P. Synlett **1997**, 821–823; (e) Yamashita, K.; Urabe, H.; Sato, F. Tetrahedron Lett. **1997**, *38*, 4619–4622; (f) Suzuki, D.; Urabe, H.; Sato, F. Angew. Chem., Int. Ed. **2000**, *39*, 3290–3292; (g) Baum, O.; Quntar, A. A.; Dembitsky, V. M.; Srebnik, M. Tetrahedron **2004**, *60*, 1359–1364; (h) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. **2004**, *6*, 727–729.
- (a) Gao, Y.; Harada, K.; Sato, F. Tetrahedron Lett. 1995, 36, 5913–5916; (b) Gao, Y.; Shirai, M.; Sato, F. Tetrahedron Lett. 1997, 38, 6849–6852; (c) Quntar, A. A. A. A.; Dembitsky, V. M.; Srebnik, M. Org. Lett. 2003, 5, 357–359; (d) Quntar, A. A. A. A.; Srebnik, M. J. Organomet. Chem. 2005, 690, 2504–2514.
- For example of the reaction of titanium–alkyne complexes with various electrophiles. Reaction with alkynes: (a) Hamada, T.; Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1999, 121, 7342–7344; (b) Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7925–7926 Reaction with nitriles; (c) Suzuki, D.; Nobe, Y.; Watai, Y.; Tanaka, R.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7474–7479 Reaction with allenes see; (d) Tanaka, R.; Sasaki, M.; Sato, F.; Urabe, H. Tetrahedron Lett. 2005, 46, 329–332; (e) Shimp, H. L.; Micalizio, G. C. Tetrahedron 2008, 64, 3437–3445 For a review; (f) Perez, L. J.; Micalizio, G. C. Synthesis 2008, 627–648 Reaction with carbonates; (g) Wolan, A.; Cadoret, F.; Six, Y. Tetrahedron 2009, 65, 7429–7439.
- (a) Hill, J. E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1993, 12, 2911–2924; (b) Yamaguchi, S.; Jin, R.-Z.; Tamao, K.; Sato, F. J. Org. Chem. 1998, 63, 10060–10062; (c) Block, E.; Birringer, M.; He, C. Angew. Chem. 1999, 111, 1710–1714; Angew. Chem., Int. Ed. 1999, 38, 1604–1607; (d) Morlender-Vais, N.; Solodovnikova, N.; Marek, I. Chem. Commun. 2000, 1849–1850.
- 6. (a) Paulmier, C. In Selenium Reagents and Intermediates in Organic Synthesis; Baldwin, J. E., Ed.; Pergamon: Oxford, UK, 1986; (b) Krief, A.; Hevesi, L. In Organoselenium Chemistry; Liotta, D., Ed.; John Wiley & Sons: New York, NY, 1987; (c) Krief, A.; Hevesi, L. Organoselenium Chemistry I; Springer: Berlin, Germany, 1988; (d) Organoselenium Chemistry; Wirth, T., Ed.; Springer: Berlin, Germany, 2000; (e) Nomoto, A.; Ogawa, A. In The Chemistry of Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons: Chichester, UK, 2012; Vol. 3, pp 623–688; (f) Mlochowski, J.; Lisiak, R.; Wójtowicz-Mlochowska, H. In The Chemistry of Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons: Chichester, UK, 2012; Vol. 3, pp 1083–1161; (g) Santi, C.; Lorenzo, R. D.; Tidei, C.; Bagnoli, L.; Wirth, T. Tetrahedron 2012, 68, 10530–10535.
- 7. Segi, M.; Suzuki, M.; Shintaku, K.; Maeda, H. Heteroat. Chem. 2011, 22, 545–552.
- Reich, H. J.; Shah, S. K.; Gold, P. M.; Olson, R. E. J. Am. Chem. Soc. 1981, 103, 3112–3120.
- 9. Hamada, T.; Mizojiri, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2000, 122, 7138–7139.
- 10. Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron Lett. 1993, 34, 6403-6406.
- 11. The structure of allylic alcohols **7** and **8** was assigned by inspection of the spin–spin coupling of the vinyl proton (**7**: singlet, **8**: triplet).
- 12. The structure of allylic amines **11** and **12** was assigned by inspection of the spin–spin coupling of the vinyl proton (**11**: singlet, **12**: triplet).
- The structure of *cis*-16 was assigned by the coupling constant between alkene protons (*cis*-16: 13.8 Hz).
- 14. Nakagawa, T.; Kasatkin, A.; Sato, F. Tetrahedron Lett. 1995, 36, 3207-3210.