Note

Synthesis of methyl $O-\alpha$ -L-fucopyranosyl- $(1 \rightarrow 2)$ - $O-\beta$ -D-galactopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy- β -D-glucopyranoside, using 2,3,4-tri-O-benzoyl- α -L-fucopyranosyl bromide as the α -L-fucosylating agent

Nikolay E. Nifant'ev, Alexander S. Shashkov, and Nikolay K. Kochetkov N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.) (Received June 13th, 1991; accepted September 14th, 1991)

In studies^{1,2} of the glycosylation of methyl α -L-rhamnopyranoside derivatives (HO-2 unsubstituted) with 2,3,4-tri-O-benzoyl- α -L-fucopyranosyl bromide (11) under Helferich conditions [acetonitrile-mercuric cyanide (2 equiv.)-mercuric bromide (catalytic amount)], α -linked products were formed if there was a benzoyl group or a monosaccharide residue at position 3. Glycosylations³⁻⁵ with acetobromofucose under Helferich conditions also gave α -fucosides, but the yield (>30%) and stereoselectivity were lower than in the reactions with 11.

We now describe α -L-fucosylation with 11 in the synthesis of the trisaccharide methyl glycoside 13 which contains the 2-O- α -L-fucopyranosyl- β -D-galactopyranose moiety and is a model for a ¹³C-n.m.r. study of the Salmonella arizonae O45 polysaccharide⁶. Compound 13 is the methyl glycoside of the Le^d (H type 1) blood-group-specific trisaccharide, which has been synthesised⁷ together with the 8-methoxycarbonyloctyl⁸ and 4-nitrophenyl⁹ glycoside.

Glycosylation of methyl 4,6-*O*-benzylidene-2-deoxy-2-phthalimido- β -D-glucopyranoside (2) with ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio- β -D-galactopyranoside (3) in the presence of nitrosyl tetrafluoroborate¹⁰ afforded 76% of the β -linked disaccharide derivative 5. Glycosylation of 2 with 1,2,3,4,6-penta-*O*-acetyl- β -D-galactopyranose (4, 2 equiv.) in the presence of trimethylsilyl triflate (0.5–2 equiv.) was less effective and gave only 20–30% of 5. That the galactosyl unit in 5 was β followed from ¹H-n.m.r. data in Table I (J_{12} 7.9 Hz).

O-Deacetylation of **5** gave tetraol **6** which, on treatment with benzaldehyde dimethyl acetal, gave the 4,6:4',6'-di-*O*-benzylidene derivative **7** (82% from **5**). Treatment of **7** with benzoyl cyanide in the presence of a catalytic amount of triethylamine¹¹ gave 91% of the 3'-benzoate **8**. The location of the benzoyl group in **8** was indicated by the low-field chemical shift of the resonance for H-3' (δ 4.77) and confirmed by deuterium exchange which simplified the signal of H-2' (δ 4.03).

Glycosylation of 8 with 11 under Helferich conditions, followed by removal of the

0008-6215/92/\$05.00 © 1992 – Elsevier Science Publishers B.V. All rights reserved.

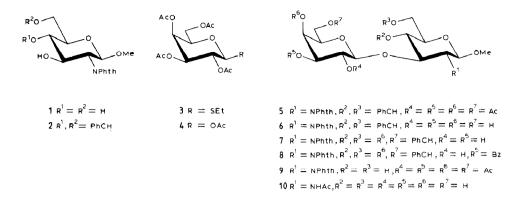
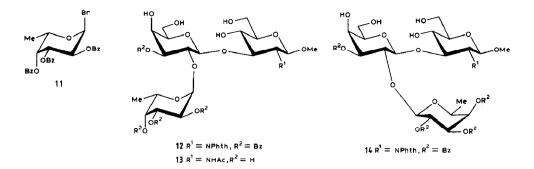


TABLE I

¹H-N.m.r. data^a (CDCl₃) (δ in p.p.m., J in Hz) for 2, 5, 7, 8, 12, and 14


Compound	Residue	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b
2		5.14	4.14	4.51	3.53		3.80	4.36
5	Glc	5.08	4.30	4.75	3.82	3.64	3.88	4.40
	Gal	4.56	5.00	4.75	5.20	3.50	3.83	4.04
8	Glc	5.42	4.35	4.88	3.87	3.80	3.89	4.47
	Gal	4.43	4.03	4.77	4.30	3.18	2.63	3.50
12	Fuc	5.47	5.59	5.77	5.93	4.81	1.34	
14	Fuc	4.70	5.35	4.63	5.37	3.28	1.08	
		J _{1,2}	J _{2,3}	J _{3,4}	J _{4,5}	$\mathbf{J}_{5,6a}$	J _{5.6b}	J _{6a,6b}
2		8.5	10.5	10.1	4.1	10.0		
5	Glc	8.4	10.2	8.5	8.5	10.0	4.6	10.0
	Gal	7.9	10.5	3.5	1.0	5.0	8.1	11.0
8	Glc	8.5	10.0	8.7	8.7	10.0	4.6	10.0
	Gal	8.5	10.0	3.8	<1	1.3	1.6	12.5
12	Fuc	3.7	10.6	3.5	<1	6.7		
14	Fuc	7.8	10.5	3.5	<1	6.5		

^aOther signals: aromatic, δ 7.20–8.20; OMe, 3.40–3.48; AcO, 1.55–2.10 (for 5); PhCH, 5.54 (for 2), 5.59 (for 5), 5.28 and 5.64 (for 8).

benzylidene groups by acid hydrolysis, and column chromatography gave 71% of the α -fucosylated product 12 and 13% of a 1:1.5 mixture of 12 and the β isomer 14. Thus, the glycosylation of 8 with 11 involved high α -stereoselectivity (α,β -ratio ~ 9:1). That the fucosyl unit was α in 12 and β in 14 followed from the respective $J_{1,2}$ values (3.7 and 7.8 Hz).

Hydrazinolysis of 12 and *N*-acetylation then gave the target trisaccharide methyl glycoside 13.

In addition to 13, methyl 2-acetamido-2-deoxy-3-O- β -D-galactopyranosyl- β -D-glucopyranoside (10) was obtained in three steps (acid hydrolysis-hydrazinolysis-N-acetylation). Compound 10 was also required for the study of the Salmonella arizonae

O45 polysaccharide⁶. The ¹H- and ¹³C-n.m.r. data for 10 and 13 are given in Tables II and III. Assignments of ¹H-n.m.r. spectra were accomplished using a combination of ¹H-¹H COSY and RCT 2D experiments, and those of ¹³C-n.m.r. spectra using 2D ¹H-¹³C correlated spectroscopy.

The above results demonstrate further that α -L-fucosylation with the donor 11 is an alternative to the traditional 2-O-benzylated α -L-fucosyl donors. The factors that determine the effectivenes of 11 for α -fucosylation are under investigation.

TABLE II

Compound	Residue	H-1	H-2	Н-3	H-4	H-5	H-6a	H-6b
10	Glc	4.50	3.94	3.79	3.55	3.49	3.80	3.95
	Gal	4.43	3.52	3.65	3.92	3.68		
13	Glc	4.38	3.81	4.02	3.47—		3.80	3.98
	Gal	4.66	3.61	3.86	3.92	3.70		
	Fuc	5.22	3.80	3.71	3.80	4.33	1.25	
		J _{1,2}	J _{2,3}	J _{3,4}	J _{4.5}	J _{5,6a}	J _{5,6b}	J _{6a,6b}
10	Glc	8.1	10.0	9.6	9.6	5.4	2.0	12.4
	Gal	7.5	9.6	3.2	<1			
13	Glc	8.2	10.3	9.0		5.4	1.6	12.4
	Gal	7.6	9.5	3.3	<1	4.0	7.8	
	Fuc	3.9	10.0	3.1	<1	6.8		

¹H-N.m.r. data^a (D₂O) (δ in p.p.m., J in Hz) for 10 and 13

"Other signals, respectively, for 10 and 13: NAc at 2.03 and 2.08 p.p.m.; OMe at 3.53 and 3.52 p.p.m.

TABLE III

¹³C-N.m.r. data^{*a*} (D₂O) (δ in p.p.m.) for 10 and 13

Compound	Residue	C-1	C-2	C-3	C-4	C-5	С-6
10	Glc	102.9	55.7	84.1	70.2	76.8	62,2
	Gal	104.7	72.1	73.9	69.9	76.6	62.2
13	Glc	103.9	56.0	79.0	70.1	76.9	62.2
	Gal	101.5	78.0	74.9	70.5	76.5	62.4
	Fuc	100.8	69.5	70.1	73.1	67.8	16.4

^aOther signals, respectively, for 10 and 13: NAc at 23.6 and 23.5 (Me) and 175.9 and 175.0 (CO) p.p.m.; OMe at 58.3 and 58.4 p.p.m.

EXPERIMENTAL

General. — Melting points were determined with a Kofler apparatus and are uncorrected. Optical rotations were determined with a JASCO DIP-360 digital polarimeter at 26–30°. ¹H-N.m.r. spectra for substituted compounds were recorded with a Bruker WM-250 instrument for solutions in CDCl₃ (internal Me₄Si). The 1D- and 2D-n.m.r. spectra of **10** and **13** were recorded in D₂O at 30°, using Bruker WM-250 (for ¹H) and AM-300 (for ¹³C) spectrometers with acetone as the reference (¹H, 2.225 p.p.m.; ¹³C, 31.45 p.p.m.). 1D and 2D experiments with **10** and **13** were performed as described in ref. 12. The n.m.r. data are recorded in Tables I–III.

Dichloromethane was washed with conc. H_2SO_4 and water, dried with CaCl₂, and distilled from CaH₂. Acetonitrile was distilled from P_2O_5 and then from CaH₂. Freshly distilled solvents were used in all experiments.

T.l.c. was performed on Kieselgel-60 (Merck) with EtOAc-toluene (A 1:2, B 1:1) and CHCl₃-EtOH (C 9:1), with detection by charring with H₂SO₄. Column chromatography was performed on Silica Gel L 40/100 μ m (C.S.F.R.) by gradient elution with benzene-EtOAc.

Methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido- β -D-glucopyranoside (2). — To a solution of methyl 2-deoxy-2-phthalimido- β -D-glucopyranoside^{13,14} (1; 3.3 g, 10.2 mmol) in acetonitrile (15 mL) were added benzaldehyde dimethyl acetal (4.1 mL, 27 mmol) and TsOH·H₂O (~ 20 mg). The mixture was kept for 16 h at 20°, pyridine (0.1 mL) was added, and the mixture was concentrated *in vacuo*. Column chromatography of the residue gave amorphous **2** (3.6 g, 86%), [α]_D – 32° (*c* 1, CHCl₃), *R*_F 0.61 (solvent *A*); lit.¹⁵ [α]_D – 33° (CHCl₃).

The ¹H-n.m.r. data are listed in Table I; the attribution of the signals for H-3 and H-4 is the reverse of that reported¹⁵.

Methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- β -D-glucopyranoside (5). — A mixture of 2 (206 mg, 0.5 mmol), 3 (293 mg, 0.75 mmol), molecular sieves 4 Å, and CH₂Cl₂ (6 mL) was stirred for 45 min at 20° under Ar. NOBF₄ (88 mg, 0.75 mmol) was added, the mixture was stirred for 1 h at 20°, then diluted with CHCl₃ (10 mL), filtered through Celite, and washed with aq. NaHCO₃ and water, and the solvent was evaporated. Column chromatography of the residue gave 5 (283 mg, 76%), [α]_D – 9° (c 2, CHCl₃), R_F 0.35 (solvent A).

The ¹H-n.m.r. data are listed in Table I.

Methyl 4,6-O-benzylidene-3-O-(4,6-O-benzylidene- β -D-galactopyranosyl)-2-deoxy-2-phthalimido- β -D-glucopyranoside (7). — A solution of 5 (371 mg, 0.5 mmol) in methanolic 0.1M MeONa (10 mL) was kept for 40 min at 20° until the conversion into 6 $[R_F 0.16$ (solvent C)] was complete. The solution was neutralised with KU-2 (H⁺) resin, filtered, and concentrated to dryness. The residue (6) was then benzylidenated as described for the preparation of 2. Column chromatography of the product gave amorphous 7 (272 mg, 82%), $[\alpha]_D - 5^\circ$ (c 2, CHCl₃), $R_F 0.15$ (solvent B).

Methyl 3-O-(3-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranosyl)-4,6-O-benzylidene-2-deoxy-2-phthalimido- β -D-glucopyranoside (8). — To a stirred solution of 7

(220 mg, 0.33 mmol) in acetonitrile (5 mL) were added benzoyl cyanide (45 mg, 0.34 mmol) and one drop of triethylamine. The mixture was stirred for 10 min, MeOH (2 mL) was added, the mixture was stirred for 5 min, the solvent was evaporated, and MeOH (5 mL) was evaporated from the residue. Column chromatography of the residue gave 8 (230 mg, 91%), m.p. 188–190° (from benzene–heptane), $[\alpha]_D + 67^\circ$ (c 0.8, CHCl₃), $R_F 0.70$ (solvent B).

Anal. Calc. for C₄₂H₃₉NO₁₃: C, 65.88; H, 5.13; N, 1.83. Found: C, 65.88; H, 5.20; N, 2.08.

The ¹H-n.m.r. data are listed in Table I.

Methyl 2-acetamido-2-deoxy-3-O-(β -D-galactopyranosyl)- β -D-glucopyranoside (10). — To a solution of 5 (148 mg, 0.2 mmol) in CHCl₃ (2 mL) was added aqueous 90% trifluoroacetic acid (1 mL). The mixture was stirred for 40 min, then diluted with CHCl₃ (20 mL), washed with water, aq. NaHCO₃, and water, filtered through cotton, and concentrated. Column chromatography of the residue gave the diol 9 (106 mg, 81%), a solution of which in aq. 96% EtOH (10 mL) and 99% hydrazine hydrate (2 mL) was boiled under reflux for 10 h. The mixture was concentrated and water (3 × 3 mL) was distilled from the residue, a solution of which in MeOH (10 mL) and water (2 mL) was treated with Ac₂O (4 mL) for 17 h at 20°, then concentrated. A solution of the residue in water (10 mL) was washed with 1-butanol (3 × 5 mL), then concentrated, and the residue was subjected to gel filtration on fracto-gel TSK HW-40(S) (25–40 μ m, V_0 50 mL), in 0.01M acetic acid, to give amorphous 10 (53 mg, 83%), [α]_D = 30° (c 1, H₂O).

The ¹H- and ¹³C-n.m.r. data are listed in Tables II and III.

Glycosylation of 8 with 11. — A solution of 8 (153 mg, 0.2 mmol), Hg(CN)₂ (127 mg, 0.5 mmol), HgBr₂ (70 mg), and molecular sieves 4 Å in acetonitrile (2 mL) and CH₂Cl₂ (1 mL) was stirred for 45 min at 20° under Ar. Using a syringe, a solution of 11 [prepared² from tetra-O-benzoyl-L-fucopyranose (290 mg, 0.5 mmol)] was introduced portionwise during 1 h. The mixture was stirred for 1 h, and CHCl₃ (10 mL) and sat. aq. KBr (10 mL) were added. The mixture was stirred for 10 min, then filtered through Celite, and the organic layer was washed with aq. KBr and water, filtered through cotton, and concentrated. A solution of the residue in CHCl₃ (2 mL) was treated with aq. 90% trifluoroacetic acid as described for the preparation of 9 from 5. Column chromatography of the product gave methyl O-(2,3,4-tri-O-benzoyl- α -L-fucopyranosyl)-(1 \rightarrow 2)-O-(3-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 3)-2-deoxy-2-phthalimido- β -D-glucopyranoside (10; 149 mg, 71%) and a mixture (28 mg, 13%) of 12 and its β isomer 14.

Compound 12 was amorphous and had $[\alpha]_D + 9^\circ (c 2, \text{CHCl}_3), R_F 0.33$ (solvent C). The ¹H-n.m.r. data for 12 and 14 are listed in Table I.

Methyl O- α -L-fucopyranosyl- $(1 \rightarrow 2)$ -O- β -D-galactopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy- β -D-glucopyranoside (13). — Compound 12 (149 mg, 0.14 mmol) was subjected to hydrazinolysis and subsequent N-acetylation, as described above for the preparation of 10 from 9, to give amorphous 13 (61 mg, 80%), $[\alpha]_D = 66.5^\circ (c \ 0.4, H_2O)$.

The ¹H- and ¹³C-n.m.r. data are listed in Tables II and III.

- 1 N. E. Nifant'ev, G. M. Lipkind, A. S. Shashkov, and N. K. Kochetkov, *Carbohydr. Res.*, 223 (1992) 109–128.
- 2 N. E. Nifant'ev, L. V. Backinowsky, G. M. Lipkind, A. S. Shashkov, and N. K. Kochetkov, Bioorg. Khim., 16 (1991) 517-530.
- 3 H. M. Flowers, A. Levy, and N. Sharon, Carbohydr. Res., 4 (1967) 189-195.
- 4 A. Levy, H. M. Flowers, and N. Sharon, Carbohydr. Res., 4 (1967) 305-311.
- 5 K. L. Matta, Carbohydr. Res., 31 (1972) 410-412.
- 6 A. S. Shashkov, E. V. Vinogradov, Y. A. Knirel, N. E. Nifant'ev, N. K. Kochetkov, J. Dabrowski, E. S. Stanislavsky, and E. V. Kholodkova, unpublished data.
- 7 V. A. Derevitskaya, O. S. Novikova, A. Y. Evstigneev, and N. K. Kochetkov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1978) 450-453.
- 8 D. A. Baker, D. R. Bundle, and R. U. Lemieux, U. S. Pat. 4,238,473 (1980); Chem. Abstr., 94 (1981) 154863m.
- 9 K. L. Matta, S. S. Rana, C. F. Piskorz, and S. A. Abbas, Carbohydr. Res., 131 (1984) 247-255.
- 10 V. Pozsgay and H. J. Jennings, J. Org. Chem., 52 (1987) 4635-4637.
- 11 S. A. Abbas and A. H. Haines, Carbohydr. Res., 39 (1975) 358-363.
- 12 N. K. Kochetkov, G. M. Lipkind, A. S. Shashkov, and N. E. Nifant'ev, Carbohydr. Res., 221 (1991) 145-168.
- 13 M. V. Ovchinnikov, N. E. Byramova, L. V. Backinowsky, and N. K. Kochetkov, *Bioorg. Khim.*, 9 (1983) 401–406.
- 14 N. E. Byramova, L. V. Backinowsky, and N. K. Kochetkov, Izv. Akad. Nauk SSSR., Ser. Khim., (1985) 1140–1145.
- 15 J. Alais and S. David, Carbohydr. Res., 201 (1990) 69-77.