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Abstract: The direct α-amination of ketones, esters, and 
aldehydes has been accomplished via copper catalysis. In the 
presence of catalytic copper(II) bromide, a diverse range of 
carbonyl and amine substrates undergo fragment coupling to 
produce synthetically useful α-amino substituted motifs. The 
transformation is proposed to proceed via a catalytically 
generated α-bromo carbonyl species; nucleophilic displacement 
of the bromide by the amine then delivers the α-amino carbonyl 
adduct while the catalyst is reconstituted. The practical value of 
this transformation is highlighted through one-step syntheses of 
two high–profile pharmaceutical agents, Plavix and 
amfepramone. 
 

Carbonyls bearing α-amino substitution are widely 
represented among pharmaceutically active compounds and 
complex natural products1 (Figure 1). The invention of catalytic 
strategies toward this high-value synthon is a longstanding goal 
in organic synthesis, and a number of methods have been 
developed for the installation of specifically tailored amine 
substrates at the carbonyl α-position.2  For example, the catalytic 
α-amination of ketones and aldehydes (via enolate derivatives) 
often involve the use of 2π-electrophile aza-substrates to deliver 
α-hydrazinyl or α-oxy-amino products, two structural classes 
that must be chemically modified prior to natural product or 
medicinal chemistry applications.  Slower to develop, 

 

Figure 1.  Medicinal use, strategies towards α-amino carbonyls.  

 
Scheme 1. Design of Cu(II)-catalyzed carbonyl–amine coupling. 

however, have been catalytic protocols3 that allow for the merger 
of carbonyl-derived enolates with a generic range of nitrogen-
containing structures or functionalities, a more direct strategy 
that would bypass the requirement for post-reaction amine 
modification.  Conceptually, the catalytic α-coupling of amines 
and enolates appears to be electronically mismatched, given that 
both reaction partners are inherently nucleophilic and that 
amines readily undergo 1,2-addition with electrophilic ketones, 
aldehydes, esters, etc.  As such, we recently questioned whether 
catalysis could be employed to transiently render carbonyls 
electrophilic at the α-position, thereby enabling the in situ 
addition of a broad range of nitrogen coupling partners.  Herein 
we describe the successful conclusion of these studies and 
present a simple, copper(II) bromide catalysis protocol for the 
catalytic α-amination of aldehydes, ketones, esters, and imides 
with an expansive structural range of functionalized amines. 

Design Plan: Drawing inspiration from the powerful 
Buchwald-Hartwig4 and Chan-Lam5 cross-coupling strategies, in 
which secondary amines are merged with aryl halides or boronic 
acids to generate aryl amine adducts, we envisioned an 
analogous direct fragment coupling of carbonyls and secondary 
amines en route to α-amino carbonyl synthons (Figure 1). An 
ongoing area of research in our lab is the invention of reactions 
that use copper catalysis to install high-value α-carbonyl 
functionality.  Toward this end, we have demonstrated the ability 
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Table 1: Initial Studies towards α-Amination of Carbonyls 

 
aGC yield using Bn2O as an internal standard.  bWith 30 mol% LiBr.  cPerformed 
over 24 hours.  dIsolated Yield. 

of copper(I) to catalyze the α-arylation of enol-silanes in the 
presence of diaryliodonium salts.6  Additionally, the synergistic 
merger of copper(I) catalysis with enamine catalysis has led to 
the development of methods for the enantioselective α-
arylation,7 α-vinylation,8 α-oxygenation,9 and α-
trifluoromethylation10 of aldehyde substrates.  On this basis, the 
proposed mechanism for the carbonyl amination is presented in 
Scheme 1.  We postulated that in the presence of catalytic 
copper(II) bromide, a diverse range of carbonyl substrates would 
undergo bromination at the α-position11 via a copper-bound 
enolate to generate an α-bromo carbonyl along with two 
molecules of copper(I) bromide and an equivalent of HBr.12,13,14 
Facile nucleophilic displacement of the α-C=O bromide 
functionality by a secondary amine would then deliver the α-
amino carbonyl adduct along with a second equivalent of HBr. 
Oxygen-mediated reoxidation of copper(I) bromide in the 
presence of HBr would reconstitute  the copper(II) bromide 
catalyst. Importantly, we recognized that water would be the 
only molecular by-product of this proposed catalytic cycle. 

Results: Our evaluation of the proposed carbonyl–amine 
fragment coupling began with exposure of propiophenone and 
morpholine to a series of copper catalysts (Table 1). The reaction 
was performed under an ambient air atmosphere to provide the 
oxygen necessary for catalyst turnover. As expected, the most 
suitable catalyst was copper(II) bromide, which delivered the α-
amino carbonyl product in 68% yield (entry 1).  By comparison, 
copper(II) chloride and copper(I) bromide were significantly less 
effective at mediating this transformation (entries 2 and 3, 2% 
and 31% yield). Although we postulated the intermediacy of an 
α-bromo carbonyl species, we recognized that an alternative 
mechanism might involve C–N bond formation via reductive 
elimination from a transient copper(III) species.15,16 To 
distinguish these pathways, the coupling was evaluated with a 
series of Cu(II) salts that did not contain halogens (e.g. 
Cu(OTf)2, Cu(TFA)2), and indeed, no desired amination 
products were observed in any case.17  Moreover, while the use 
of catalytic copper(II) bistrifluoroacetic acid provided no 
observable product (entry 4, 0% yield), addition of 30 mol%  

Table 2: Scope of the Ketone Coupling Component. 

 
The cited yields are of material isolated by column chromatography. aConducted 
under 1 atm of O2. bConducted at 60 °C. cConducted at 50 °C. dConducted at 10 °C. 
eConducted at 5 °C. fZnBr2 was employed as cocatalyst. gNiBr2 was employed as 
cocatalyst.  hMgI2 was employed as cocatalyst. iNaI was employed. jTHF was 
substituted as solvent. See supporting information for experimental details. 
 
lithium bromide led to a substantial recovery of catalytic 
efficiency (entry 5, 50% yield). These findings lend support to 
the existence of the crucial α-bromocarbonyl intermediate as 
depicted in Scheme 1. While extended reaction times did not 
lead to an improvement in overall efficiency (entry 6, 62% 
yield), the choice of solvent significantly influenced the coupling 
yield (entries 7–10, 45–93% yield), with DMSO proving to be 
the optimal reaction medium, presumably due to solvent 
stabilization of the transient copper enolate species (entry 10, 
93% yield).18 

With optimized conditions in hand, we next sought to define 
the scope of the carbonyl coupling partner. As shown in Table 2, 
electron-rich and -poor aryl ketones readily undergo fragment 
coupling with morpholine (entries 2 and 3, 92% and 78% yield). 
More specifically, the efficient conversion of electron deficient 
ketones was achieved at sub-ambient temperatures to prevent 
product decomposition, while systems that involve a π-rich aryl 
ring require elevated temperatures.  This disparity is attributed to 
the rate differential in both the ketone enolization and amine 
nucleophilic addition steps.  It is important to note that electron-
rich aromatic systems do not undergo Friedel-Crafts bromination 
under these catalytic conditions.19 Heteroaromatic ketones are 
also productive coupling partners, delivering α-amino ketones in  
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Table 3: Scope of the Ester and Aldehyde Component. 

 
The cited yields are of material isolated by column chromatography. aConducted 
under 1 atm of O2. bConducted at 70 °C. cConducted at rt. dMeCN was substituted 
as solvent. See supporting information for experimental details.  

high yield (entries 5 and 6, 92% and 82% yield).  Moreover, 
steric bulk at the carbonyl β-position is well-tolerated (entry 4, 
73% yield).  Efficient α-amination of aliphatic ketones was 
found to require the introduction of a co-catalyst – such as 
NiBr2, ZnBr2 or MgI2 – to facilitate the ketone enolization 
event.20  Under these modified conditions, the coupling of non-
symmetrical methyl, alkyl substituted ketones proceeds with 
high efficiency and regiocontrol to introduce the morpholine 
group exclusively at the internal methylene position (entry 7, 
71% yield).21,22 Moreover, α-amino ketone adducts that could be 
susceptible to 1,2-elimination are readily accessed without any 
observable product degradation (entries 8 and 9, 61% and 63% 
yield).  Notably, the use of 3-pentanone leads to mono-
amination adducts exclusively (entry 10, 50% yield), while the 
incorporation of sterically demanding alkyl substituents 
(isopropyl, tert-butyl), on the ketone substrate leads to selective 
amination at the less hindered methylene position in moderate to 
good yield (entries 11 and 12, 41% and 75% yield). 

We anticipated that our catalytic carbonyl–amine fragment 
coupling should also be compatible with a range of non-ketonic 
carbonyls.  Indeed, a series of α-aryl esters bearing a diverse 
array of aryl substituents readily undergo morpholine 
incorporation in the presence of catalytic CuBr2 to generate α-
amino esters with good efficiency (Table 3, entries 1–4, 70–91% 
yield). Notably, the reaction is compatible with an aryl bromide 
motif (entry 2, 91% yield); i.e. no undesired Buchwald-Hartwig 
coupling product was observed using our standard conditions.  A 
survey of ester substrates revealed the importance of the α-aryl 
group in enabling efficient coupling under these conditions.  
More specifically, the inductive effect of the aryl group 
promotes rapid ester enolization, a critical step that engenders 
the subsequent bromination–amine addition pathway that is not 
possible at this time with α-aliphatic esters.  However, aliphatic 
aldehydes, which we presumed would have a propensity to 
undergo non-productive enamine formation,23 serve as highly 
suitable coupling partners24 in this α-carbonyl functionalization 
reaction (entries 5 and 6, 75% and 67% yield). 

Table 4: Scope of the Amine Coupling Component. 

 
The cited yields are of material isolated by column chromatography. aConducted at 
60 °C. bConducted at 50 °C. cConducted at 40 °C. dNaI was employed. See 
supporting information for experimental details. 

 
A defining attribute of this new α-amination protocol is its 

potential to provide direct access to a broad array of amine 
groups at the carbonyl α-position. As shown in Table 4, a wide 
range of synthetically useful secondary amines is readily 
employed in this transformation.  For example, cyclic amines of 
various ring sizes readily participate to deliver the α-cyclic 
amino product in high yield (entries 1–6, 71–90% yield). 
Differentially protected acyclic alkyl amines also serve as  
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efficient coupling partners when elevated reaction temperatures 
are employed along with sodium iodide as an additive (entries 
7–9, 61–74% yield). Addition of sodium iodide presumably 
allows the intermediate α-bromocarbonyl to undergo a 
Finkelstein substitution to generate a more electrophilic α-
iodocarbonyl, thereby accelerating the subsequent amine 
displacement step.   

Given the operational simplicity and broad generality of this 
amine coupling protocol, we sought to demonstrate the utility of 
this new catalytic process for the production of high-profile 
medicinal agents.  As shown in equation 1, we have developed a 
one-step racemic synthesis of the appetite suppressant 
amfepramone in 80% yield using an analogous Phen•CuBr2 
catalyst, an operation that is complete in less than two hours.25  
Moreover, we have also demonstrated a one-step route to the 
antiplatelet agent Plavix (eq 2).26 Formation of this blockbuster 
drug was accomplished in 87% yield from inexpensive 
commercial materials using our standard CuBr2 catalysis 
protocol.27  

Finally, to demonstrate the preparative utility of this new 
amine coupling process, we performed the union of morpholine 
and propiophenone on a 37 mmol scale to generate 7.1 g (87% 
yield) of the desired α-amination product (cf. Table 2, entry 1, 
93% yield). 

In conclusion, we have developed a generic approach to the 
synthesis of complex α-amino carbonyls via the direct copper-
catalyzed coupling of carbonyls and functionalized secondary 
amines. This process provides a useful alternative to standard 
“atom transfer” approaches to the installation of amine 
functionality at the carbonyl α-position. This simple yet versatile 
method, which readily tolerates a range of functionality on the 
carbonyl and amine reaction components, has been applied to 
rapid syntheses of two prominent pharmaceutical agents. Studies 
toward a catalytic asymmetric variant of this new transformation 
are ongoing.28  
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