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ABSTRACT A practical and efficient enantioselective synthesis of the anticonvulsant drug
pregabalin is described for the first time using Jacobsen’s hydrolytic kinetic resolution of a terminal
epoxide as a key step and a source of chirality.Chirality 25:965–969, 2013. © 2013WileyPeriodicals, Inc.
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INTRODUCTION
γ-Aminobutyric acid (GABA) is an important neurotrans-

mitter that plays a major inhibitory role in the central nervous
system.1,2 An imbalance of GABA levels in the central ner-
vous system is responsible for many diseases that exhibit sev-
eral nervous system dysfunctions such as epilepsy, anxiety
disorders, neuropathic pain, social phobia, etc.3 Hence, ana-
logs of GABA have significant therapeutic potential and in
the last two decades numerous GABA mimetics (Fig. 1) were
designed with the intention that they would be able to cross
the blood–brain barrier and interact with GABAergic systems
and enhance GABA-mediated inhibition.4 Pregabalin (Lyrica
(S)-1) is an important lipophilic, chiral analogue of GABA, ap-
proved by the U.S. FDA for the management of fibromyalgia,
neuropathic pain associated with diabetic peripheral neuropa-
thy, postherpetic neuralgia, and as an adjunctive therapy for
epilepsy.5,6 Due to its unique mode of action it became
Pfizer’s best-selling drug, with worldwide sales of $4.15 bil-
lion in 2012, showing a 12% increase from the previous year.7

To date, several methods for the synthesis of enantiomerically
pure pregabalin have been reported. Generally, the method in-
cludes chiral pool approaches,8–10 classical resolution pro-
cesses,11–15 or using stereospecific procedures.16–24 However,
some of these methods have their own intrinsic disadvantages,
such as expensive chiral starting materials, undesired side prod-
ucts, tedious and time-consuming experiments, and so on.
Therefore, a new, practical, and expeditious stereoselective syn-
thesis of pregabalin is still desirable.
In this context, as part of our ongoing program aimed at

utilizing Jacobsen’s hydrolytic kinetic resolution strategy
(HKR)25–28 for the synthesis of various pharmaceutically im-
portant compounds for industrial applications,29–34 we herein
Pharmaceutically important GABA mimetics.
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report a new and simple synthesis of pregabalin employing
Jacobsen’s HKR strategy as a key step and a source of
chirality.

EXPERIMENTAL
Chemicals and Reagents

All chemicals were purchased from Sigma Aldrich (St. Louis, MO)
in the highest quality commercially available. Solvents were purified
and dried by standard procedures prior to use. Tetrabutylammonium
fluoride (TBAF) was used as a 1.0 M solution in tetrahydofuran
(THF). Isopropyl magnesium chloride was used as a 2.0 M solution
in THF.

Instrumentation
Infrared (IR) spectra were obtained with a Perkin–Elmer (Boston,

MA) Spectrum one spectrophotometer. 1H nuclear magnetic resonance
(NMR) and 13C NMR spectra were recorded with a Bruker (Billerica,
MA) AC-200 NMR spectrometer. Spectra were obtained in CDCl3. Mon-
itoring of reactions was carried out using thin-layer chromatography
(TLC) plates, Merck (Darmstadt, Germany) Silica Gel 60 F254, and vi-
sualization with UV light (254 and 365 nm), I2 and anisaldehyde in eth-
anol as development reagents. Optical rotations were measured with a
Jasci (Tokyo, Japan) P 1020 digital polarimeter. Mass spectra were
recorded at ionization energy 70 eV on API Q Star Pulsar spectrometer
using electrospray ionization. High-resolution mass spectrometry
(HRMS) (electrospray ionization, ESI) were recorded on an ORBITRAP
mass analyzer (Thermo Scientific, Pittsburgh, PA; Q Exactive). Enantio-
meric excess (ee) was determined by chiral high-performance liquid
chromatography (HPLC).

Preparation
(S )-2-(2-(benzyloxy)ethyl)oxirane (S)-3a. A mixture of 2-(2-
(benzyloxy)ethyl)oxirane 2 (10 g, 56.1 mmol) and (S,S)
salen Co(III)OAc complex-A (0.1 g, 0.14 mmol) was vigor-
ously stirred for 15 min, then cooled to 0°C, and water added
(0.6 mL, 31 mmol) over a period of 15 min through a
microsyringe. The reaction mixture was stirred at room tem-
perature for 12 h, and then additional (S,S) salen Co(III)OAc
complex-A (0.1 g, 0.14 mmol) was added and stirring was con-
tinued for an additional 12 h. The reaction mixture was di-
luted with ethyl acetate, dried over Na2SO4, and evaporated
under reduced pressure. The residue was purified by column
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chromatography (silica gel, petroleum ether/acetone, 95:5).
The less polar epoxide (S)-3a eluted first as a colorless oil
(4.0 g, 40%); [α]25D =�15.2 (c 2.5, CHCl3) {lit.26 [α]25D =�15.7
(c 4.06, CHCl3)}; IR (CHCl3, cm-1): νmax 3435, 3013, 2923,
2861, 1720, 1495, 1453, 1411, 1362, 1102; NMR (200 MHz,
CDCl3): δH 1.69-2.04 (m, 2H), 2.51 (dd, J = 5.1, 2.7 Hz, 1H),
2.76 (dd, J = 5.2, 4.0 Hz, 1H), 3.03-3.12 (m, 1H), 3.60-3.66
(ddd, J = 7.0, 5.6, 1.0 Hz, 2H), 4.53 (s, 2H), 7.27-7.37 (m, 5H);
l3C NMR(50 MHz, CDCl3): δC 138.3 (C), 128.4 (CH, 2 car-
bons), 127.7 (CH, 3 carbons), 73.1 (CH2), 67.1 (CH2), 50.1
(CH), 47.2 (CH2), 33.0 (CH2);MS:m/z 201 [M+Na]+; followed
by diol (R)-3b as a colorless oil (4.7 g, 43%); [α]25D = +18.0 (c 2.0,
EtOH) {lit.37 [α]25D = +22.7 (c 5.16, EtOH)}; IR (CHCl3, cm-1):
νmax 3600, 3435, 3013, 2923, 2861, 1495, 1453, 1411, 1362,
1102; 1H NMR (200 MHz, CDCl3): δH 1.70-1.79 (m, 2H), 3.47-
3.67 (m, 5H), 3.88 (m, 1H), 4.50 (s, 2H), 7.27-7.36 (m, 5H);
l3C NMR (50 MHz, CDCl3): δC 137.7 (C), 128.3 (CH, 2 car-
bons), 127.6 (CH, 3 carbons), 73.0 (CH2), 70.6 (CH), 67.7
(CH2), 66.2 (CH2), 32.9 (CH2); MS: m/z 219 [M+Na]+.

(R)-1-(benzyloxy)-5-methylhexan-3-ol (R)-4. To a precooled
(�20°C) solution of epoxide (S)-3a (3.8 g, 21.2 mmol) and
CuI (0.1 g) in dry THF (30 mL) was added isopropyl magne-
sium chloride (2 M in THF, 15.8 mL, 31.8 mmol) in THF
for about 30 min. Subsequently, the reaction mixture was
allowed to attain ambient temperature and the stirring contin-
ued for an additional 2 h. After completion of the reaction (in-
dicated by TLC), aqueous NH4Cl was added, after which the
reaction mixture was filtered and washed with ethyl acetate.
The solvent was removed under reduced pressure and the
crude product was subjected to column chromatography (sil-
ica gel, petroleum ether/ethyl acetate, 85:15) to yield (R)-4 as
a colorless oil. (4.2 g; 90%); [α]25D = + 17.5 (c 2.2, CHCl3); IR
(CHCl3, cm-1): νmax 3502, 3018, 2957, 1603, 1454, 1366, 1307,
1092; NMR (200 MHz, CDCl3): δH 0.91 (d, J = 6.6 Hz, 6H),
1.12-1.29 (m, 1H), 1.38-1.58 (m, 1H), 1.73 (dd, J = 11.7, 5.6
Hz, 2H), 1.74-1.85 (m, 1H), 2.84 (bd, J = 2.6 Hz, 1H), 3.60-
3.78 (m, 2H), 3.82-3.96 (m, 1H), 4.53 (s, 2H), 7.27-7.37 (m,
5H); l3C NMR(50 MHz, CDCl3): δC 138.0 (C), 128.5 (CH, 2
carbons), 127.7 (CH, 3 carbons), 73.4 (CH2), 69.4 (CH), 69.3
(CH2), 46.7 (CH2), 36.9 (CH2), 24.5 (CH), 23.4 (CH3), 22.2
(CH3); MS: m/z 245 [M+Na]+; HRMS (ESI): m/z calculated
for C14H22O2 [M+Na]+ 245.1512, found 245.1513.

(S)-2-(2-(benzyloxy)ethyl)-4- methylpentanenitrile (S)-5. To a
precooled (0°C) solution of alcohol (R)-4 (4.0 g, 17.9 mmol) in
dry dichlormethane (DCM) (50 mL) was added triethylamine
(5.4 mL, 39.3 mmol) followed by a slow addition of
methanesulfonyl chloride (19.6mmol, 1.5mL) dropwise. The re-
actionmixture was stirred at 10°C for 2 h before quenching with
water. The organic layer was washed with water (3 x 10 mL),
brine, and evaporated under reduced pressure. The crude prod-
uct was used for the next step without purification.
Trimethylsilyl cyanide (3.3 mL, 26.8 mmol) and TBAF (1 M

in THF, 26.7 mL, 26.8 mmol) were added to a stirring solution
of crude mesylated product as obtained above in acetonitrile
under nitrogen atmosphere at room temperature. The reac-
tion mixture was stirred at 60°C for 24 h. After completion
of the reaction (indicated by TLC), the solvent was removed
under reduced pressure and the crude product was subjected
to column chromatography (silica gel, petroleum ether/ethyl
acetate, 92:8) to yield (S)-5 as a colorless oil. (2.9 g; 71%, 2
steps); [α]25D = + 17.9 (c 1.08, CHCl3); IR (CHCl3, cm-1): νmax
Chirality DOI 10.1002/chir
3421, 2958, 2871, 2236, 1603, 1496, 1455, 1368, 1116; NMR
(200 MHz, CDCl3): δH 0.92 (d, J = 5.2 Hz, 3H), 0.95 (d, J = 5.4
Hz, 3H), 1.23-1.37 (m, 1H), 1.53-1.67 (m, 1H), 1.76-1.97 (m,
3H), 2.79-2.94 (m, 1H), 3.63 (apparent t, J = 6.1 Hz, 2H), 4.53
(d, J = 11.8 Hz, 2H), 7.26-7.41 (m, 5H); l3C NMR(50 MHz,
CDCl3): δC 138.0 (C), 128.5 (CH, 2 carbons), 127.7 (CH, 3 car-
bons), 122.1 (C), 73.3 (CH2), 66.9 (CH2), 41.2 (CH2), 33.0
(CH2), 26.7 (CH), 26.2 (CH), 23.0 (CH3), 21.5 (CH3); MS:
m/z 254 [M+Na]+; HRMS (ESI): m/z calculated for
C15H21NO [M+Na]+ 254.1515, found 254.1514.

(S)-tert-butyl (2-(2-hydroxyethyl)-4-methylpentyl)carbamate (S)-6.
To a solution of (S)-5 (2.0 g, 8.6 mmol) and Boc2O (2.0 g, 9.5
mmol) in methanol (30 mL) was added activated Raney-nickel
catalyst (200 mg) and the reaction mixture was stirred under
hydrogen (60 psi) for 20 h. After completion of the reaction (in-
dicated by TLC), the catalyst was filtered over a plug of celite
bed (EtOAc as an eluent) and the solvent was evaporated un-
der reduced pressure. The crude product was purified over col-
umn chromatography (silica gel, petroleum ether/ethyl
acetate, 70:30) to yield (S)-6 as a colorless oil (1.8 g, 86%);
[α]25D = +1.8 (c = 1.4,CHCl3); IR (CHCl3, cm-1): νmax 3457, 3019,
2959, 2931, 1698, 1513, 1393, 1367, 1168; NMR (200 MHz,
CDCl3): δH 0.88 (apparent t, J = 6.2 Hz, 6H), 1.06-1.18 (m, 2H),
1.44 (s, 9H), 1.47-1.74 (m, 4H), 2.25 (bs, 1H), 3.10 (apparent t,
J = 5.6 Hz, 2H), 3.65-3.79 (m, 2H), 4.80 (bs, 1H); l3C NMR(50
MHz, CDCl3): δC 156.5 (CO), 79.5 (C), 60.7 (CH2), 44.0
(CH2), 42.0 (CH2), 34.7 (CH2), 33.6 (CH), 28.4 (CH3, 3 car-
bons), 25.2 (CH), 22.8 (CH3), 22.7 (CH3); MS: m/z 268
[M+Na]+; HRMS (ESI): m/z calculated for C13H27NO3
[M+Na]+ 268.1883, found 268.1883.

(S)-3-(((tert-butoxycarbonyl)amino)methyl)-5-methylhexanoic acid
(S)-7. A mixture of (S)-6 (1 g, 4.0 mmol), TEMPO (0.05 g,
0.32 mmol), acetonitrile (20 mL), and sodium phosphate
buffer (16 mL, 0.67 M, pH 6.7) was heated to 35°C. Then so-
dium chlorite (1.3 g dissolved in 2 mL water, 14.6 mmol) and
dilute bleach (4–6%, 1 mL diluted in 2 mL water) were added
simultaneously over 1 h. The reaction mixture was stirred at
35°C until the reaction was complete (5 h, TLC), then cooled
to room temperature. Water (30 mL) was added and the pH is
adjusted to 8 with 2 N NaOH. The reaction was quenched by
pouring into ice-cold Na2SO3 solution maintained at <20°C.
After stirring for 30 min at room temperature, ethyl acetate
(30 mL) was added and the stirring continued for an addi-
tional 15 min. The organic layer was separated and discarded.
More ethyl acetate (30 mL) was added and the aqueous layer
was acidified with 2 N HCl to pH 3–4. The organic layer was
separated, washed with water (2 x 15 mL), brine (20 mL),
and concentrated under reduced pressure to afford the car-
boxylic acid (S)-7 (0.88 g, 85%); [α]25D =� 8.6 (c 1.1, CHCl3)
{lit.6b [α]25D =� 1.4 (c 3.3, EtOH)}; IR (CHCl3, cm-1): νmax
3450, 3020, 2927, 1646, 1521, 1423; NMR (200 MHz, CDCl3):
δH 0.90 (apparent t, J = 6.8 Hz, 6H), 1.16-1.19 (m, 2H), 1.45 (s,
9H), 1.62-1.69 (m, 1H), 2.10-2.35 (m, 3H), 3.05-3.09 (m, 1H),
3.21-3.25 (m, 1H), 4.78 (bs, 1H); l3C NMR(50 MHz, CDCl3):
δC 177.8 (CO), 156.5 (CO), 79.7 (C), 43.8 (CH2), 41.4 (CH2),
37.1 (CH2), 33.8 (CH), 28.4 (CH3, 3 carbons), 25.2 (CH),
22.7 (CH3, 2 carbons); MS: m/z 282 [M+Na]+

(S)-3-(aminomethyl)-5-methylhexanoic acid hydrochloride (Pregabalin)
(S)-1. To a solution of compound (S)-7 (0.25 g, 1 mmol) in ac-
etone (5mL) was added Conc. HCl (1mL) and the reactionmix-
ture was stirred at 60°C for 3 h, after which the solvent was
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evaporated under reduced pressure. The residue was dissolved
in water (10 mL) and extracted with DCM (2 x 5 mL). Heating
of the aqueous layer with activated charcoal followed by filtra-
tion through Celite and concentration of the aqueous layer
to dryness under reduced pressure furnished a residue that
was dried at 50°C for 48 h to afford pregabalin hydrochloride
(S)-1 (0.18 g, 95%); [α]25D = + 7.8 (c 1.1, H2O) {lit.36 [α]25D = + 7.0
(c 1.03, H2O)}; IR (Neat, cm-1): νmax 3448, 3211, 3130, 1720,
1431, 1215; NMR (200 MHz, D2O): δH 0.87 (d, J = 4.7 Hz,
3H), 0.90 (d, J = 4.6 Hz, 3H), 1.25 (apparent t, J = 6.7 Hz, 2H),
1.58-1.75 (m, 1H), 2.22-2.28 (m, 1H), 2.50 (m, 2H), 3.02 (d,
J = 5.6 Hz, 2H); l3C NMR(50 MHz, CD3OD): δC 175.7 (CO),
44.2 (CH2), 41.7 (CH2), 37.0 (CH2), 32.3 (CH), 25.8 (CH),
22.9 (CH3), 22.2 (CH3); MS: m/z 160 [M+H]+; HRMS
(ESI): m/z calculated for C8H18NO2 [M+H]+ 160.1332, found
160.1333.
Scheme 2. Synthesis o

Scheme 1. Retrosynthetic analysis of pregabalin (S)-1.
For the purpose of ee determination of pregabalin (S)-1, N-
benzyl amide of protected amino acid (S)-8 was prepared and
analyzed by chiral HPLC.

Method for the determination of ee: (S)-tbutyl (2-(2-(benzylamino)-
2-oxoethyl)-4-methylpentyl)carbamate (S)-8. To a solution of
acid (S)-7 (0.11 g, 0.42 mmol) in dry THF was added N-
methylmorpholine (50 μL, 0.46 mmol) at �78°C under argon
atmosphere. After 5 min, isobutyl chloroformate (60 μL, 0.46
mmol) was added and the content stirred for another 5 min.
To this reaction mixture benzylamine (50 μL, 0.46 mmol)
was added at �78°C and the reaction mixture allowed to
stir at room temperature for 2 h. After completion of the reac-
tion, the reaction mixture was filtered and washed with
ethylacetate. The solvent was removed under reduced pres-
sure and the crude product was subjected to column chroma-
tography (silica gel, petroleum ether/ethylacetate, 65:35) to
yield N-benzyl amide (S)-8 (0.12 g, 85%); [α]25D =� 3.5 (c 0.8,
CHCl3); ee >99% (The ee was determined by chiral HPLC
analysis: Chiralcel OJ-H [250 x 4.6 mm] column; eluent: pet
ether/ethanol [90:10], flow rate 0.5 mL/min, detector: 220
nm, [(R)-isomer- tR: 8.20 min; (S)-isomer- tR: 8.80 min]).

RESULTS AND DISCUSSION
A retrosynthetic analysis of pregabalin (S)-1 is outlined in

Scheme 1. We envisaged that the secondary alcohol (R)-4
would be an ideal intermediate for the synthesis which can
be extended to the Boc-protected amino alcohol (S)-6 via
f pregabalin (S)-1.
Chirality DOI 10.1002/chir
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cyanation and hydrogenolysis. Simple oxidation and
deprotection of compound (S)-6 can lead to the target mole-
cule (S)-1. Further, the key intermediate (R)-4 in turn can
be accessed from the enantiopure epoxide (S)-3a by
employing regioselective ring opening using Grignard re-
agent. The enantiopure epoxide (S)-3a can be easily obtained
with high enantiopurity from its racemic epoxide 2
employing Jacobsen’s HKR method.
Accordingly, the substrate for HKR, the rac-epoxide 2, was

prepared from 3-buten-1-ol using the standard procedure.35

The HKR of rac-epoxide 2 was performed with 0.55 equivalent
of water using Jacobsen’s catalyst (S,S)-Salen Co(III)OAc (0.5
mol%) at ambient temperature for 24 h (Scheme 2). After comple-
tion of the reaction, the reaction mixture was chromatographed
over silica gel column to give enantiomerically pure epoxide
(S)-3a from the racemic mixture in 40% yield {[α]D=�15.2
(c 2.5, CHCl3) Lit26: -15.7 (c 4.06, CHCl3)} along with its diol
(R)-3b in 43% yield. Subsequently, the epoxide (S)-3a was
subjected to regioselective ring opening with isopropyl magne-
sium chloride in the presence of CuI in anhydrous THF at
�20°C to provide the key intermediate secondary alcohol (R)-
4 in 90% yield. The compound (R)-4 was readily transformed
into a cyano derivative (S)-5 with an overall yield of 71% in two
steps: (i) mesylation of the secondary alcohol (MsCl, Et3N,
DCM, 0°C) to affordmesylate and (ii) cyanation (TMSCN,TBAF,
CH3CN, 60°C) to obtain cyano derivative (S)-5. Performing
cyanation reaction using the NaCN/DMF condition did not en-
hance the yield of the cyano product (S)-5. Further, compound
(S)-5 on simple hydrogenation/hydrogenolysis and concomitant
Boc-protection using (Boc)2O and Raney-Ni as a catalyst in meth-
anol furnished the protected amino alcohol derivative (S)-6.
Further, oxidation of compound (S)-6 went smoothly using

sodium chlorite catalyzed by TEMPO and bleach in an acetoni-
trile-phosphate buffer (pH 6.8) condition and afforded the
corresponding acid (S)-7 in 85% yield. Finally, simple Boc-
deprotection of (S)-7 using conc. HCl/ acetone completes the
synthesis of pregabalin (S)-1 in excellent enantioselectivity
(>99 % ee) {[α]D = +7.8 (c 1.1, H2O); lit36 [α]D = +7.0 (c 1.1,
H2O)}. The structure of Pregabalin (S)-1 was confirmed by its
IR, 1HNMR, 13CNMR, andmass spectral analysis. The enantio-
meric purity of pregabalin (S)-1 (as its benzylamide derivative
(S)-8) was determined by chiral HPLC analysis.
CONCLUSION
In conclusion, we have demonstrated the use of a Jacobsen’s

HKR strategy for the simple synthesis of pregabalin (S)-1 for
the first time. Simple procedures, high enantioselectivities,
and the ready availability of the catalyst and starting materials
are someof the salient features of this approach.We envisage that
this simple protocol may find a viable alternative for the large-
scale production of pregabalin in the pharmaceutical industry.
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