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14b-Hydroxy-10-deacetylbaccatin III as a convenient, alternative
substrate for the improved synthesis of methoxylated second-

generation taxanes
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Abstract—This article describes a new, convenient, improved synthesis of the 2-debenzoyl-2-m-methoxybenzoyl-7-triethylsilyl-13-
oxo-14b-hydroxybaccatin III 1,14-carbonate, the key intermediate in the synthesis of two new second-generation antitumor taxanes.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1.
The antimitotic drugs Taxol� (paclitaxel) and Taxotere�

(docetaxel) are two of the best anticancer agents in clin-
ical use today for the treatment of ovarian cancer, breast
cancer, and nonsmall cell lung cancer. Paclitaxel and
docetaxel suffer from a series of disadvantages, including
poor water solubility and the quick development of
resistance,1 that have fuelled the search for analogues
endowed with a better clinical profile.

In this context, we recently published the synthesis of
two new biologically active compounds (1 and 2,
Fig. 1),2 the methoxylated analogues of the norstatin
esters IDN5109 and IDN5390 (3 and 4, respectively;
Fig. 1)3 which have recently emerged as interesting clin-
ical candidates to overcome resistance to paclitaxel and
to allow oral administration.

The synthesis of both compounds 1 and 2 was accom-
plished starting from the naturally occurring 10-deace-
tylbaccatin III 5 (Scheme 1), through the key
intermediate 6.

The synthesis of 6 from 5 proceeded in an unsatisfactory
overall yield (7%), due to the presence of two critical
steps. In fact, since 10-deacetylbaccatin III lacks the b-
oxygen at C-14, the procedure required the diastereo-
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selective b-hydroxylation, followed by carbonylation of
the crude 1,14-diol,4 with a low overall yield (30%). This
prompted us to explore an alternative synthesis for the
key compound 6, with the aim of avoiding the diastereo-
selective hydroxylation step and, in this way, to increase
the yield of the synthesis. The new approach started
from the readily available 14b-hydroxy-10-deacetylbacc-
atin III (7), a naturally occurring taxane isolated from
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Scheme 2. Synthesis of 6 from 14b-hydroxy-10-deacetylbaccatin III

(7). Reagents and conditions: (a) Ac2O, CeCl3Æ7H2O, THF, overnight,

98%; (b) TESCl, pyridine, overnight, 55%; (c) Triton B, DCM,

�78 �C! 0 �C, 1.5 h; (d) triphosgene, pyridine, DCM, 0 �C, 10 min,

56%; (e) N-methylmorpholine-N-oxide, OsO4, acetone, 0 �C! rt, 1 h,

93%; (f) anisic acid, DCC, DMAP, toluene, 60 �C, 2.5 h, 40%.
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Scheme 1. Synthesis of 1 and 2 from 10-deacetylbaccatin III (5); see

Ref. 2.
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Taxus wallichiana Zucc.5 which, compared to 10-deace-
tylbaccatin III, shows an additional b-hydroxyl group at
C-14.

The first step of our procedure was the selective acety-
lation of the 10-hydroxyl group, which was carried out
by treatment with Ac2O in the presence of CeCl3Æ7H2O,6

which gave compound 8 with a 98% yield, followed by
the selective silylation of the 7-hydroxyl group7

(Scheme 2) to give 9 (55%). The obtained compound
9 was then debenzoylated at C-2 by treatment with ben-
zyltrimethylammonium hydroxide (Triton B)8 giving
the polyhydroxylated compound 10. The crude 10
was then selectively carbonylated at 1,14 with triphos-
gene9 to yield compound 11 (56% from 9). The latter
was selectively oxidized at C-13 by treating with N-
methylmorpholine-N-oxide and a catalytic amount of
OsO4,10 to yield ketone 12 (93%, Scheme 2). Finally,
12 was benzoylated at C-2 with anisic acid,11 allowing
the target compound 6 to be obtained in an acceptable
yield of 40% (Scheme 2).12 It is worth noting that, as
far as we know, the benzoylation at C-2 of a taxane,
in the presence of the 1,14-carbonate, has never been
reported before. The limited yield of this step is proba-
bly due to the steric hindrance that the 1,14-carbonate
and the 4-acetate are exerting on the C-2 hydroxyl
group.

The overall yield of the synthesis was 11%, which repre-
sents a significant increase (>50%) compared to 7% of
the previous procedure. Additionally, the chance to have
two approaches for the synthesis of highly active antitu-
mor taxanes, from different naturally occurring com-
pounds, could be very useful since the restricted
availability of the starting material is, usually, one of
the main limiting factor.13

In summary, a convenient preparation of the key inter-
mediate 6 has been reported; the method includes the
first benzoylation at C-2 of a taxane carrying a 1,14 car-
bonate. This synthetic procedure starts from a different
precursor and involves simpler chemistry compared with
those from 10-deacetylbaccatin III. Moreover, a sub-
stantial increase of the yield (>50%) with respect to
the previous procedure is the crucial advantage of this
method. Further studies on the synthesis of antitumor
taxanes are in progress.
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