

Bioorganic & Medicinal Chemistry Letters 12 (2002) 1083-1086

New Highly Active Taxoids from 9β-Dihydrobaccatin-9,10-acetals

Takashi Ishiyama, Shin Iimura, Satoru Ohsuki, Kouichi Uoto, Hirofumi Terasawa and Tsunehiko Soga*

Medicinal Chemistry Research Laboratory, Daiichi Pharmaceutical Co., Ltd, Tokyo R&D Center, 16-13 Kita-kasai 1-Chome Edogawa-ku, Tokyo 134-8630, Japan

Received 16 October 2001; accepted 25 January 2002

Abstract—To synthesize new highly active taxoids, we designed and synthesized 9β -dihydro-9,10-acetal taxoids. In vitro study of these analogues clearly showed them to be more potent than docetaxel. © 2002 Elsevier Science Ltd. All rights reserved.

Introduction

Paclitaxel (1, Taxol[®])¹ and docetaxel (2, Taxotere[®])² are currently considered to be two of the most important drugs in cancer chemotherapy (Fig. 1). To synthesize new highly active analogues of these drugs, we designed 9,10-acetal taxoids. Ahond et al. reported the synthesis of 7-deoxy-9 α -dihydro-9,10-isopropylidenedocetaxel (3) from a mixture of the natural products Taxine B and Isotaxine B, 9 α -dihydro taxoids that were isolated from *Taxus canadenesis* (Fig. 2).³ The cytotoxicity of 3, however, was reported to be the same as that of docetaxel (2).

We hypothesized that the configuration of the 9-hydroxyl group is crucial and that there is a possibility to synthesize new highly active taxoids from the 9 β -dihydrobaccatin skeleton reported by Holton et al.⁴ Here we report 9 β -dihydro-9,10-acetal taxoids, which showed activity stronger than that of docetaxel against several tumor cell lines.

Chemical Synthesis

10-Deacetylbaccatin III (4) was reduced by using $n-Bu_4NBH_4$ to give the key compound 10-deacetyl-9 β -dihydrobaccatin III (5) (Scheme 1).⁴ To synthesize 9,10-acetal taxoids, several aldehydes and ketones, whose structures are not shown, were reacted with 5 in

Figure 2.

the presence of an acid catalyst.⁵ In this reaction, it was found that acetonide, 4-methoxybenzylidene, and propenylidene group could be obtained in satisfactory yields. To determine the structures of 6a-c, the 7, 13-hydroxyl groups were acetylated, and ¹H NMR spectra of 7a-c supported the structures.⁶

To introduce a phenylisoserine side chain to the 13-hydroxyl group of **6a–c**, β -lactams (**11**, **12**) were reacted with **6a–c** in the presence of NaHMDS. Contrary to our expectation, there was no selectivity between the 7-hydroxyl group and the 13-hydroxyl

paclitaxel (1: $R^1 = Ph$, $R^2 = Ac$) docetaxel (2: $R^1 = t$ -BuO, $R^2 = H$)

Figure 1.

0960-894X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00069-0

^{*}Corresponding author. Fax: +81-3-5696-8344; e-mail: iimurgdw@ daiichipharm.co.jp

group. The desired **9a–d** were obtained in low yields. Deprotection of **9a–d** by the reported method gave $10a-d^7$ (Scheme 2).⁸

To improve synthetic yields of the 9,10-acetal taxoids, selective protection of the 7-hydroxyl group of **6b** by

Scheme 1. Reagents and conditions: (a) n-Bu₄NBH₄, 1:1 dioxane-CH₂Cl₂, rt, 19 h (68%); (b) 2,2-dimethoxypropane or acrolein diethylacetal or 4-methoxybenzaldehyde dimethylacetal, CSA, CH₂Cl₂, dioxane, rt, 1 h, (57% for **6a**, 45% for **6b**, 25% for **6c**); (c) Ac₂O, Et₃N, DMAP, CH₂Cl₂, rt (70% for **7a**, 88% for **7b**, 72% for **7c**).

6a: $R^1 = R^2 = Me$ 6b: $R^1 = CH=CH_2$, $R^2 = H$ 6c: $R^1 = 4$ -MP, $R^2 = H$

 $\begin{array}{l} 8a: R^1 = R^2 = Me, R^3 = 2\text{-Furyl}, \\ R^4 = \text{TIPS} \\ 8b: R^1 = C\text{H}=C\text{H}_2, R^2 = \text{H}, R^3 = 2\text{-Furyl}, \\ R^4 = \text{TIPS} \\ 8c: R^1 = 4\text{-MP}, R^2 = \text{H}, R^3 = 2\text{-Furyl}, \\ R^4 = \text{TIPS} \\ 8d: R^1 = C\text{H}=C\text{H}_2, R^2 = \text{H}, R^3 = \text{Phenyl}, \\ R^4 = \text{TBS} \end{array}$

9a: R¹ = R² = Me, R³ = 2-Furyl, R⁴ = TIPS 9b: R¹ = CH=CH₂, R² = H, R³ = 2-Furyl,

- $R^4 = TIPS$ 9c: $R^1 = 4-MP$, $R^2 = H$, $R^3 = 2-Furvl$,
- R^4 = TIPS 9d: R^1 = CH=CH₂, R^2 = H, R^3 = Phenyl, R^4 = TBS

Scheme 2. Reagents and conditions: (a) (1) 11 or 12, NaHMDS, THF, -55°C, 0.5 h (15% for 8a, 19% for 9a, 19% for 8b, 19% for 9b, 8.8% for 8c, 13% for 9c, 31% for 8d, 9.8% for 9d); (b) HF-pyridine, pyridine, rt (88% for 10a, 87% for 10b, 68% for 10c, 70% for 10d).

TES group was studied (Scheme 3). It was found that **13a** was synthesized by using TESOTf and 2,6-di-*tert*butylpyridine in dichloromethane at -78 °C in fairly good yield (Table 1, entry 5). The following reaction gave **10d** in high yield (Scheme 4).

We synthesized 9β -dihydro-3'-furyldocetaxel (16) for comparison. Although 16 was not obtained from 10a by acidic deprotection of the acetal group, we synthesized 16 from 5 via 10-deacetyl-7,10-bis TES-9 β -dihydrobaccatin III (14) (Scheme 5).⁹

Scheme 3.

Scheme 4. Reagents and conditions: (a) 11, NaHMDS, THF, -55 °C, 0.5 h (71%); (b) HF-pyridine, pyridine, rt (78%).

Scheme 5. Reagents and conditions: (a) TESCl, Et_3N , DMF, rt (9%); (b) 12, NaHMDS, THF, -55 °C, 0.5 h (59%); (c) HF-pyridine, pyridine, rt (59%).

Table 1. 7-O selective silvlation of 6b

Entry	Conditions	13a (%)	13b (%)
1	TESCI (1.5 equiv), imidazole (1.8 equiv), DMF, rt	25	50
2	TESCI (15 equiv), imidazole (18 equiv), DMF, 65 °C	0	63
3	TESCI (1.2 equiv), pyridine, rt	27	30
4	TESOTf (1.1 equiv), 2,6-lutidine (1.5 equiv), CH ₂ Cl ₂ , -78 °C	24	20
5	TESOTf (1.3 equiv), 2,6-di- <i>tert</i> -butylpyridine (1.5 equiv), CH ₂ Cl ₂ , -78 °C	80	0

Table 2. Cytotoxicity of 9-β-dihydro taxoids^a

10d

16

Ph

FR

PP

H, H

^aThe in vitro experiments were performed with three different cell lines: PC-6, a human small cell lung cancer,¹⁰ its variant, PC-6/ VCR29–9, a vincristine-resistant cell line expressing P-glycoprotein,¹ and PC-12, a human non-small cell lung cancer cell line.1 Determination of GI50 was performed by using the MTT assay.¹² The cells were exposed continuously to the test compounds for 72 h.

0.365

21.0

0.328

422

37.3

^bGrowth inhibition of 50%: the concentration required to obtain half of the maximal inhibition for cell growth.

Results (Biological Activity) and Discussion

The antitumor activities of the 9β -dihydrotaxoids (10a–d, **16**) were evaluated in vitro against three cell lines, PC-6, PC-12, and PC-6/VCR. The PC-12 and PC-6/VCR cell lines are expressing P-glycoprotein. 9B-Dihydro-9,10-acetal taxoids (10a-d) showed strong activities against these cell lines (Table 2). On the contrary, the activity of 9β-dihydrodocetaxel (16) was less potent than docetaxel. These data clearly showed the effectiveness of acetal groups in the 9,10-position of the taxane skeleton and suggested the importance of the β -configuration of the 9-OH group.

In conclusion, we synthesized several 9β-dihydro-9,10-acetal taxoids and found that analogues based on the 9,10-acetal taxane skeleton are more potent than docetaxel. It appears that the 9β -configuration is important for increasing the potency. Further investigation of these highly active 9β -9,10-acetal taxoids will be reported in the near future.

References and Notes

1. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; Mcphail, A. J. Am. Chem. Soc. 1971, 93, 2325.

2. Gueritte-Voegelein, F.; Guenard, D.; Lavelle, F.; Le Goff, M.-T.; Mangatal, L.; Potier, P. J. Med. Chem. 1991, 34, 992. 3. Poujol, H.; Mourabit, A. A.; Ahond, A.; Poupat, C.;

Potier, P. Tetrahedron 1997, 53, 12575. 4. (a) Holton R. A. WO patent 15599, 1995. (b) Holton R. A.

WO Patent 20485, 1995. In this reaction, the 9- α -isomer was not obtained.

5. There were no differences among CSA, TsOH and PPTS in this reaction.

6. Comparison of 7-, 9-, 10-, and 13-protons of 6a-c and 7a-c supported the structures (Table 3).

Table 3. Chemical shifts of 7-, 9-, 10-, and 13-protons (ppm)

	7	9	10	13
6a	4.04	3.85	5.58	4.80
7a	5.14	4.01	5.50	6.13
6b	4.16	3.89	5.30	4.82
7b	5.20	3.96	5.31	6.15
6c	4.15	3.98	5.47	4.84
7c	5.22	4.09	5.46	6.16

7. Analytical data of 10a-d are as follows. 10a: mp 133–135 °C; ¹H NMR (CDCl₃) δ 1.08 and 1.28 (each 3H, each s, Me×2), 1.41 (9H, s, tert-Bu), 1.58, 1.65, 1.67, and 1.70 (each 3H, each s, Me×4), 1.83-1.94 (1H, m), 2.07-2.27 (2H, m), 2.36 (3H, s, Ac), 2.29–2.47 (1H, m), 2.94 (1H, d, H-3, J=4.9 Hz), 3.83 (1H, d, H-9, J = 7.3 Hz), 4.32 and 4.39 (each 1H, ABq, H-20, H-20', J=8.7 Hz), 4.65–4.76 (2H, m), 5.10 (1H, s), 5.30–5.42 (2H, m), 5.54 (1H, d, H-10, J=7.3 Hz), 6.05 (1H, d, H-2, J = 4.9 Hz), 6.11 (1H, d, furan, J = 3.5 Hz), 6.36 (1H, dd, furan, J=3.5, J=1.4 Hz), 7.39 (1H, d, furan, J=1.4 Hz), 7.48 (2H, t, Bz, J=7.3 Hz), 7.60 (1H, t, Bz, J=7.3 Hz), 8.11 (2H, d, Bz, J = 7.3 Hz). 10b: mp 147–150 °C; FAB-MS m/z 838 $(M+1)^+$; ¹H NMR (CDCl₃) δ 1.28, 1.62, 1.69, and 1.71 (each 3H, each s, Me×4), 1.41 (9H, s, tert-Bu), 2.05-2.26 (3H, m), 2.29–2.44 (1H, m), 2.35 (3H, s, Ac), 2.93 (1H, d, H-3, J=4.9 Hz), 3.89 (1H, d, H-9, J=6.8 Hz), 4.04–4.16 (1H, m, H-7), 4.32 and 4.39 (each 1H, ABq, H-20, H-20', J=8.3 Hz), 4.71 (1H, s like), 5.10 (1H, s like), 5.22 (1H, d, acetal, J = 5.9 Hz), 5.27 (1H, d, H-10, J=6.8 Hz), 5.32–5.46 (2H, m), 5.46 (H, d, CH=CH₂, J=10.8 Hz), 5.57 (1H, d, CH=CH₂, J=17.6 Hz), 5.97–6.19 (2H, m, H-13, CH=CH₂), 6.08 (1H, d, H-2, J=4.9 Hz), 6.32 (1H, d, furan, J=1.9 Hz), 6.36 (1H, dd, furan, J=3.0, J=1.9 Hz), 7.39 (1H, d, furan, J=3.0 Hz), 7.48 (2H, t, Bz, J = 7.8 Hz), 7.60 (1H, t, Bz, J = 7.8 Hz), 8.10 (2H, d, Bz, J = 7.8 Hz). **10c**: mp 148–151 °C; FAB-MS m/z 918 (M+1)⁺; ¹H NMR (CDCl₃) δ 1.30 (3H, s, Mde), 1.42 (9H, s, tert-Bu), 1.56 (3H, s, Me), 1.76 (6H, s, Me×2), 2.10-2.26 (3H, m), 2.36 (3H, s, Ac), 2.31–2.48 (1H, m), 2.99 (1H, d, H-3, J=4.9 Hz), 3.84 (3H, s, OMe), 3.98 (1H, d, H-9, J=7.4 Hz), 4.05-4.17 (1H, m, H-7), 4.30 and 4.38 (each 1H, ABq, H-20, H-20', J = 8.3 Hz), 4.57 (1H, d, J = 8.3 Hz), 4.72 (1H, d, J = 3.9 Hz), 5.11 (1H, s like), 5.38 (2H, broad s), 5.43 (1H, d, J=7.4 Hz), 5.80 (1H, s, acetal), 6.07 (1H, d, H-2, J=4.9 Hz), 6.15 (1H, broad t, H-13, J=8.0 Hz), 6.32 (1H, d, furan, J=3.8 Hz), 6.36 (1H, dd, furan, J=3.8 Hz, J=2.0 Hz), 6.93 (2H, d like aromatic protons of MP, J=8.8 Hz), 7.40 (1H, d, furan, J=2.0Hz), 7.43–7.53 (4H, m), 7.60 (1H, t, Bz, J=7.3 Hz), 8.11 (2H, d, Bz, J = 7.3 Hz). 10d: mp 145–150 °C; FAB-MS m/z 848 $(M+1)^+$; ¹H NMR (CDCl₃) δ 1.26 (3H, s, Me), 1.40 (9H, s, tert-Bu), 1.61 (6H, s, Me×2), 1.68 (3H, s, Me), 1.91 (1H, s, OH), 2.00–2.36 (3H, m), 2.30 (3H, s, Ac), 2.39 (1H, dd, J=9.8, 15.2 Hz), 2.90 (1H, d, H-3, J=4.9 Hz), 3.85 (1H, d, H-9, J=5.8 Hz), 4.05–4.15 (1H, m, H-7), 4.16 (1H, broad s), 4.32 and 4.38 (each 1H, ABq, H-20, H-20', J=8.8 Hz), 4.57 (1H, d, H-5, J=8.3 Hz), 4.62 (1H, broad s), 5.10 (1H, s), 5.22 (1H, d,

acetal, J=6.3 Hz), 5.26 (1H, d, H-10, J=6.8 Hz), 5.30 (1H, broad d, J=9.7 Hz), 5.97–6.13 (2H, m, H-13, CH=CH₂), 6.07 (1H, d, H-2, J=4.3 Hz), 7.20–7.45 (5H, m, aromatic protons), 7.47 (2H, t, Bz, J=7.4 Hz), 7.60 (1H, t, Bz, J=7.4 Hz), 8.10 (2H, d, Bz, J=7.4 Hz).

8. Ojima, I. Acc. Chem. Res. 1995, 28, 383, and references cited therein.

9. In step a, there was no selectivity among the 7-, 10-, and 13-hydroxyl groups of **5**.

10. Mitsui, I.; Kumazawa, E.; Hirota, Y.; Aonuma, M.; Sugimori, M.; Ohsuki, S.; Uoto, K.; Ejima, A.; Terasawa, H.; Sato, K. *Jpn. J. Cancer Res.* **1995**, *86*, 776.

11. Joto, N.; Ishii, M.; Minami, M.; Kuga, H.; Mitsui, I.; Tohgo, A. Int. J. Cancer 1997, 72, 680.

12. Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.;

Shoemaker, R. H.; Boyd, M. R. Cancer Res. 1988, 48, 589.