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Abstract—To synthesize new highly active taxoids, we designed and synthesized 9b-dihydro-9,10-acetal taxoids. In vitro study of
these analogues clearly showed them to be more potent than docetaxel. # 2002 Elsevier Science Ltd. All rights reserved.

Introduction

Paclitaxel (1, Taxol1)1 and docetaxel (2, Taxotere1)2

are currently considered to be two of the most impor-
tant drugs in cancer chemotherapy (Fig. 1). To synthe-
size new highly active analogues of these drugs, we
designed 9,10-acetal taxoids. Ahond et al. reported the
synthesis of 7-deoxy-9a-dihydro-9,10-isopropylidenedo-
cetaxel (3) from a mixture of the natural products
Taxine B and Isotaxine B, 9a-dihydro taxoids that were
isolated from Taxus canadenesis (Fig. 2).3 The cyto-
toxicity of 3, however, was reported to be the same as
that of docetaxel (2).

We hypothesized that the configuration of the
9-hydroxyl group is crucial and that there is a possibility
to synthesize new highly active taxoids from the
9b-dihydrobaccatin skeleton reported by Holton et al.4

Here we report 9b-dihydro-9,10-acetal taxoids, which
showed activity stronger than that of docetaxel against
several tumor cell lines.

Chemical Synthesis

10-Deacetylbaccatin III (4) was reduced by using
n-Bu4NBH4 to give the key compound 10-deacetyl-9b-di-
hydrobaccatin III (5) (Scheme 1).4 To synthesize
9,10-acetal taxoids, several aldehydes and ketones,
whose structures are not shown, were reacted with 5 in

the presence of an acid catalyst.5 In this reaction, it was
found that acetonide, 4-methoxybenzylidene, and pro-
penylidene group could be obtained in satisfactory
yields. To determine the structures of 6a–c, the 7,
13-hydroxyl groups were acetylated, and 1H NMR
spectra of 7a–c supported the structures.6

To introduce a phenylisoserine side chain to the
13-hydroxyl group of 6a–c, b-lactams (11, 12) were
reacted with 6a–c in the presence of NaHMDS. Con-
trary to our expectation, there was no selectivity
between the 7-hydroxyl group and the 13-hydroxyl
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group. The desired 9a–d were obtained in low yields.
Deprotection of 9a–d by the reported method gave
10a–d7 (Scheme 2).8

To improve synthetic yields of the 9,10-acetal taxoids,
selective protection of the 7-hydroxyl group of 6b by

TES group was studied (Scheme 3). It was found that
13a was synthesized by using TESOTf and 2,6-di-tert-
butylpyridine in dichloromethane at �78 �C in fairly
good yield (Table 1, entry 5). The following reaction
gave 10d in high yield (Scheme 4).

We synthesized 9b-dihydro-30-furyldocetaxel (16) for
comparison. Although 16 was not obtained from 10a by
acidic deprotection of the acetal group, we synthesized
16 from 5 via 10-deacetyl-7,10-bis TES-9b-di-
hydrobaccatin III (14) (Scheme 5).9

Scheme 2. Reagents and conditions: (a) (1) 11 or 12, NaHMDS, THF,
�55 �C, 0.5 h (15% for 8a, 19% for 9a, 19% for 8b, 19% for 9b, 8.8%
for 8c, 13% for 9c, 31% for 8d, 9.8% for 9d); (b) HF-pyridine, pyri-
dine, rt (88% for 10a, 87% for 10b, 68% for 10c, 70% for 10d).

Scheme 1. Reagents and conditions: (a) n-Bu4NBH4, 1:1 dioxane–
CH2Cl2, rt, 19 h (68%); (b) 2,2-dimethoxypropane or acrolein diethyl-
acetal or 4-methoxybenzaldehyde dimethylacetal, CSA, CH2Cl2,
dioxane, rt, 1 h, (57% for 6a, 45% for 6b, 25% for 6c); (c) Ac2O,
Et3N, DMAP, CH2Cl2, rt (70% for 7a, 88% for 7b, 72% for 7c).

Scheme 3.

Scheme 4. Reagents and conditions: (a) 11, NaHMDS, THF, �55 �C,
0.5 h (71%); (b) HF-pyridine, pyridine, rt (78%).

Scheme 5. Reagents and conditions: (a) TESCl, Et3N, DMF, rt (9%);
(b) 12, NaHMDS, THF, �55 �C, 0.5 h (59%); (c) HF-pyridine, pyri-
dine, rt (59%).
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Results (Biological Activity) and Discussion

The antitumor activities of the 9b-dihydrotaxoids (10a–d,
16) were evaluated in vitro against three cell lines, PC-6,
PC-12, and PC-6/VCR. The PC-12 and PC-6/VCR cell
lines are expressing P-glycoprotein. 9b-Dihydro-
9,10-acetal taxoids (10a–d) showed strong activities
against these cell lines (Table 2). On the contrary, the
activity of 9b-dihydrodocetaxel (16) was less potent
than docetaxel. These data clearly showed the effective-
ness of acetal groups in the 9,10-position of the taxane
skeleton and suggested the importance of the b-configur-
ation of the 9-OH group.

In conclusion, we synthesized several 9b-dihydro-
9,10-acetal taxoids and found that analogues based on
the 9,10-acetal taxane skeleton are more potent than
docetaxel. It appears that the 9b-configuration is
important for increasing the potency. Further investi-
gation of these highly active 9b-9,10-acetal taxoids will
be reported in the near future.
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Table 1. 7-O selective silylation of 6b

Entry Conditions 13a (%) 13b (%)

1 TESCl (1.5 equiv), imidazole (1.8 equiv), DMF, rt 25 50
2 TESCl (15 equiv), imidazole (18 equiv), DMF, 65 �C 0 63
3 TESCl (1.2 equiv), pyridine, rt 27 30
4 TESOTf (1.1 equiv), 2,6-lutidine (1.5 equiv), CH2Cl2, �78 �C 24 20
5 TESOTf (1.3 equiv), 2,6-di-tert-butylpyridine (1.5 equiv), CH2Cl2, �78 �C 80 0

Table 2. Cytotoxicity of 9-b-dihydro taxoidsa

R1 R2, R3 Cytotoxic activity GI50 (ng/mL)
b

PC-6 PC-12 PC-6/VCR

2 Ph 0.408–2.55 11.7–72.7 39.6–230
10a FR AC 0.331 0.235 1.88
10b FR PP 0.743 1.30 1.27
10c FR MB 6.26 0.605 9.25
10d Ph PP 0.365 0.328 4.64
16 FR H, H 21.0 37.3 422

aThe in vitro experiments were performed with three different cell
lines: PC-6, a human small cell lung cancer,10 its variant, PC-6/
VCR29–9, a vincristine-resistant cell line expressing P-glycoprotein,11

and PC-12, a human non-small cell lung cancer cell line.10 Determi-
nation of GI50 was performed by using the MTT assay.12 The cells
were exposed continuously to the test compounds for 72 h.
bGrowth inhibition of 50%: the concentration required to obtain half
of the maximal inhibition for cell growth.

Table 3. Chemical shifts of 7-, 9-, 10-, and 13-protons (ppm)

7 9 10 13

6a 4.04 3.85 5.58 4.80
7a 5.14 4.01 5.50 6.13
6b 4.16 3.89 5.30 4.82
7b 5.20 3.96 5.31 6.15
6c 4.15 3.98 5.47 4.84
7c 5.22 4.09 5.46 6.16
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