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ABSTRACT: Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance
of phenols. Here, we report a dual nickel-/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both
substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and
substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2′-
disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals
allows for straightforward late-stage functionalization, illustrated with examples such as ezetimibe and tyrosine.

The biaryl motif is widespread in natural products and
pharmaceutical compounds.1 Accordingly, the develop-

ment of convenient and efficient methods for forging aryl−aryl
bonds has been a long-term interest of chemists.2 Transition-
metal-catalyzed cross-coupling reactions are arguably the most
powerful tools for constructing C (sp2)−C (sp2) bonds, as
highlighted by the extensive use of Suzuki, Negishi, Kumada,
and Hiyama−Denmark cross-coupling reactions.3 All of these
reactions rely on an organometallic reagent as one of the cross-
coupling partners. Despite the widespread use of the traditional
cross-coupling reactions, this requirement for a nucleophilic
organometallic reagent can impose limitations on the substrate
scope, including difficulties with derivatization of advanced
synthetic intermediates and natural products.
Recently, reductive cross-coupling reactions have received

increasing attention due to the complementarity to traditional
cross-coupling reactions and the avoidance of nucleophilic
organometallic coupling partners.4 Given that reductive cross-
coupling reactions take place between two electrophiles, the
biggest challenge is achieving cross-coupling selectivity and
avoiding the competing homocoupling reactions. In 2015, Weix
and co-workers disclosed a dual Ni/Pd-catalyzed reductive
cross-coupling reaction, in which nickel and palladium
selectively undergo oxidative addition into different aryl
electrophiles.5 An ensuing transmetalation places both aryl
groups on palladium, and a subsequent reductive elimination
affords the desired biaryl product. The presence of zinc
facilitates the reduction of nickel, thus allowing for the use of
catalytic amounts of nickel. Following the initial report,
reductive cross-coupling reactions have been demonstrated to

proceed between two different aryl halides, aryl halides and aryl
triflates, and between aryl esters and aryl ethers bearing a
directing group (Figure 1).6 Compared to aryl halides,
electrophiles that can be directly derived from the aryl alcohol
(phenols) are more environmentally friendly.
Herein, we report the reductive cross-coupling reaction

between two different electrophiles, aryl tosylates and aryl
triflates, which can both easily be derived from phenols. The
mild reaction conditions in combination with the availability of
substrates provides an attractive novel route for biaryl synthesis.7

The methodology relies on dual nickel/palladium catalysis
where each metal catalyst is responsible for activating one of the
substrates.
Our initial attempts at achieving the selective cross-electro-

phile coupling were hampered by fast palladium-catalyzed
homocoupling of the aryl triflate. Nonetheless, we hypothesized
that by varying the ligands on both metals, the rates of oxidative
addition into the two different electrophiles could be matched.
After extensive optimization, we succeeded in identifying
reaction conditions which provided a high yield for the selective
cross-coupling of an aryl tosylate and an aryl triflate used in near-
stoichiometric amounts (Table 1). The optimized reaction
conditions consists of Pd(OAc)2 with bidentate ligand L1,
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Ni(TMHD)2 (TMHD = 2,2,6,6-tetramethyl-3,5-heptanedio-
nate) with bidentate ligand L5, aryl tosylate as limiting reagent, a
small excess of aryl triflate (1.3 equiv), zinc as reductant, and
DMF as solvent at 65 °C (entry 1).8 The use of equimolar
amounts of palladium and L1 leads to a slight decrease in yield
(entry 2). Control experiments where either one of the metal
sources is removed clearly showed that both metals are
necessary for product formation (entries 3 and 4). This was
further supported by experiments without either Pd(OAc)2/L1
or Ni(TMHD)2/L5 which also led to no formation of product
(entries 5 and 6). Other reductants than zinc either led to a
significantly reduced yield or no product formation (entries 7−
9). Variation of the bidentate phosphine ligand, either in the
linker length between the phosphorus atoms or in substituents
on phosphorus, provided lower yields (entries 10−12). The
same trend was observed for variations to the bidentate nitrogen
ligand where different substitution patterns than 2,9-dimethyl
led to reduced yields (entries 13−15). Screening of reaction
temperatures ranging from 40 to 80 °C revealed that 65 °C
provided the highest yield (entries 16−20). Finally, a range of
other polar solvents were shown to decrease the yield of the
desired cross-coupling product (entries 21−24).
Having established reactions conditions that provided a high

yield for the selective reductive cross-coupling of the simple aryl
tosylate and aryl triflate substrates in Table 1, we set out to
thoroughly evaluate the substrate scope and functional group
compatibility. First, 21 different aryl triflates were examined
leading to products 2−22 (Figure 2). While the unsubstituted
phenyl tosylate led to a high yield, substrates bearing different
unfunctionalized aliphatic substituents on the aryl triflate in
general led to good yields (2−6). Trifluoromethoxy as well as
methoxy groups were tolerated (7−10). Notably, no significant
difference in yields were observed for the ortho-, meta-, and
para-methoxy-substituted aryl triflates.9 Anilines including an
acetyl protected aniline with a free NH moiety10 afforded good
yields of the desired products (11 and 12). The presence of
various common aliphatic functional groups such as ether,
ketones, nitrile, and ester did not affect the reaction outcome,
and high yields were obtained (13−17). An aryl fluoride and
even an aryl chloride were tolerated (18 and 19).11 Substrates
containing an aryltrimethylsilyl group and a dihydrobenzofuran
could also undergo the reductive cross-coupling reaction (20

and 21). Finally, a Boc-protected indole afforded a high yield of
the desired product (22).
Next, 24 aryl tosylates were examined leading to cross-

coupling products 23−46. A simple naphthyl tosylate led to 83%
yield, and the introduction of electron-withdrawing or electron-
donating groups on the naphthyl moiety only had a minor
influence on the yield (23−26). Quinoline substrates and a
biphenyl tosylate were well-tolerated leading to good yields of
the desired products (27−29). Aryl ketone substrates smoothly
underwent the reductive cross-coupling, and no significant
difference in yields were observed between the ortho-, meta-,
and para-substituted substrates (30−32). A range of substrates
bearing common functional groups on the aryl tosylate, such as
nitrile, ester, sulfonyl, cyclic ketone, amides, indole, trifluor-
omethyl, and fluoride produced good to high yields (33−40).
Substrates containing aliphatic esters, ketone, and nitriles also

Figure 1. Comparison of existing reductive aryl−aryl cross-coupling
reactions and the work reported here.

Table 1. Effect of Various Reaction Parameters on the
Outcome of the Reductive Cross-Coupling Reaction between
Aryl Tosylates and Aryl Triflatesa

entry deviation from standard conditions yield of 1b (%)

1 none 90
2 5 mol % Pd(OAc)2 instead of 6.5 mol % Pd(OAc)2 81
3 without Pd(OAc)2 nd
4 without Ni(TMHD)2 nd
5 without Pd(OAc)2, L1 nd
6 without Ni(TMHD)2, L5 nd
7 Mn instead of Zn 49
8 Mn instead of Zn nd
9 Sn instead of Zn nd
10 L2 instead of L1 57
11 L3 instead of L1 30
12 L4 instead of L1 17
13 L6 instead of L5 15
14 L7 instead of L5 42
15 L8 instead of L5 36
16 40 °C instead of 65 °C 55
17 50 °C instead of 65 °C 73
18 60 °C instead of 65 °C 82
19 70 °C instead of 65 °C 85
20 80 °C instead of 65 °C 72
21 DMA instead of DMF 56
22 DMSO instead of DMF 40
23 THF instead of DMF nd
24 ACN instead of DMF nd

aThe reactions were performed on 0.2 mmol scale. bYields were
determined by GC analysis using n-dodecane as internal standard.
THMD = 2,2,6,6-tetramethyl-3,5-heptanedionate.
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afforded the desired cross-coupling products (41−43). Finally,

it was demonstrated that a trifluoromethoxy group, an

arylboronic ester,12 and even an unprotected primary aliphatic

alcohol13 are tolerated during the reductive cross-coupling

reaction (44−46).
To evaluate the sensitivity to steric effects, combinations of

sterically hindered aryl tosylates and aryl triflates were examined

Figure 2. Substrate scope investigation for the reductive cross-coupling reaction between aryl tosylates and aryl triflates. Listed yields are isolated
yields. aYield on 1.0 mmol scale in parentheses.
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(47−53). Notably, when both substrates contain an ortho
substituent, the desired cross-coupling product 51 could still be
obtained in 53% yield. Furthermore, a vitamin E derived
substrate bearing two ortho-substituents also led to product
formation affording a fully substituted aromatic ring (53).
Overall, the broad functional group tolerance for both

coupling partners, including electrophilic functional groups,
heterocycles, aryl chloride, and arylboronic ester highlights the
mild reaction conditions of the developed protocol for the
reductive cross-coupling reaction. Interestingly, secondary
amides and unprotected alcohols can sometimes be problematic
in cross-electrophile coupling reactions, yet the substrate scope
investigation indicated that this was not the case for our
protocol. Encouraged by these results, we continued to examine
applications for functionalization of compounds, which, for the
most part, can be derived in one step from natural products and
pharmaceuticals. First, we demonstrated that the triflate from a
tocopherol could be directly arylated in 82% yield (54). Also, a
protected fructose substrate afforded the desired reductive
cross-coupling product in a good yield (55).
The arylation of tyrosine went smoothly, and two amino acids

could be connected using our protocol (56 and 57). The steroid
scaffold, estratrien, was well-tolerated (58). Even the installation
of a heterocycle directly on the drug ezetimibe (treatment of
high cholesterol) proceeded in 70% yield without the need to
protect the pendant aliphatic alcohol (59). The presence of an
unprotected aliphatic alcohol was also tolerated for a benzoyl
derivative of L-(−)-menthol (60). Finally, it was demonstrated
that protected fructose and a tocopherol could be connected
using the reductive cross-coupling reaction (61). The successful
cross-coupling on natural products and pharmaceuticals high-
lights the mild reaction conditions and the potential for late-
stage functionalization using the developed protocol.14

In summary, we have developed a dual nickel/palladium-
catalyzed cross-coupling reaction between two easily accessible
phenol derivatives, aryl tosylates and aryl triflates. The mild
reaction conditions allow for broad functional group tolerance
and scope (>60 examples). Other features include low
sensitivity to steric hindrance and straightforward late-stage
functionalization of the pharmaceutical ezetimibe. Given the
broad functional group tolerance and the abundance of phenols,
the method reported here is a powerful alternative to traditional
cross-coupling reactions. A mechanistic investigation of the
reductive cross-coupling reaction is currently ongoing in our
group.
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