C Cleavage

Manganese-Catalyzed Cleavage of a Carbon–Carbon Single Bond between Carbonyl Carbon and α-Carbon Atoms of Ketones**

Yoichiro Kuninobu,* Tadamasa Uesugi, Atsushi Kawata, and Kazuhiko Takai*

Olefin metathesis, which proceeds through a carbon-carbon (C-C) double bond cleavage, is a well-known and useful method in synthetic organic chemistry.^[1] In contrast, cleavage of a C-C single bond is still one of the most difficult and challenging reactions in organic synthesis. Recently, there have been several reports on transition-metal-catalyzed transformations.^[2] For example, reactions of strained molecules, such as three- and four-membered rings, have been reported.^[3] In these reactions, release of the ring strain is the driving force for C-C single bond cleavage. As for reactions not involving ring strain, transformations using a directing group,^[4] cleavage of a carbon-nitrile bond,^[5] and transformations by retro-reactions, including retro-allylations,^[6] retroarylations,^[7] retro-alkynylation,^[8] retro-aldol reactions,^[9,10] and deallylation^[11] are also well known. To promote C-C single bond cleavage, we employed a manganese catalyst and carbodiimides. We report herein the cleavage of a unstrained C–C single bond between the carbonyl carbon and α -carbon atoms of ketones, and its application to the synthesis of amides.

Treatment of propiophenone (1a) with 1.0 equivalent of 1,3-di-*p*-tolylcarbodiimide (2a) in the presence of a catalytic amount of a manganese complex, [Mn₂(CO)₁₀], in 1,4-dioxane at 150°C for 24 hours gave amide **3a** in 50% yield.^[12-14] This reaction also proceeds using either the iron complex $[Fe_2(CO)_9]$ or the cobalt complex $[Co_2(CO)_8]$ as a catalyst.^[15] By increasing the amount of 2a to 3.0 equivalents, the yield of amide **3a** was improved to 97% [Eq. (1)]. In this reaction, quinoline 4a was also formed in 73% yield. The catalytic amount and reaction temperature could be reduced when the trinuclear manganese complex $[{HMn(CO)_4}_3]$ was used as the catalyst [Eq. (1)]. The C-C single bond of 1a was cleaved regioselectively in this reaction. In the cleavage of unreactive bonds, novel transition-metal catalysts are usually employed; however, such transformations proceed efficiently with firstrow transition metal catalysts (manganese, iron, or cobalt catalysts).

First, we investigated the scope of the ketones (Table 1). Ketones with an electron-donating or electron-withdrawing

group on the aromatic skeleton provided the corresponding amides **3b**, **3c**, and **3d** in yields in the range of 96–98% (entries 1-3). Chlorine and bromine atoms on the aromatic ring were not lost under the reaction conditions, and amides 3e and 3f were obtained in 96% and 62% yields, respectively (entries 4 and 5). In the case of using acetophenone (1g) or the dialkyl ketone 1h, amides 3a and 3g were provided in 60% and 63% yields, respectively (entries 6 and 7). Cyclohexyl ethyl ketone (1i) also produced amide 3h in 50% yield (entry 8). The amide 3h was formed selectively without formation of the regioisomer, probably because of the steric hindrance of the cyclohexyl group of 1i. A C-C single bond was cleaved using a ketone bearing a longer alkyl chain, 1j

Table 1: Reactions between several ketones 1 and carbodiimide 2a.^[a] [{HMn(CO)₄}₃] (1.7 mol%)

R ¹ 1	R^2 $N=C=$	N	1,4-dioxar 135 °C, 24	→ R ¹ へ e h	N H 3
Entry	R ¹	R ²			Yield [%] ^[b]
1 ^[c]	4-(MeO)C ₆ H ₄	Me	1 b	3 b	98 (>99)
2	4-MeC ₆ H ₄	Me	1c	3 c	96 (>99)
3 ^[c]	4-(CF ₃)C ₆ H ₄	Me	1 d	3 d	96 (>99)
4	4-CIC ₆ H ₄	Me	le	3 e	96 (>99)
5	$4-BrC_6H_4$	Me	1 f	3 f	62 (65)
6 ^[c]	Ph	Н	1g	3 a	60 (63)
7	$n - C_5 H_{11}$	$n-C_4H_9$	1ĥ	3 g	63 (69)
8	<u></u> §	Me	1i	3 h	50 ()
9	Ph	<i>n</i> -C ₅ H ₁₁	1j	3 a	72 (74)
10	Ph	Ph	1 k	3 a	95 (96)
11	Ph		11	3 a	62 (65)

[a] ${\bf 2a}$ (3.0 equiv). [b] Yield of isolated product. The yield determined by ¹H NMR spectroscopy is reported within parentheses. [c] $[Mn_2(CO)_{10}]$ (5.0 mol%) was used as the catalyst, and the reaction temperature was 150°C.

^[*] Dr. Y. Kuninobu, T. Uesugi, Dr. A. Kawata, Prof. Dr. K. Takai Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Kita-ku, Okayama 700-8530 (Japan) E-mail: kuninobu@cc.okayama-u.ac.jp ktakai@cc.okayama-u.ac.jp [**] This work was partially supported by the Ministry of Education,

Culture, Sports, Science, and Technology of Japan.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201104704.

(entry 9). Benzyl phenyl ketone (1k) showed high reactivity and amide **3a** was produced in 95% yield (entry 10). The corresponding amide **3a** was formed in 62% yield when a ketone bearing a secondary alkyl group, **1**, was employed as a substrate (entry 11). In this reaction, a hydrogen atoms at the α position of ketones **1** is necessary to promote the reaction; the reaction did not proceed using adamantyl ethyl ketone. In addition, the corresponding amide was not formed by the reaction between benzophenone and carbodiimide **2a**.

Next, the scope and limitations of the carbodiimides were investigated (Table 2). Diaryl carbodiimides with or without an electron-donating or electron-withdrawing group at the *para* position (**2b–2d**) gave the corresponding amides (**3i– 3k**) in yields within the range of 41–98% (entries 1–3). The corresponding amides **31** and **3m** were obtained with diaryl carbodiimides having either chlorine or bromine atom (**2e**, **2f**) without losing the chlorine or bromine atom (entries 4 and 5). The corresponding amide **3n** was afforded in 80% yield when di-1-naphthyl carbodiimide (**2g**) was used as a substrate (entry 6). The secondary aliphatic carbodiimide **2h** generated amide **3o** in 52% yield (entry 7). However, di-*tert*butyl carbodiimide did not provide the corresponding amide.

Table 2:	Reactions	between	ketone	1 a and	several	carbodiimides 2 . ^[a]

		[{HMn(CO) ₄ } ₃] (1.7 mol%) O					
	Pn + R-N=C=N-F 1a 2	1,4-dioxane, 1	35 °C, 24 h Ph	3 H			
Entry	R			Yield [%] ^{[b}			
1 ^[c]	4-(MeO)C ₆ H ₄	2 b	3 i	97 (>99)			
2	Ph	2 c	3 j	98 (>99)			
3 ^[c]	4-(CF ₃)C ₆ H ₄	2 d	3 k	41 (45)			
4 ^[c]	4-CIC ₆ H ₄	2e	31	84 (87)			
5 ^[c]	4-BrC ₆ H ₄	2 f	3 m	96 (>99)			
6		2 g	3 n	80 (82)			

[a] **2** (3.0 equiv). [b] Yield of isolated product. Yield determined by

7[c]

iPr

¹H NMR spectroscopy is reported within parentheses. [c] $[Mn_2(CO)_{10}]$ (5.0 mol%) was used as the catalyst.

2h

30

52 (54)

From the resulting structures of the products and byproducts, a possible reaction mechanism is as follows (Scheme 1): 1) nucleophilic addition of the enol form of ketone **1** to carbodiimide **2**, which is activated by a manganese catalyst; 2) formation of azetidin-2-imine by intramolecular nucleophilic cyclization; 3) ring-opening reaction through the cleavage of a C–C single bond to give amide **3** and the ketenimine;^[16] 4) aza-Diels–Alder reaction between the formed ketenimine and **2** to give a bicyclic intermediate; 5) tautomerization of the bicyclic intermediate, thus forming the quinoline derivative **4** as a side product.

A C–C single bond cleavage also occurred when using an isocyanate instead of a carbodiimide. By the reaction of ketone **1a** with *p*-tolyl isocyanate (**5**) in the presence of the manganese catalyst [{HMn(CO)₄}₃], amide **3a** was obtained in 15% yield [Eq. (2)]. By changing the catalyst to [Mn₂(CO)₁₀], the yield of **3a** was increased to 73% [Eq. (2)].^[17]

To elucidate the reaction mechanism in [Eq. (2)], isocyanate **5** was heated in the presence of $[{HMn(CO)_4}_3]$ [Eq. (3)]. As a result, carbodiimide **2a** was formed in 48% yield.^[18] In the case of using $[Mn_2(CO)_{10}]$, **2a** was obtained in 62% yield [Eq. (3)]. These results indicate that carbodiimide **2a** was formed from two equivalents of the isocyanate **5**, and successive reaction between the formed carbodiimide **2a** and ketone **1a** produced amide **3a**.

In summary, we have succeeded in the manganesecatalyzed synthesis of amides from ketones and carbodiimides. This reaction proceeds through the cleavage of a unstrained C–C single bond of ketones. The C–C single bond of a ketone was also cleaved using isocyanates instead of

Scheme 1. Proposed mechanism for the formation of amides 3.

Communications

carbodiimides. We hope that this reaction will provide useful insight for synthetic organic chemistry.

Experimental Section

A mixture of propiophenone (**1a**, 67.1 mg, 0.500 mmol), 1,3-di-*p*-tolylcarbodiimide (**2a**, 333 mg, 1.50 mmol), [{HMn(CO)₄]₃] (4.2 mg, 8.3 µmol), and 1,4-dioxane (1.0 mL) was stirred at 135 °C for 24 h in a sealed tube. The solvent was then removed in vacuo, and the product was isolated by column chromatography on silica gel (*n*-hexane/ethyl acetate = 10:1) to give *N*-(4-methylphenyl)benzamide (**3a**, 102 mg, 97% yield).

Received: July 7, 2011 Published online: September 9, 2011

Keywords: C–C cleavage · ketone · manganese · reaction mechanisms · synthetic methods

- [1] *Handbook of Metathesis, Vols. 1–3* (Ed.: R. H. Grubbs), Wiley-VCH, Weinheim, **2003**.
- [2] a) M. Murakami, Y. Ito, *Top. Organomet. Chem.* 1999, *3*, 97–129; b) C.-H. Jun, *Chem. Soc. Rev.* 2004, *33*, 610–618; c) Y. J. Park, J.-W. Park, C.-H. Jun, *Acc. Chem. Res.* 2008, *41*, 222–234; d) M. Murakami, T. Matsuda, *Chem. Commun.* 2011, *47*, 1100–1105.
- [3] a) M. Murakami, H. Amii, K. Shigeto, Y. Ito, J. Am. Chem. Soc. 1996, 118, 8285-8290; b) T. Nishimura, S. Uemura, J. Am. Chem. Soc. 1999, 121, 11010-11011; c) P. A. Wender, A. G. Correa, Y. Sato, R. Sun, J. Am. Chem. Soc. 2000, 122, 7815-7816; d) S. C. Bart, P. J. Chirik, J. Am. Chem. Soc. 2003, 125, 886-887; e) T. Seiser, N. Cramer, J. Am. Chem. Soc. 2010, 132, 5340-5342.
- [4] For a transformation via C-C bond using a directing group, see:
 a) C.-H. Jun, H. Lee, J. Am. Chem. Soc. 1999, 121, 880-881;
 b) A. M. Dreis, C. J. Douglas, J. Am. Chem. Soc. 2009, 131, 412-413.
- [5] For cleavage of a carbon-nitrile bond, see: a) Y. Nakao, S. Oda, T. Hiyama, J. Am. Chem. Soc. 2004, 126, 13904–13905; b) Y. Nishihara, Y. Inoue, M. Itazaki, K. Takagi, Org. Lett. 2005, 7, 2639–2641; c) H. Nakazawa, K. Kamata, M. Itazaki, Chem. Commun. 2005, 4004–4006; d) M. Tobisu, Y. Kita, N. Chatani, J. Am. Chem. Soc. 2006, 128, 8152–8153.
- [6] a) T. Kondo, K. Kodoi, E. Nishinaga, T. Okada, Y. Morisaki, Y. Watanabe, T.-a. Mitsudo, J. Am. Chem. Soc. 1998, 120, 5587-

5588; b) S. Hayashi, K. Hirano, H. Yorimitsu, K. Oshima, *J. Am. Chem. Soc.* **2006**, *128*, 2210–2211; c) M. Waibel, N. Cramer, *Chem. Commun.* **2011**, *47*, 346–348.

- [7] Y. Terao, H. Wakui, M. Nomoto, T. Satoh, M. Miura, M. Nomura, J. Org. Chem. 2003, 68, 5236-5243.
- [8] R. Shintani, K. Takatsu, T. Katoh, T. Nishimura, T. Hayashi, Angew. Chem. 2008, 120, 1469–1471; Angew. Chem. Int. Ed. 2008, 47, 1447–1449.
- [9] We have recently reported on transformations that proceed through retro-aldol reactions. See: a) Y. Kuninobu, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 11368-11369; b) A. Kawata, K. Takata, Y. Kuninobu, K. Takai, Angew. Chem. 2007, 119, 7939-7941; Angew. Chem. Int. Ed. 2007, 46, 7793-7795; c) Y. Kuninobu, A. Kawata, M. Nishi, S. S. Yudha, J. Chen, K. Takai, Chem. Asian J. 2009, 4, 1424-1433; d) Y. Kuninobu, A. Kawata, T. Noborio, S.-i. Yamamoto, T. Matsuki, K. Takata, K. Takai, Chem. Asian J. 2010, 5, 941-945; e) Y. Kuninobu, H. Matsuzaki, M. Nishi, K. Takai, Org. Lett. 2011, 13, 2959-2961.
- [10] For a report on transformations proceeding through a retro-aldol reaction, see: T. Miura, M. Shimada, M. Murakami, *Angew. Chem.* 2005, *117*, 7770–7772; *Angew. Chem. Int. Ed.* 2005, *44*, 7598–7600.
- [11] D. Nečas, M. Turský, M. Kotora, J. Am. Chem. Soc. 2004, 126, 10222–10223.
- [12] Investigation of different solvents. Yield is that of 3a: THF: 0%; 1,4-dioxane: 50%; DMSO: 28%; DMF: 54%; DMA: 39%.
- [13] Investigation of different reaction temperatures (1,4-dioxane, 24 h). Yield is that of 3a: 115°C: 16% (recovery of 1a: 76%); 135°C: 44% (1a: 29%); 150°C: 70% (1a: 29%); 180°C: 55% (1a: 21%).
- [14] Investigation of different reaction times (1,4-dioxane, 150°C).
 Yield is that of 3a: 1 h: 40% (recovery of 1a: 53%); 3 h: 55% (1a: 43%); 8 h: 69% (1a: 27%); 24 h: 70% (1a: 29%).
- [16] There is another possible cleavage of four-membered cyclic intermediate, which gives the initial enol (or ketone 1) and carbodiimide 2.
- [18] For transition-metal-catalyzed formation of carbodiimides from isocyanates through decarboxylation, see: A. K. Fazlur Rahman, K. M. Nicolas, *Tetrahedron Lett.* 2007, 48, 6002–6004.