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Olefin metathesis, which proceeds through a carbon–carbon
(C�C) double bond cleavage, is a well-known and useful
method in synthetic organic chemistry.[1] In contrast, cleavage
of a C�C single bond is still one of the most difficult and
challenging reactions in organic synthesis. Recently, there
have been several reports on transition-metal-catalyzed
transformations.[2] For example, reactions of strained mole-
cules, such as three- and four-membered rings, have been
reported.[3] In these reactions, release of the ring strain is the
driving force for C�C single bond cleavage. As for reactions
not involving ring strain, transformations using a directing
group,[4] cleavage of a carbon–nitrile bond,[5] and transforma-
tions by retro-reactions, including retro-allylations,[6] retro-
arylations,[7] retro-alkynylation,[8] retro-aldol reactions,[9, 10]

and deallylation[11] are also well known. To promote C�C
single bond cleavage, we employed a manganese catalyst and
carbodiimides. We report herein the cleavage of a unstrained
C�C single bond between the carbonyl carbon and a-carbon
atoms of ketones, and its application to the synthesis of
amides.

Treatment of propiophenone (1 a) with 1.0 equivalent of
1,3-di-p-tolylcarbodiimide (2a) in the presence of a catalytic
amount of a manganese complex, [Mn2(CO)10], in 1,4-dioxane
at 150 8C for 24 hours gave amide 3a in 50% yield.[12–14] This
reaction also proceeds using either the iron complex
[Fe2(CO)9] or the cobalt complex [Co2(CO)8] as a catalyst.[15]

By increasing the amount of 2a to 3.0 equivalents, the yield of
amide 3a was improved to 97 % [Eq. (1)]. In this reaction,
quinoline 4a was also formed in 73% yield. The catalytic
amount and reaction temperature could be reduced when the
trinuclear manganese complex [{HMn(CO)4}3] was used as
the catalyst [Eq. (1)]. The C�C single bond of 1 a was cleaved
regioselectively in this reaction. In the cleavage of unreactive
bonds, novel transition-metal catalysts are usually employed;
however, such transformations proceed efficiently with first-
row transition metal catalysts (manganese, iron, or cobalt
catalysts).

First, we investigated the scope of the ketones (Table 1).
Ketones with an electron-donating or electron-withdrawing

group on the aromatic skeleton provided the corresponding
amides 3b, 3c, and 3d in yields in the range of 96–98%
(entries 1–3). Chlorine and bromine atoms on the aromatic
ring were not lost under the reaction conditions, and amides
3e and 3 f were obtained in 96% and 62% yields, respectively
(entries 4 and 5). In the case of using acetophenone (1g) or
the dialkyl ketone 1h, amides 3a and 3g were provided in
60% and 63% yields, respectively (entries 6 and 7). Cyclo-
hexyl ethyl ketone (1 i) also produced amide 3h in 50 % yield
(entry 8). The amide 3h was formed selectively without
formation of the regioisomer, probably because of the steric
hindrance of the cyclohexyl group of 1 i. A C�C single bond
was cleaved using a ketone bearing a longer alkyl chain, 1j

Table 1: Reactions between several ketones 1 and carbodiimide 2a.[a]

Entry R1 R2 Yield [%][b]

1[c] 4-(MeO)C6H4 Me 1b 3b 98 (>99)
2 4-MeC6H4 Me 1c 3c 96 (>99)
3[c] 4-(CF3)C6H4 Me 1d 3d 96 (>99)
4 4-ClC6H4 Me 1e 3e 96 (>99)
5 4-BrC6H4 Me 1 f 3 f 62 (65)
6[c] Ph H 1g 3a 60 (63)
7 n-C5H11 n-C4H9 1h 3g 63 (69)

8 Me 1 i 3h 50 (–)

9 Ph n-C5H11 1 j 3a 72 (74)
10 Ph Ph 1k 3a 95 (96)

11 1 l 3a 62 (65)

[a] 2a (3.0 equiv). [b] Yield of isolated product. The yield determined by
1H NMR spectroscopy is reported within parentheses. [c] [Mn2(CO)10]
(5.0 mol%) was used as the catalyst, and the reaction temperature was
150 8C.
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(entry 9). Benzyl phenyl ketone (1k) showed high reactivity
and amide 3a was produced in 95% yield (entry 10). The
corresponding amide 3a was formed in 62 % yield when a
ketone bearing a secondary alkyl group, 1 l, was employed as a
substrate (entry 11). In this reaction, a hydrogen atoms at the
a position of ketones 1 is necessary to promote the reaction;
the reaction did not proceed using adamantyl ethyl ketone. In
addition, the corresponding amide was not formed by the
reaction between benzophenone and carbodiimide 2 a.

Next, the scope and limitations of the carbodiimides were
investigated (Table 2). Diaryl carbodiimides with or without
an electron-donating or electron-withdrawing group at the
para position (2b–2d) gave the corresponding amides (3 i–
3k) in yields within the range of 41–98 % (entries 1–3). The
corresponding amides 3 l and 3m were obtained with diaryl
carbodiimides having either chlorine or bromine atom (2e,
2 f) without losing the chlorine or bromine atom (entries 4
and 5). The corresponding amide 3n was afforded in 80%
yield when di-1-naphthyl carbodiimide (2g) was used as a
substrate (entry 6). The secondary aliphatic carbodiimide 2h
generated amide 3o in 52% yield (entry 7). However, di-tert-
butyl carbodiimide did not provide the corresponding amide.

From the resulting structures of the products and by-
products, a possible reaction mechanism is as follows
(Scheme 1): 1) nucleophilic addition of the enol form of
ketone 1 to carbodiimide 2, which is activated by a manganese
catalyst; 2) formation of azetidin-2-imine by intramolecular
nucleophilic cyclization; 3) ring-opening reaction through the
cleavage of a C�C single bond to give amide 3 and the
ketenimine;[16] 4) aza-Diels–Alder reaction between the
formed ketenimine and 2 to give a bicyclic intermediate;
5) tautomerization of the bicyclic intermediate, thus forming
the quinoline derivative 4 as a side product.

A C�C single bond cleavage also occurred when using an
isocyanate instead of a carbodiimide. By the reaction of
ketone 1a with p-tolyl isocyanate (5) in the presence of the
manganese catalyst [{HMn(CO)4}3], amide 3a was obtained
in 15 % yield [Eq. (2)]. By changing the catalyst to
[Mn2(CO)10], the yield of 3a was increased to 73%
[Eq. (2)].[17]

To elucidate the reaction mechanism in [Eq. (2)], isocy-
anate 5 was heated in the presence of [{HMn(CO)4}3]
[Eq. (3)]. As a result, carbodiimide 2a was formed in 48%
yield.[18] In the case of using [Mn2(CO)10], 2a was obtained in
62% yield [Eq. (3)]. These results indicate that carbodiimide
2a was formed from two equivalents of the isocyanate 5, and
successive reaction between the formed carbodiimide 2a and
ketone 1a produced amide 3 a.

In summary, we have succeeded in the manganese-
catalyzed synthesis of amides from ketones and carbodi-
imides. This reaction proceeds through the cleavage of a
unstrained C�C single bond of ketones. The C�C single bond
of a ketone was also cleaved using isocyanates instead of

Table 2: Reactions between ketone 1a and several carbodiimides 2.[a]

Entry R Yield [%][b]

1[c] 4-(MeO)C6H4 2b 3 i 97 (>99)
2 Ph 2c 3 j 98 (>99)
3[c] 4-(CF3)C6H4 2d 3k 41 (45)
4[c] 4-ClC6H4 2e 3 l 84 (87)
5[c] 4-BrC6H4 2 f 3m 96 (>99)

6 2g 3n 80 (82)

7[c] iPr 2h 3o 52 (54)

[a] 2 (3.0 equiv). [b] Yield of isolated product. Yield determined by
1H NMR spectroscopy is reported within parentheses. [c] [Mn2(CO)10]
(5.0 mol%) was used as the catalyst.

Scheme 1. Proposed mechanism for the formation of amides 3.
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carbodiimides. We hope that this reaction will provide useful
insight for synthetic organic chemistry.

Experimental Section
A mixture of propiophenone (1a, 67.1 mg, 0.500 mmol), 1,3-di-p-
tolylcarbodiimide (2a, 333 mg, 1.50 mmol), [{HMn(CO)4}3] (4.2 mg,
8.3 mmol), and 1,4-dioxane (1.0 mL) was stirred at 135 8C for 24 h in a
sealed tube. The solvent was then removed in vacuo, and the product
was isolated by column chromatography on silica gel (n-hexane/ethyl
acetate = 10:1) to give N-(4-methylphenyl)benzamide (3a, 102 mg,
97% yield).
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