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Abstract

We prove existence of a wetting transition for two classes of gradient �elds which include: (1)
The Continuous SOS model in any dimension and (2) The massless Gaussian model in dimension 2.
Combined with a recent result proving the absence of such a transition for Gaussian models
above 2 dimensions (Bolthausen et al., 2000. J. Math. Phys. to appear), this shows in particu-
lar that absolute-value and quadratic interactions can give rise to completely di�erent behavior.
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1. Introduction

In several recent papers (Bolthausen, 1999, Bolthausen et al., 2000, Bolthausen and
Brydges, 2000, Bolthausen and Io�e, 1997, Deuschel and Velenik, 2000) the ques-
tion has been raised whether the two-dimensional massless Gaussian model exhibits a
wetting transition. It is well-known that the Gaussian �eld in 2D is delocalized, with
a logarithmically divergent variance, but that the introduction of an arbitrarily weak
self-potential favoring height 0 is enough to localize it, in the sense that the variance
remains �nite (Dunlop et al., 1992, Bolthausen and Brydges, 2000); this result has
recently been extended to a class of non-Gaussian models in a stronger form, showing
in particular existence of exponential moments for the heights (Deuschel and Velenik,
2000) and exponential decay of covariances (Io�e and Velenik, 1998). In higher di-
mensions, the �eld is already localized without pinning potential, but the introduction
of such a potential turns the algebraic decay of the covariances into an exponential
one. On the other hand, a Gaussian �eld with a positivity constraint (“surface above
a hard-wall”) exhibits entropic repulsion. The average height diverges like logN in
2D (Deuschel and Giacomin, 1999) and

√
logN in higher dimensions (Bolthausen

et al., 1995) (N being the linear size of the box). When both a positivity constraint
and a pinning potential are present (“surface above an attractive hard wall”), there is
a competition between these two e�ects. If there exists a (non-zero) critical value for
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the strength of the pinning potential above which the interface is localized, but below
which it is repelled by the wall, we say that the model exhibits a wetting transition.
That such a transition occurs in a wide class of 1D model is well-known, see e.g.
(Bolthausen et al., 2000, Burkhardt, 1981 and van Leeuwen and Hilhorst, 1981). It
was recently shown in Bolthausen et al. (2000) that the Gaussian model in dimensions
3 or higher does not display a wetting transition. The interface is always localized.
The physically important case of the 2D model (describing a 2D interface in a 3D
medium) remained however open.
In the present note, we prove that the 2D Gaussian �eld does exhibit a wetting

transition; in fact, the proof applies to any strictly convex interaction, see below. We
also prove that the continuous SOS model has such a transition in any dimension, thus
showing that the choice of the interaction can greatly a�ect the physics of the sys-
tem. Our proofs are based on a variant of a beautiful and simple argument of Chalker
(1982), who proved the existence of a wetting transition in the discrete SOS model in
dimension 2.

2. Results

We consider a class of gradient models with single spin-space R+, i.e. modeling
surfaces above a hard wall. Let �N ⊂Zd be the cube of side N centered at the origin,
and 	 : R → R an even function to be speci�ed later; we consider the following
Hamiltonian:

H 0; a;bN (�) = H 00;N (�) + V
a;b
N (�);

where

H 00;N (�) =
∑

〈x;y〉⊂�N

	(�x − �y) +
∑
〈x;y〉

x∈�N ;y 6∈�N

	(�x);

V a;bN (�) =−b
∑
x∈�N

1{�x6a}; a; b¿ 0;

(〈x; y〉 denotes a pair of nearest-neighbour sites). The corresponding Gibbs measure
(on (R+)�N ) is then given by

�0;+; a;bN (d�) =
e−H

0; a; b
N (�)

Z0;+; a;bN

∏
x∈�N

d�x:

As in the pure pinning problem (i.e. without a wall) (Deuschel and Velenik, 2000),
the relevant parameter is �(a; b) = aeb and not both a and b separately. As usual, we
introduce the �-pinning limit, which is the model described by the measure

�0;+; �N (d�) = lim
a→0
�(a;b)=�

�0;+; a;bN (d�) =
e−H

0
0; N (�)

Z0;+; �N

∏
x∈�N

(d�x + ��0(d�x)):

Note that �0;+; �N can be written more explicitly as

�0;+; �N (d�) =
∑
A⊂�N

�|A|
Z0;+�N\A
Z0;+; �N

�0;+�N\A(d�);
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where

Z0;+�N\A =
∫
e−H

0
0; N (�)

∏
x∈�N\A

d�x
∏
y∈A

�0(d�y);

and

�0;+�N\A(d�) = (Z
0;+
�N\A)

−1 e−H
0
0; N (�)

∏
x∈�N\A

d�x
∏
y∈A

�0(d�y)

is the Gibbs measure on �N \A with zero boundary condition outside.

Remark. Here and everywhere else in this note, the integrals are restricted to the
positive real axis, so we do not write this condition explicitly.
A quantity of interest is the density of pinned sites, i.e. of those sites, where the

interface feels the e�ect of the pinning potential; it is de�ned as

�N (a; b) = |�N |−1�0;+; a;bN (�N (�));

where �N (�) =
∑

x∈�N 1{�x6a}. We also write �(a; b) = limN→∞ �N (a; b). The cor-
responding quantities in the �-pinning limit are denoted �N (�), �(�) (measuring the
density of sites exactly at zero height). � will play the role of an order parameter for
the wetting transition.
Our results can then be stated as follows:

Theorem 2.1. Let 	(x)= |x|; d¿1. Suppose that aeb ¡ (2d)−1; then there exist two
constants C1(a; b; d) and C2(a; b; d) such that; for any M ¿C1Nd−1;

�0;+; a;bN (�N (�)¿M)6e−C2M :

In particular; �(a; b)=0. The corresponding results also hold in the case of �-pinning;
provided �¡ (2d)−1.

Theorem 2.2. Let 	(x) = 1
2x
2; d = 2. There exists �0¿ 0 such that; for any �¡ �0

there exist two constants C3 and C4 depending on � such that; for any M ¿C3Nd−1;

�0;+; �N (�N (�)¿M)6e−C4M :

In particular; �(�) = 0. The same also holds in the case of the square-well potential
provided aeb is small enough.

We recall that it is not hard to prove that �¿ 0 when the pinning is strong. For
example, in the �-pinning case, we can proceed in the following way. Since,

|�N |−1log Z
0;+; �
N

Z0;+;0N

=
∫ �

0

1
�̂
�N (�̂) d�̂;

the result follows from Z0;+; �N ¿�|�N | and the existence of a constant C such that
Z0;+;0N 6C|�N |. To prove the latter inequality one can consider a shortest self-avoiding
path ! on Zd starting at some site of @�N and containing all the sites of �N , and use
H 00;N (�)¿

∑|!|−1
n=1 	(�!n − �!n+1).
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The above results imply the existence of a wetting transition in these models. 1

Together with the result of Bolthausen et al. (2000) that in the Gaussian model in
d¿3 there is no wetting transition, Theorem 2.1 shows a radical di�erence of behavior
between the Gaussian and the SOS interactions.

Remark. 1. It is not di�cult to see, looking at the proofs, that our theorems remain
true if we replace the SOS interaction 	(x) = |x| with any globally Lipschitz function
(not necessarily symmetric), and the Gaussian interaction 	(x) = 1

2x
2 with any even,

convex 	 such that 1=c¿	′′(x)¿c for some c¿ 0 and all x.
2. Even though the present work provides a proof of the wetting transition in the

models considered, several important issues remain completely open. In particular, it
would be most desirable to have a pathwise description of the �eld in both the localized
and repelled regimes, i.e. a proof that �¿ 0 implies �niteness of the mean height of
any �xed spin in the thermodynamic limit (if possible with estimate on the tail and
exponential decay of correlations), and a proof that �=0 implies that the mean height
of any �xed spin diverges (if possible with estimates on the rate). Another question
of physical interest would be to determine how the �eld delocalizes as the pinning
strength decreases to its critical value.

3. Proof of Theorem 2.1

We �rst consider the square-well potential. Let M ¿ 0; following (Chalker, 1982),
we introduce the set BM = {�: �N (�)¿M}, and the set

CM =

{
�:

∑
x∈�N

1{�x62a}¿M

}
:

Since BM ⊂CM , the �rst claim immediately follows from the estimate on conditional
probabilities

�0;+; a;bN (BM |CM )6e−C2M ; M ¿C1Nd−1: (3.1)

Moreover, �(a; b) = 0 will follow from this and the obvious bound

�N6
M
Nd

+ �0;+; a;bN (BM );

by choosing M such that Nd/M/Nd−1.
We turn to the proof of (3.1). We de�ne a map T from CM onto BM by

(T�)x =
{
�x if �x6a;
�x − a otherwise:

If we write e−V
a; b
N = 1{�x¿a} + e

b 1{�x6a} and expand the corresponding products,
we have

�0;+; a;bN (CM ) =
∫
e−H

0; a; b
N (�)

Z0;+; a;bN

1{�∈CM}
∏
x∈�N

d�x

1 In the �-pinning case, it can easily be seen that � is monotonous in �, so that there is a single critical
value.
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=
∑
A⊂�N
|A|¿M

∑
B⊂ A

eb|B|
∫
e−H

0
0; N (�)

Z0;+; a;bN

∏
x∈B
1{�x6a} d�x

×
∏
y∈A\B

1{a¡�y62a} d�y
∏

z∈�N\A
1{2a¡�z} d�z: (3.2)

Now, observe that

H 00;N (�)6H
0
0;N (T�) + da|@�N |+ 2da|B| (3.3)

(@�N being the set of x∈�N neighbouring a site y 6∈�N ). After the change of variables
�̃x = (T�)x, we have

�0;+; a;bN (CM )

¿e−da|@�N |
∑
A⊂�N
|A|¿M

∑
B⊂ A

(e−2daeb)|B|
∫
e−H

0
0; N (�̃)

Z0;+; a;bN

×
∏
x∈A

1{�̃x6a} d�̃x
∏

y∈�N\A
1{a¡�̃y} d�̃y

=e−da|@�N |
∑
A⊂�N
|A|¿M

eb|A|(e−2da + e−b)|A|
∫
e−H

0
0; N (�̃)

Z0;+; a;bN

×
∏
x∈A
1{�̃x6a} d�̃x

∏
y∈�N\A

1{a¡�̃y} d�̃y

¿e−da|@�N |(e−2da + e−b)M�0;+; a;bN (BM );

where we used e−2da+e−b ¿ 1, which follows from aeb ¡ (2d)−1. This proves (3.1).
Let us now consider the case of the �-pinning potential. The proof is very similar.

Let M ¿ 0, and de�ne BM as in the previous case (but remember that now �N is the
number of sites with height equal to 0). We also need a set analogous to the set CM
above: Let � ≡ (2d)−1 − �; we set

DM =

{
�:

∑
x∈�N

1{�x6�}¿M

}
:

We are going to show that

�0;+; �N (BM |DM )6e−C4 M ; M ¿C3Nd−1: (3.4)

As above, (3.4) is su�cient to prove our claims.
To prove (3.4) de�ne the map

(S�)x =
{
�x − � if �x ¿�
0 otherwise



112 P. Caputo, Y. Velenik / Stochastic Processes and their Applications 87 (2000) 107–113

from DM onto BM . Note that �
0;+; �
N (DM ) can be written∑

A⊂�N
|A|¿M

∑
B⊂ A

�|B|
∫
e−H

0
0; N (�)

Z0;+; �N

∏
x∈A\B

1{�x6�} d�x

×
∏

y∈�N\A
1{�¡�y} d�y

∏
z∈B
�0(d�z): (3.5)

We have

H 00;N (�)6H
0
0;N (S�) + �d|@�N |+ �2d|A|;

and therefore, letting �̃x = (S�)x and integrating over the variables �x, x ∈ A\B,
�0;+; �N (DM )¿ e−�d|@�N |

∑
A⊂�N
|A|¿M

∑
B⊂ A

e−�2d|A|�|A|−|B|�|B|

×
∫
e−H

0
0; N (�̃)

Z0;+; �N

∏
x∈�N\A

d�̃x
∏
y∈A

�0(d�̃y)

= e−�d|@�N |
∑
A⊂�N
|A|¿M

�|A|e−�2d|A|
(
1 +

�
�

)|A| Z0;+�N\A
Z0;+; �N

¿ e−�d|@�N |
(
e−�2d

(
1 +

�
�

))M
�0;+; �N (BM );

where we used e−�2d(1 + �
� )¿ 1. This proves (3.4).

4. Proof of Theorem 2.2

We start with the �-pinning potential. We proceed as in the corresponding proof of
the previous section up to Eq. (3.5). To simplify notations, here we set �=1. Writing
W = A ∪ �cN , we have the estimate

H 00;N (�)6H
0
0;N (S�) + 2|@�N |+ 8|A|+ 2

∑
x∈@W

∑
y 6∈w
y∼x

(S�)y: (4.6)

Let us use the short-hand notation X(�) = 2
∑

x∈@W
∑

y 6∈W;y∼x �y. Inserting this

estimate in (3.5) and changing variables to �̃x = (S�)x, we obtain

�0;+; �N (DM )¿e−2|@�N |
∑
A⊂�N
|A|¿M

�|A|
(
e−8

(
1 +

1
�

))|A| Z0;+�N\A
Z0;+; �N

�0;+�N\A(e
−X(�)):

Since Jensen’s inequality implies that

�0;+�N\A(e
−X(�))¿e−�

0;+
�N \A(X(�));

the conclusion will follow as before, once we prove that

�0;+�N\A(X(�))6c1|@W |6c1(|@�N |+ |A|);
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with c1, a �nite-independent constant. However, this follows immediately from the ex-
istence of the in�nite-volume repulsed �eld pinned at the origin, which was established
in Dunlop et al. (1992) (Lemma 2:1). Notice that it is not the case in higher dimen-
sions, and therefore the argument does not apply. In fact, as was proved in Bolthausen
et al. (2000), there is no wetting transition in this case.
Let us �nally discuss the square-well case. Again we adapt the proof given in the

previous section. Consider expression (3.2). Now estimate (3.3) must be replaced by
the analogous of (4.6) for the square-well potential. In particular, we are led to prove
an upper bound for

�0;+�N (X̃(�) |�x6a; ∀x ∈ A; �y ¿a; ∀y 6∈ A);
where X̃(�) = 2a

∑
x∈@W̃

∑
y 6∈W̃ ;y∼x �y, W̃ = B ∪�cN , for �xed B⊂A⊂�N . However,

FKG inequality implies that this expectation increases if one raises both the boundary
conditions in �cN and the conditioning in A to �x = a, and modify the wall constraint
to �y¿a for all y. Thus, after a last change of variables, we get

�0;+�N (X̃(�) |�x6a; ∀x ∈ A; �y ¿a; ∀y 6∈ A)6�0;+�N\A(X̃(�+ a));
and therefore – using |@W̃ |6|@�N |+ |B| – conclusion (3.1) follows as above.
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