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Asymmetric Cycloisomerization of o-Alkenyl-N-methylanilines to 
Indolines through Iridium-Catalyzed C(sp3)–H Addition to 
Carbon–Carbon Double Bonds 
Takeru Torigoe,[a] Toshimichi Ohmura,*[a] and Michinori Suginome*[a] 

Abstract: Highly enantioselective cycloisomerization of N-
methylanilines bearing o-alkenyl groups to indolines is established. 
An iridium catalyst bearing a bidentate chiral diphosphine effectively 
promotes the intramolecular addition of the C(sp3)–H bond across a 
carbon–carbon double bond with highly enantioselective fashion. 
The reaction gives indolines bearing quaternary stereogenic carbon 
centers at the 3-positions. The reaction mechanism involves rate-
determining oxidative addition of the N-methyl C–H bond, followed 
by intramolecular carboiridation and subsequent reductive 
elimination. 

 Asymmetric catalysis based on transition-metal-catalyzed 
C–H functionalization can provide the most atom- and step-
economical synthetic accesses to chiral organic molecules.[1] 
Particular attention has focused on the asymmetric C–C bond 
forming reactions via addition of the C–H bond across C–C 
multiple bonds, since such a process allows 100% atom-
economical transformations with use of unelaborated starting 
materials.[2] Therefore, high demand is seen for the exploration 
of such C–H addition reactions in order to realize sustainable 
chemical processes for the production of enantioenriched chiral 
organic materials. 
 Chiral nitrogen-containing molecules are recognized as a 
highly important class of organic compounds in the exploration 
of drugs and agrochemicals. Transition-metal-catalyzed 
asymmetric addition of the C(sp3)–H bond of a N-alkyl group 
across C=C bonds via a C–M intermediate is expected to be a 
highly efficient strategy for the synthesis of chiral amines. Indeed, 
the asymmetric addition of the α-C(sp3)–H bond of N-alkyl 
groups of secondary amines has been reported, using tantalum 
and niobium catalysts bearing chiral ligands [Scheme 1(a)].[3] 
The catalysis proceeds through the initial formation of metal 
amides followed by β-hydrogen elimination, which affords an 
active organometallic intermediate that reacts with an alkene.[4] 
Although up to 98% ee was attained in one example,[3e] 
enantioselectivities were generally moderate. Activation of the 
C(sp3)–H bond α to the nitrogen atom was also promoted by use 
of a 2-pyridyl directing group.[5] This type of activation enables 
the iridium-catalyzed intermolecular asymmetric addition of 2-
(alkylamino)pyridines to terminal alkenes, in which one of the 
two enantiotopic hydrogen atoms of the nitrogen-bound 
methylene group takes part in the reaction selectively [Scheme 
1(b)].[ 6 ] At around the same time, rhodium-catalyzed 

enantioselective cycloisomerization of conjugated dienes 
tethered to an allylamino group has successfully shown the 
potential of catalytic addition of the N-alkyl C(sp3)–H bond 
across C=C bonds in organic synthesis [Scheme 1(c)].[ 7 ] It 
should be noted that, in all of those examples, activation of the 
α-C(sp3)–H bonds of N-alkyl groups required additional 
structural setups, such as a N–H bond, a pyridyl directing group, 
and an allyl group, to facilitate the C(sp3)–H activation process. 
To expand the substrate scope and to make this strategy more 
applicable, it is truly important to establish a corresponding 
process devoid of such additional structural requirements. We 
herein describe the iridium-catalyzed asymmetric 
cycloisomerization of 2-alkenyl-N-methylanilines to 3-substituted 
indolines, where the N-methyl C(sp3)–H bond undergoes direct 
activation and addition to an intramolecular C=C bond in a highly 
enantioselective fashion [Scheme 1(d)]. We show wide reaction 
scope and propose a reaction mechanism in which activation of 
the methyl C(sp3)–H bond α to the nitrogen atom is involved as 
the rate-determining step, based on labeling experiments. 
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Scheme 1. Transition-Metal-Catalyzed Asymmetric Addition of C(sp3)–H Bond 
of N-Alkyl Group across C=C Bond. 

 The new cycloisomerization was designed on the basis of 
our recent study on the cycloisomerization of o-alkynylanisoles 
to benzofurans, which proceeds through activation of the 
methoxy C(sp3)–H bond.[8] N,N-Dimethylaniline 1a bearing a 1-
phenylvinyl group at the ortho position was reacted in toluene at 
110 °C in the presence of [IrCl(C2H4)2]2 (3 mol %, 6 mol % Ir) as 
a catalyst precursor and (S)-SEGPHOS (L1, 6 mol %) as a 
ligand (entry 1, Table 1). Intramolecular addition of the C(sp3)–H 
bond of the methyl group on nitrogen took place to give 1,3-
dimethyl-3-phenylindoline (2a) in 11% yield after 24 h. 
Enantiomeric excess (ee) of the product was appreciably high 
(85% ee), indicating that enantioface discrimination of the 
double bond was accomplished efficiently by L1. The ee of 2a 
improved to 91% (38% yield) when (S)-DM-SEGPHOS (L2) was 
used as a ligand (entry 2). The reactions with L1 and L2 gave 
hydrogenated 3 as a side product in 5-14% yield (entries 1 and 
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2). We found that an iridium catalyst bearing (S)-DTBM-
SEGPHOS (L3), bearing the bulky and electron donating 3,5-di-
tert-butyl-4-methoxyphenyl group (DTBM) on the phosphorus 
atoms promoted the reaction more efficiently to give 2a in 85% 
yield with 97% ee, in which the formation of 3 was completely 
suppressed (entry 3). The absolute configuration of the major 
enantiomer of 2a was determined to be R by single crystal X-ray 
diffraction of the corresponding ammonium salt prepared from 
2a with iodomethane (see Supporting Information). DTBM-
substituted ligands (S)-DTBM-MeOBIPHEP (L4) and (S)-DTBM-
BINAP (L5) both afforded high yields, although L5 afforded 
slightly lower ee than L4 (entries 4 and 5). The Ir-L3-catalyzed 
reaction proceeded even at 80 ºC, leading to the highest ee of 
2a (98.7% ee) (entry 6). Commercially available [IrCl(cod)]2 was 
also an effective catalyst precursor, although the yield of 2a was 
slightly low due to the formation of 3 (entry 7). Toluene was the 
solvent of choice, while the reaction in THF resulted in 
preferential formation of 3 through hydrogen transfer from THF 
(entry 8).[8,9] 

 

Table 1. Iridium-catalyzed asymmetric cycloisomerization of o-(1-
phenylvinyl)-N,N-dimethylaniline (1a) in the presence of chiral phosphorus 
ligands L1-L5[a] 

Ph

N
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Me
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CH3

CH3

+
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entry Ir precursor L solvent T (°C) 2a[b] 3[c] 

1 [IrCl(C2H4)2]2 (S)-L1 toluene 110 11[c], 85 5 

2 [IrCl(C2H4)2]2 (S)-L2 toluene 110 38, 91 14 

3 [IrCl(C2H4)2]2 (S)-L3 toluene 110 85, 97 0 

4 [IrCl(C2H4)2]2 (S)-L4 toluene 110 88, 96 1 

5 [IrCl(C2H4)2]2 (S)-L5 toluene 110 81, 91 2 

6 [IrCl(C2H4)2]2 (S)-L3 toluene 80 45, 98.7 2 

7 [IrCl(cod)]2 (S)-L3 toluene 110 76, 97 10 

8 [IrCl(C2H4)2]2 (S)-L3 THF 110 6[c], nd 80 
 

[a] 1a (0.20 mmol), an Ir precursor (0.0060 mmol), and L (0.012 mmol) were 
stirred in solvent (0.2 mL) at 80-110 °C for 24 h. [b] Isolated yield (%) and ee 
(%) determined by SFC with chiral stationary phase column. [c] 1H NMR 
yield (%). 
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Scheme 2. Iridium-catalyzed asymmetric cycloisomerization of 1. Reaction 
conditions: 1 (0.20 mmol), [IrCl(C2H4)2]2 (0.0060 mmol), and (S)-L3 (0.012 
mmol) were stirred in toluene (0.2 mL) at 110 °C for 24 h unless otherwise 
noted. Isolated yields are given. Enantiomeric excesses (ees) were 
determined by SFC with chiral stationary phase column. [a] 5.0 mmol (1.2 g) 
scale. [b] In p-xylene at 135 °C. [c] In p-xylene at 135 °C for 36 h with 8 
mol % of Ir. [d] 0.60 mmol scale. [e] In p-xylene at 135 °C with 8 mol % of Ir. 

 A range of N-methylaniline derivatives 1 were subjected to 
the iridium-catalyzed enantioselective cycloisomerization 
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(Scheme 2). The reaction of N,N-dimethylanilines 1b-f bearing 
para-substituted aryl groups on the double bonds took place 
efficiently in toluene at 110 ºC in the presence of Ir-(S)-L3 (6 
mol %) to give indolines 2b-f in 82-94% yields with 97-98% ees. 
Under these reaction conditions, 2b was obtained on a gram 
scale (1.1 g, 94% yield, 98% ee). No significant influence of 
either Me, Et, CF3, OMe, or B(pin) groups on the reactivity and 
enantioselectivity was observed (2b-f). By contrast, the reaction 
of 1g bearing an acetyl group was sluggish at 110 ºC; it required 
elevation of the reaction temperature to 135 ºC to give 2g in 
good yield without a significant decrease in ee. 3-Methylphenyl- 
and 2-naphthyl-substituted 1h and 1i also afforded 2h and 2i in 
high yields with 96-98% ees. Pyrrolyl- and pyridyl-substituted 1j 
and 1k affored the corresponding products with high ees, 
although the latter substrate required forced reaction conditions 
(8 mol % Ir, 135 °C, 36 h). It is interesting to note that 4-
bromophenyl-substituted 1m resulted in no reaction (2m), while 
3-bromo-4-methylphenyl-substituted 1l gave 2l in high yield with 
97% ee, probably because of steric shielding of the Br–C bond. 
 Compounds 1n-q, which bear the 4-Me, 4-OMe, 5-Me, and 
5-CF3 groups on the aniline ring, respectively, gave the 
corresponding products 2n–q in good yields with 96-98% ees 
(Scheme 2). A substituent ortho to either the dimethylamino or 
the alkenyl group did not affect the reaction; 2r-t were obtained 
in good yields with 96-97% ees. In the reaction of N-benzyl-N-
methylaniline 1u, selective conversion of the N-methyl C–H took 
place to give 2u with slightly low ee (94% ee), where the 
methylene C–H of the N-benzyl group left untouched.[10] The 
reaction of N-methyl-N-phenylaniline 1v proceeded slowly, 
giving 2v in 61% yield with 90% ee when using 8 mol % catalyst 
at 135 °C. On the other hand, no reaction took place with N-
methylanilines 1w and 1x bearing an acetyl and hydrogen on the 
nitrogen atoms (2w and 2x). 
 Cycloisomerization of the 4-(N,N-dimethylamino)pyridine 
derivative 1y was not observed under the standard conditions 
(Scheme 3). It is presumed that coordination of the sp2 nitrogen 
atom to the iridium center shut down the catalyst activity. This 
problem was overcome by pretreatment of 1y with BF3•OEt2 to 
form 1y•BF3, which was found to undergo cycloisomerization 
under the standard conditions. The cyclized product was then 
treated with aqueous KOH in THF at 50 °C, giving 2y in 80% 
yield with 97% ee. 
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Scheme 3. Asymmetric Cycloisomerization of 4-(N,N-Dimethylamino)pyridine 
Derivative 1y 

We then compared the cycloisomerization of two isomeric 
substrates, terminal alkene 1z and trisubstututed internal 
alkene (E)-1aa, which are potentially interconvertible via 
double bond migration (Scheme 4). It should be noted that they 
afforded enantiomeric products (R)- and (S)-2z 

enantioselectively. These results indicate that even 
isomerizable C=C bonds including trisubstituted C=C bonds 
undergo cycloisomerization with no prior double bond 
migration. 
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Scheme 4. Asymmetric Cycloisomerization of Potentially Interconvertible 
Alkenes 1z and (E)-1aa  

Reaction of 1ab and 1ac bearing tri-substituted alkenes 
proceeded at 135 °C to afford the corresponding indolines 2ab 
and 2ac with 95 and 96% ees, respectively, with moderate 
yields [Eq.(1)]. 

N

R1

1ab (R1 = n-C4H9, R2 = Ph)
1ac (R1 = n-C5H11, R2 = CO2Me)

Me

2ab (50% from 1ab, 95% ee)
2ac (45% from 1ac, 96% ee)

R2

NMe2

R1
R2

[IrCl(C2H4)2]2 (4 mol %)
(S)-L3 (8 mol %)

p-xylene
135 ºC, 24 h

(1)

 
 

The asymmetric cycloisomerization of 1 enables efficient 
access to enantioenriched unprotected indoline 2x and acyclic 
amine 4 both containing a quaternary carbon center (Scheme 
5). Although 2x could not be synthesized by the 
cycloisomerization of 1x directly (Scheme 2), debenzylation of 
2u by hydrogenolysis led to 2x in high yield (Scheme 5, left). 
According to the procedure reported by MacMillan et al., 2b 
was reacted with iodomethane in CH2Cl2 and the resulting 
ammonium salt was treated with Na/NH3 (Scheme 5, right).[11] 
Cleavage of the C(sp2)–N bond took place smoothly at –78 °C, 
giving 4 in good total yield and with retention of enantiopurity. 

NMe2
1. MeI, CH2Cl2
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Scheme 5. Synthetic Conversion of Enantioenriched Indolines 2 

To gain insight into the reaction mechanism, deuterium-
labeling experiments were carried out (Scheme 6). Deuterium-
labeled 1a-D gave indoline 2a-D at 135 °C in 82% yield 
[Scheme 6(a)]. While almost perfect deuterium incorporation 
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was observed at the N-methyl and the methylene group of the 
product, lower deuterium incorporation at the 3-methyl group 
(81%) with its delivery to the ortho-position (27%) was noticed. 
A large kinetic isotope effect (kH/kD = 3.3) was observed in the 
independent reactions of 1a and 1a-D [Scheme 6(b)], 
suggesting that oxidative addition of the C–H bond of the N-
methyl group to iridium is the rate-determining step. 

Ph
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Scheme 6. Deuterium-Labeling Experiments  

We also carried out the reaction of vinyl-substituted N,N-
dimethylaniline 1ad [Scheme 7(a)]. We obtained indole 5 and 
ethyl-substituted aniline 6 both in 41% yield along with the 
cycloisomerization product 2ad in low yield. The formation of 5 
may be explained either by dehydrogenation from the 
cycloisomerization product 2ad or by β-H-elimination of an 
iridium intermediate in the catalytic cycle. We could exclude the 
former possibility by the reaction of 1ad in the presence of an 
equimolar amount of N-benzylindoline 7 as a mimic of product 
2ad [Scheme 7(b)].[12] At 23% conversion, the reaction afforded 
5 (8%) and 6 (9%) along with the cycloisomerization product 2ad 
in 6% yield with formation of only a small amount of indole 8 
(<1.5%), which was derived from 7. This result clearly excludes 
the possibility of a dehydrogenation process after the formation 
of 2ad, but suggests a β-elimination process in the catalytic 
cycle. 
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Scheme 7. Mechanistic Study Based on the Reaction of 1ad  

Based on these results, we propose the following 
mechanism for the present cycloisomerization (Scheme 8). The 
rate-determining oxidative addition of the N-methyl C(sp3)–H 

bond to iridium is followed by insertion of a C=C bond into the Ir–
C bond, i.e., carboiridation, in a 5-exo fashion, to form the Ir–H 
species B. Intermediate B undergoes reductive elimination of 
the C–H bond to form the cycloisomerization product 2. The 
observed formation of indole 5 can only be explained by β-
elimination from B (R = H) by this mechanism, but not by an 
alternative mechanism involving insertion of a C=C bond into the 
Ir–H bond (hydroiridation) of intermediate A. In the (S)-L3/Ir-
catalyzed reaction of 1a (R = Ph), the carboiridation proceeds 
selectively on the Re-face of the C=C bond to afford R 
enantiomer through a configuration that avoids steric repulsion 
between the substituent R and the DTBM groups on the 
phosphorus atoms.[13 ] Partial H/D exchange at C7 shown in 
Scheme 6(a) is likely to indicate existence of a non-productive 
iridacycle C formed from A. 

[Ir(I)]
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A B

1 2
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Ir–C bond
(carboiridation)

R
[Ir]

H
C
R

[Ir]
NMe
CH2H

H

  

Scheme 8. A Possible Mechanism 

 In conclusion, we established an efficient Ir-(S)-L3 catalyst 
system, for cycloisomerization of N-methylanilines 1 into 
indolines 2 with the construction of quaternary stereogenic 
centers in a highly enantioselective fashion. Mechanistic 
investigations revealed that oxidative addition of a C–H bond to 
Ir(I) is the rate-determining step, and the following insertion of a 
C=C bond takes place via carboiridation rather than 
hydroiridation. 
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Build a bridge: Highly enantioselective cycloisomerization of N-methylanilines 
bearing o-alkenyl groups to indolines is established. An iridium catalyst bearing a 
bidentate chiral diphosphine effectively promotes the intramolecular addition of the 
C(sp3)–H bond across a carbon–carbon double bond with highly enantioselective 
fashion. The reaction gives indolines bearing quaternary stereogenic carbon 
centers at the 3-positions. Twenty two indolines were synthesized over 95% ees. 
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