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The directing-group-assisted, transition-metal-catalyzed
C�H oxidation of arenes is recognized as an elegant and
versatile approach for the synthesis of useful phenol deriva-
tives.[1,2] The ability of the directing group (DG) to coordi-
nate the transition metal triggers the activation of the
remote C�H bond and facilitates the formation of the prod-
uct with better regioselectivity.[3] The Sanford and Yu
groups have explored the regioselectivity and the mecha-
nism involved in the DG-assisted C�H oxidation of
arenes.[4,5] Subsequently, a variety of DGs for ortho C�H ox-
idations have been extensively investigated.[6] In spite of
these significant advances, the use of nonremovable and
nonmodifiable DGs and the lack of generality limit the
broad synthetic application of this transformation. In addi-
tion, highly chemoselective functionalization in the presence
of a variety of C�H bonds remains elusive.[7] The incorpora-
tion of easily removable and robust DGs can overcome
some of these limitations.[8] So far, the attachable and de-
tachable directing groups 8-aq (8-amino quinoline),[9a,b] pza
(2-pyrazole-5-ylaniline),[9c] and aam (anthranilamide)[9d]

have been used in the C�H functionalization of arenes
(Scheme 1). Recently, the easily modifiable DGs sulfur[10a]

and Si-tethered pyridyl derivatives[10b,c,d] have been em-
ployed for the efficient C�H oxidation of arenes.

Inspired by the previous results and the concerns pertain-
ing to this transformation, we envisioned the use of sulfox-ACHTUNGTRENNUNGimines[11] as an easily attachable and detachable new DG for
C�H functionalizations. A direct and elegant approach for
the ortho hydroxylation of benzoic acid in the presence of
O2 has been demonstrated by Yu.[5b] The C ACHTUNGTRENNUNG(sp2)�H acetoxy-
lation of anilides, deriving from the corresponding anilines,
has been performed with palladium catalysis.[1d] With the aid
of bidentate systems, ortho acetoxylations of amides have
been achieved under harsh reaction conditions.[1f] Herein,
we report the initial results on the chemo- and regioselective

ortho C�H acetoxylation of N-benzoylated methylphenyl-ACHTUNGTRENNUNGsulfoximines; this directing group is easily detached from
the C�H oxidation product and can be reused.

To test this hypothesis, compound 2 a was subjected to the
known reaction conditions [Pd ACHTUNGTRENNUNG(OAc)2 (10 mol %) and PhI-ACHTUNGTRENNUNG(OAc)2 in AcOH] at 100 8C for 48 h (Table 1, entry 1).[1b,4a]

Interestingly, formation of the ortho-acetoxylation products
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Scheme 1. Reusable directing groups in ortho C�H functionalizations. [o-
CH-A & F]=ortho C�H activation and functionalization.

Table 1. Optimization of the reaction conditions.[a]

Entry CatalystACHTUNGTRENNUNG(10 mol %)
Oxidant Cosolvent Yield [%][b]ACHTUNGTRENNUNG(3a/4 a/[c])

1 Pd ACHTUNGTRENNUNG(OAc)2 PhI ACHTUNGTRENNUNG(OAc)2 – 57 (10:1:3)
2 Pd ACHTUNGTRENNUNG(OAc)2 Oxone – 19 (3 a)
3 Pd ACHTUNGTRENNUNG(OAc)2 K2S2O8 – 70 (1:1:8)
4 Pd ACHTUNGTRENNUNG(OAc)2 TBHP – 0
5 Pd ACHTUNGTRENNUNG(OAc)2 K2S2O8 DCE 90 (13:1:1)
6 Pd ACHTUNGTRENNUNG(OAc)2 K2S2O8 CHCl3 95 (14:1:1)[d]

7 Pd ACHTUNGTRENNUNG(OAc)2 K2S2O8 Ac2O 57 (18:1:2)
8 Pd ACHTUNGTRENNUNG(OAc)2 K2S2O8 toluene 78 (20:1:4)
9 PdCl2 K2S2O8 CHCl3 90 (4:1:2)

10 Pd ACHTUNGTRENNUNG(TFA)2 K2S2O8 CHCl3 91 (2:1:0.6)

[a] Reaction conditions: 2a (50 mg, 0.18 mmol), oxidant (0.36 mmol), and
AcOH/cosolvent (1:1, 1.0 mL). [b] Conversion based on crude 1H NMR
spectroscopy. [c] Mono-deacylated product. [d] AcOH/CHCl3 (2:3,
1.5 mL) was used. TBHP = tert-butyl hydroperoxide.
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3 a and 4 a, along with a small amount of the mono-deacylat-
ed compound, was observed in 57 % yield by NMR spectros-
copy. It is highly intriguing that the ortho C�H bonds of the
N-benzoylated aryl ring have been exclusively functional-
ized among the two different arenes of compound 2 a. Even
though the ortho hydrogen atoms of both aromatic rings are
present at the same proximity to the metal-coordinating ni-
trogen atom, the factors responsible for this chemoselective
C ACHTUNGTRENNUNG(sp2)�H oxidation are unclear. The acidic sp3 S-methyl-hy-
drogen atom did not participate in the oxidation reaction.
No traces of the monoacetoxylation product from selective
replacement of the more-hindered ortho C�H bond were
detected in the crude NMR spectrum. These results clearly
demonstrate the chemo- and regioselective C�H oxidation
of arenes. From various oxidants screened (entries 2–4),
K2S2O8 turned out to be superior (entry 3), forming the ana-
logues phenol as major product, whereas benzoquinone, Cu-ACHTUNGTRENNUNG(OAc)2, and H2O2 were completely ineffective.[12] To reduce
the formation of deacylated product, various combinations
of solvents with AcOH were tested. Chlorinated solvents
appeared effective (entries 5 and 6) and chloroform was
found to be the best cosolvent (entry 6). Among the
amounts of solvent screened, a 2:3 mixture of AcOH:CHCl3

(1.5 mL for 0.2 mmol of substrate) resulted optimum
(entry 6). The exploration of other solvents, such as Ac2O
and toluene, produced moderate amounts of 3 a (entries 7
and 8), whereas DMF and DMSO gave 3 a in poor yield.[12]

Other Pd catalysts were found to be similarly efficient (en-
tries 9 and 10). As expected, no product was detected in the
absence of either the Pd catalyst or the oxidant. Gratifying-
ly, the presence of air/moisture did not affect the reaction
efficiency.

To probe the effect of the (S)-methyl-(S)-phenylsulfox-ACHTUNGTRENNUNGimine (MPS) directing group on the chemo- and regioselec-
tive ortho C�H acetoxylation of arenes, the optimized reac-
tion conditions (Table 1, entry 6) were surveyed to various
N-benzoylated MPSs (Table 2). At first, the regioselective
ortho acetoxylation of meta-substituted N-benozylated sulf-ACHTUNGTRENNUNGoximines was investigated. The reaction of N-(meta-methyl-
benzoyl)-MPS (2 a) gave 3 a as a single regioisomer in 65 %
yield; the ortho-diacetoxylated product 4 a and the mono-de-
acylated product were also isolated in small amounts. We
believe that the compound 4 a is obtained from 3 a. To verify
this observation, 3 a was subjected to the optimized condi-
tions and 4 a was isolated, albeit in poor yield. Interestingly,
the TBS (tert-butyldimethylsilyl) group was tolerated under
these reaction conditions and the product 3 b was obtained
in 47 % yield. A meta-methoxy group did not exhibit the
secondary directing effect and produced 3 c exclusively;[4c]

the bulky methoxy group inhibits the formation of diace-
toxylated product 4 c. However, a poor level of regioselec-
tivity was observed in the case of N-(meta-fluorobenzoyl)-
MPS (3 d).[4c] Unfortunately, the bromo-substituted 3 e was
obtained in poor yield, even though the reaction was run for
96 h; the precursor 2 e was recovered in 42 % yield. The cor-
responding debromination product was observed in negligi-
ble amounts (<5 %) by crude NMR spectroscopy. The reac-

tion of b-naphthyl derivative 2 f under the catalytic condi-
tions gave 3 f and 4 f in 56 and 15 % yield, respectively.
These results suggest that the selectivity is governed by the
steric, as well as the electronic effect of the meta substi-
tuent.[4c] The electronically neutral compound 2 g and the
para-substituted N-benzoylated MPSs 2 h–k gave the desired
mono- and diacetoxylated products in moderate to good
overall yields. However, the reaction of N-[para-chloroben-
zoyl]-MPS (2 j) gave the mono-deacylated compound as
a major product. The halogen substituents in 3 e and 3 j’ can
be amenable to further synthetic transformations. Acetoxy-
lation products 3 l–m were isolated in excellent yields from
electron-rich ortho-substituted N-benzoylated MPSs 2 l–
m.[1f, 5b] Similarly, the less-hindered ortho C�H bond was re-
placed with an acetoxy group in 3 n. Gratifyingly, a moderate
yield of the diacetoxylated product 4 g was isolated from the
reaction of 3 g. This reaction cleanly delivers two new mole-
cules of mono- and diacetoxylated products. In case of mod-
erate yields of products, the mass-balance can be justified
with the recovery of the precursors.

Table 2. ortho Acetoxylation of N-benzoylated sulfoximines.[a,b]

[a] Reaction conditions: 2 (1.0 mmol), Pd ACHTUNGTRENNUNG(OAc)2 (10 mol %), K2S2O8

(2.0 mmol), and AcOH/CHCl3 (3:5, 8.0 mL). [b] Isolated yields. [c] For-
mation of mono-deacetylated product. [d] Starting material recovered.
[e] 72 h. [f] Regioisomeric mixture. [g] 2e (0.57 mmol) at 120 8C for 96 h.
[h] 96 h.
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We next investigated the steric and electronic effects of
sulfoximine derivatives on the ortho acetoxylation of arenes
(Table 3). The electron-rich (S)-methyl-(S)-(4-methylphe-

nyl)sulfoximine imparts slightly lower efficiency, resulting in
3 o in 83 % yield compared to 3 l (95% yield, Table 2). Poor
reactivity was noticed in the case of (S,S)-diphenyl-substitut-
ed sulfoximine 2 p. The bulkiness on the sulfur atom retards
the reaction efficiency: the (S)-ethyl-substituted sulfoximine
2 q shows identical reactivity in comparison to 3 a and deliv-
ered 3 q in 65 % yield, whereas the (S)-isopropyl-substituted
sulfoximine gave 3 r in poor yield. Moreover, a similar trend
of selectivity and reactivity was observed for the ortho-ace-
toxylation products of N-benzoylated (S,S)-dimethylsulfox-ACHTUNGTRENNUNGimines 3 s–u compared to 3 g, 3 a, and 3 l, respectively. The
cyclic (S,S)-tetramethylenesulfoximine showed analogous re-
activity with respect to the (S)-methyl-(S)-phenylsulfoximine
and gave 3 v in 85 % yield. Based on these experimental re-
sults, (S)-methyl-(S)-phenylsulfoximine is conceived as a po-
tential directing group for the ortho acetoxylation of arenes.

Sulfoximines serve as potential chiral ligands for asym-
metric synthesis.[11d, 13] Therefore, we examined the effect of
catalytic conditions to the acetoxylation of chiral N-benzoy-
lated sulfoximines. Gratifyingly, the acetoxylation of (S)-2 k
and (S)-2 l gave (S)-3 k[14] and (S)-3 l with >99 % ee in 43
and 89 % yield, respectively (Scheme 2). This observation
reveals that the stereointegrity of the sulfoximine moiety is
preserved in this transformation. We believe that this strat-
egy would create a wide array of new optically active sulfox-
imines bearing complex molecules in an efficient manner.[13]

Finally, the robustness of this reaction was demonstrated
through gram-scale ortho acetoxylations of arenes. Thus, the
reactions of 2 l and (S)-2 l were independently performed
under the optimized catalytic conditions and the products
3 l[14] and (S)-3 l were obtained in 83 and 87 % yield, respec-
tively [Eq. (1)].

To show the practical utility of this strategy, we examined
the reusability of the directing group. Thus, hydrolysis of the
N-benzoyl moiety of 3 was investigated (Table 4). Unfortu-
nately, the N-benzoyl moiety of 3 a was not cleaved under
base-induced hydrolysis.[15,16a] However, hydrolysis of 3 a
with HCl (12 n) at 80 8C was found successful and the de-
sired 2-hydroxy-5-methyl benzoic acid (5 a) was extracted in
79 % yield (entry 1). Neutralization of the acidic mother
liquor, followed by standard work-up, delivered the (S)-
methyl-(S)-phenylsulfoximine (1 a) in good yield. The reac-
tion of crude 1 a afforded 2 a efficiently. Similarly, the corre-

Table 3. Steric and electronic effects of sulfoximine derivatives on the
ortho acetoxylation of arenes.[a,b]

[a] Reaction conditions: 2 (1.0 mmol), Pd ACHTUNGTRENNUNG(OAc)2 (10 mol %), K2S2O8

(2.0 mmol), and AcOH/CHCl3 (3:5, 8.0 mL). [b] Isolated yields. [c] Start-
ing material recovered. [d] Formation of mono-deacetylated product.
[e] 2v (100 mg, 0.47 mmol) was used.

Scheme 2. Acetoxylation of chiral N-benzoylated sulfoximines.

Table 4. Reusability of the sulfoximine directing group.[a]

Entry 3 Yield of 5 [%][b] Yield of 1a [%][c] Yield of 2 [%][d]

1 3 a 79 71 87
2 3g[e] 87 74 84
3 3k 75 61 73
4 3 m 89[f] 73 68
5 (S)-3 l 82[f] 85 92

[a] Reaction conditions: 3 (100 mg), HCl (12 n, 5.0 mL), 80 8C, 48 h.
[b] Extracted from the crude reaction mixture. [c] Isolated yields of 1 a.
[d] Isolated yields of the corresponding product 2 from 1a. [e] 3g
(1.0 mmol) was used. [f] Yield of the corresponding decarboxylated prod-
uct 6.
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sponding ortho-hydroxybenzoic acids 5 g and 5 k were ob-
tained from 3 g and 3 k, respectively, and 1 a was successfully
recovered and reused (entries 2 and 3). Surprisingly, the
ortho-substituted ortho’-acetoxylated compounds 3 m and
(S)-3 l underwent decarboxylation during hydrolysis and the
corresponding 3,4-dimethylphenol (6 m) and 3-methylphenol
(6 l) were isolated in 89 and 82 % yield, respectively (en-
tries 4 and 5). Following this method, the so far difficult
meta-substituted phenols can be synthesized.[16b] Interesting-
ly, the configuration of the chiral sulfoximine 1 a was re-
tained in the acid-mediated hydrolysis of (S)-3 l ; (S)-1 a was
obtained in 85 % yield with >99 % ee (entry 5). Looking
into the effective cleavability and reusability of the sulfox-ACHTUNGTRENNUNGimine directing group, we hope that this strategy would be
useful in fabricating complex phenol derivatives of pharma-
ceutical interest.

Based on the previous findings on Pd-catalyzed oxidative
C�H functionalizations of arenes with K2S2O8 as oxidant,
the proposed catalytic cycle is likely to proceed involving
a PdII/IV species, as shown in Scheme 3. Interestingly, hetero-ACHTUNGTRENNUNGatoms, such as S, S=O, C=O, and S=N, in N-benzoylated sul-
foximines have the ability to coordinate the Pd species.
Owing to the oxidation state of the S atom (+ VI) and the
polarization of the S=O bond in sulfoximines, the coordina-
tion of S to PdII can be excluded. Similarly, the chelation of
the O atom of the polarized S=O bond is also believed un-
likely, because it involves a seven-membered transition
state. The spectroscopic and theoretical studies revealed
that the conjugate delocalization of the nitrogen lone pair is
prohibited, owing to its orthogonal orientation to the N�
C(O) bond.[17] Among the nitrogen and carbonyl-oxygen
atom, we presume that the chelation of N to PdII is more
susceptible due to the localized electron density.[18] Howev-
er, the coordination of the carbonyl-oxygen atom cannot be
completely ruled out. Thus, the first step in the catalytic
cycle involves the chelation of N to PdII, followed by palla-
dation of the ortho C�H bond of the arene to produce the
crucial five-membered cyclopalladated intermediate A.
Next, oxidation of the PdII species of A with K2S2O8 in the
presence of AcOH gives the PdIV species B.[19] Finally, re-
ductive elimination of B generates the desired ortho-ace-
toxylated product and the active PdII species for the next
catalytic cycle.

The direct oxidative functionalization of unactivated C-ACHTUNGTRENNUNG(sp3)�H bonds remains challenging.[20] Having succeeded in
the selective ortho C�H acetoxylation of arenes, we ex-
plored the present catalytic conditions for the C�H acetoxy-
lation of a methyl group. To our surprise, the desired acetox-
ylation product 8[14] was obtained from 7, albeit in moderate
yield [Eq. (2)].

In conclusion, we have shown that the use of sulfoximines
as a directing group exemplifies a novel approach to the
chemo- and regioselective ortho acetoxylation of arenes.
Even though our initial results are not comparable with the
approach reported by Yu for the C�H oxidation of aromatic
carboxylic acids, we hope that the sulfoximine directing
group would contribute to the development of new and
useful C�H functionalizations. Notably, the stereointegrity
of chiral sulfoximines is preserved. The facile attachment
and detachment of the robust sulfoximine moiety makes it
highly reusable. Realization of milder reaction conditions
for sp2 and sp3 C�H functionalizations, unraveling of mecha-
nistic details, generation of axial chirality through asymmet-
ric C�H activation, and exploration of novel synthetic appli-
cations are being actively pursued in our laboratory.
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