

Free-Radical-Promoted Site-Selective C–H Silylation of Arenes by **Using Hydrosilanes**

Zhengbao Xu,[†] Li Chai,[†] and Zhong-Quan Liu*^{,†,‡}

[†]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

[‡]State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

S Supporting Information

ABSTRACT: A free-radical-promoted aryl/heteroaryl C-H silylation using hydrosilane was developed. This cross-dehydrogenative silvlation enables both electron-rich and electron-poor aromatics to afford the desired arylsilanes in unique selectivity. A "para-selectivity" was observed by examination of over 54 examples. This exceptional orientation is quite different from that in Friedel-Crafts C-H silvlation or transition-metalcatalyzed dehydrogenative silylation.

rganosilicon compounds find wide applications in synthetic chemistry, material, and polymer science.¹ Direct silvlation of inert C-H bonds using hydrosilanes represents the most atom-economic and waste-minimizing access to organosilanes.² As depicted in Scheme 1, two main pathways through

Scheme 1. Accesses to Aryl and Heteroaromatic Silanes via C-H Silylation Using Hydrosilane

cross-dehydrogenative coupling (CDC)³ reactions of arenes/ heteroarenes with hydrosilanes have been explored to afford arylsilanes in recent years. One is the Friedel-Crafts C-H silvlation via electrophilic aromatic substitution (SEAr).^{4,5} Usually, only electron-rich aromatics could be smoothly silvlated through this method. The other is the transition-metal-catalyzed dehydrogenative silvlation.^{6,7} Generally, ortho- and metasilvlation of aryl C-H bonds could be selectively achieved by this strategy. A directing group and noble metal catalysts as well as hydrogen acceptor are often required in these systems. There is, in fact, a third pathway to aryl C-H silylation. That is freeradical-promoted homolytic aromatic silvlation.^{8,9} It was considered unpractical because of very low yields and poor selectivities. Recently, Grubbs and Stoltz et al.¹⁰ realized a series of highly efficient radical heteroaryl C-H silvlations initiated by alkali metal oxides, which made a significant breakthrough in this area. Although this system is sensitive to oxygen and moisture and aromatics with electron-withdrawing groups were generally not tolerated in this chemistry, the features of unique selectivity, transition-metal-free, and mild conditions enable this radical silvlation service to be an elegant alternative to path I and II.

It is well-known that the site-selectivity in radical reactions is unique, which is quite different from that in polar reactions.¹¹ For example, C2 silvlation happened in radical-initiated reaction of indole with hydrosilane as reported by Grubbs.¹⁰ Sila Friedel– Crafts reactions afford C3-silvlated products.⁴ Previous studies on radical-initiated homolytic aromatic alkylation showed special regioselectivity, which was called "para-selectivity".¹² It is believed that the resonance stabilization of the σ -complex might be responsible for this exceptional selectivity. As part of our continuous studies on free-radical-promoted C-Si bond formation,¹³ we began to envision whether a similar "paraselectivity" could be observed in radical silvlation of arenes. Fortunately, we successfully accomplished a direct C-Si bond formation via free-radical reaction of arenes/heteroarenes with hydrosilanes. Furthermore, a unique and predictable selectivity was observed in this homolytic aromatic silulation by examination of over 54 examples. To the best of our knowledge, it is the first time the "para-selectivity" in radical-promoted silvlation of aryl C-H bond has been revealed.

Initially, we chose *N*-phenylacetamide and triethylsilane as the model compounds to evaluate the regioselectivity in aryl C-H silvlation under free-radical initiation (Table 1). It was found that the Cu₂O was more efficient than Cu powder, CuBr, and $Fe(OAc)_2$, etc. (entries 1–5). In the case of the solvent, it seemed that only *t*-BuOH was effective (entries 6-8). Additionally, the peroxide DTBP (di-tert-butyl peroxide), used as the radical initiator, is more efficient than DCP (dicumyl peroxide) and BPO (benzovl peroxide), etc. (entries 9 and 10). Finally, a good isolated yield of N-(4-(triethylsilyl)phenyl)acetamide was obtained as the unique product by using a catalytic amount of Cu₂O (entries 11 and 12). The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra indicated that the para-silylation is dominant (>20:1).

Received: August 31, 2017

Table 1. Optimization of the Reaction Conditions^a

	N + HSIE	t ₃ initiator peroxide	O N N	E13
entry	initiator (mol %)	peroxide	solvent	yield ^{b} (%)
1		DTBP	t-BuOH	trace
2	Cu (10)	DTBP	t-BuOH	42
3	$Cu_2O(10)$	DTBP	t-BuOH	56
4	CuBr (10)	DTBP	t-BuOH	14
5	$Fe(OAc)_2$ (10)	DTBP	t-BuOH	trace
6	$Cu_2O(10)$	DTBP	DMF	NR
7	Cu ₂ O (10)	DTBP	DMSO	NR
8	$Cu_2O(10)$	DTBP	TFE	NR
9	$Cu_2O(10)$	DCP	t-BuOH	trace
10	$Cu_2O(10)$	BPO	t-BuOH	trace
11	$Cu_2O(5)$	DTBP	t-BuOH	62
12	$Cu_2O(2)$	DTBP	t-BuOH	51

^{*a*}Reaction conditions: *N*-phenylacetamide (1 equiv, 0.1 mmol), HSiEt₃ (12 equiv, 1.2 mmol), peroxide (18 equiv, 1.8 mmol), solvent (0.5 mL), sealed tube, 120 °C (measured temperature of the oil bath), 12 h later, additional portions of HSiEt₃ (1.2 mmol) and peroxide (1.8 mmol) were added, refluxing for a further 12 h. ^{*b*}Isolated yield.

With the above optimized conditions in hand, we set out to investigate the substrate scope and the site selectivity of this system (Scheme 2). First a set of *N*-phenylalkylamides including

^{*a*}Typical reaction conditions: arene (1 equiv, 0.1 mmol), HSiEt₃ (1.2 mmol), DTBP (1.8 mmol), Cu₂O (5 mol %), *t*-BuOH (0.5 mL), sealed tube, 120 °C (measured temperature of the oil bath), 12 h later, additional portions of HSiEt₃ (1.2 mmol) and DTBP (1.8 mmol) were added, refluxing for further 12 h. ^{*b*}Isolated yield. ^{*c*}4,4'-Bis-(triethylsilyl)-1,1'-biphenyl.

1-phenylpyrrolidin-2-one were examined to be effective substrates, and all gave the desired *para*-silylated products in moderate to good yields (1-5). In these cases, no regioisomers were observed by NMR spectra. Next, a series of substituted *N*phenylacetamides were screened (6-11). As a result, both *ortho*and *meta*-substituted *N*-phenylacetamides afforded the corresponding *para*-silylation products. Then 1,1-biphenyl and its derivatives also reacted smoothly with triethylsilane to produce the expected [1,1'-biphenyl]-4-yltriethylsilanes (12-14). Finally, we examined several *para*-substituted arenes (15-17). *N*-(4-Methoxyphenyl)acetamide and *N*-(2,4-dimethoxyphenyl)acetamide yielded *meta*-silylation products **15** and **16**, respectively. A 52% yield of (3,6-dimethoxy-1,2-phenylene)bis-(triethylsilane) (**17**) was isolated by using 1,4-dimethoxybenzene. Surprisingly, 1,3-dimethoxybenzene gave **18** as the major product. Silylation occurred at a more hindered position in this case.

To further study the site-selectivity of this radical silvlation of aryl C–H, a wide range of electron-deficient aromatics were tested. As demonstrated in Scheme 3, *para*-silvlated arenes were

^{*a*}Typical reaction conditions. ^{*b*}Isolated yield. ^{*c*}The ratio of regioisomers were determined by ¹H NMR.

also isolated as the major products. Benzamide gave regioisomers in 35% yield with the ratio of p/m = 2/1 (19). while a 71% yield of isomers with p/m = 3/1 ratio was obtained with *N*methylbenzamide (20). Gratifyingly, an array of benzoates afforded the products in high yields with p/m = 4/1 ratio (21– 26). Variation of the structure of alcohol in esters could not affect the site-selective ratio. To our delight, *meta*-substituted benzamides and benzoates all generated the desired products in 38–86% yields, and the ratios of *para/meta* were up to 20/1 (27–35). Interestingly, dimethyl phthalate led to a unique silane in 70% yield (36). Similarly, *meta*-silylation occurred when the *para*-position of benzamide and benzoate was occupied (37 and 38).

In addition, various heterocycles were examined. As depicted in Scheme 4, heteroaromatics such as benzofuran, benzo[b]thiophene, thiophene, indole, pyridine, and pyrrole were amenable to this system. The C2-silylation products were isolated in high yields with C3-substituted benzofurans, benzo[b]thiophenes, and thiophenes (**39–43**). In contrast, *N*heterocycles afforded C3-silylated products (**44–47**). The possible reason for this C3-selectivity is unclear now, where silyl cation might be involved in these cases.

Finally, a series of hydrosilanes has been screened. It can be seen from Scheme 5 that both alkyl and aryl hydrosilanes are compatible with this system (48-54). Once again, *para*-silylated

Scheme 4. Silylation of Heteroaromatics with HSiEt₃^a

^{*a*}Reaction conditions: heteroaromatics (1 equiv, 0.2 mmol), HSiEt₃ (2.0 mmol), CuF₂ (5 mol %), DTBP (0.8 mmol), *t*-BuOH (3 mL), 130 °C, 12 h. ^{*b*}Isolated yield. ^{*c*}(3-Phenylthiophene-2,5-diyl) bis-(triethylsilane).

Scheme 5. Silvlation of Aromatics with Hydrosilanes⁴

^aTypical reaction conditions. ^bIsolated yield.

N-phenylacetamides and benzoates were isolated in moderate to high yields.

With these data in hand, we began to discuss the site-selectivity of this chemistry. Pioneering studies by Russell,¹⁴ Giese,¹⁵ and Tedder and Walton¹⁶ et al. suggested that factors such as bond strength, polarity, stereoelectronic effects, and steric effects are critically important to govern the reactivity and orientation of free-radical addition reactions. As mentioned above, previous investigations on homolytic aromatic alkylation indicated a "*para*-selectivity" was found in these reactions.¹² The siteselectivity largely depends on the resonance stabilization of the σ complex. Clearly a similar "*para*-selectivity" was observed in this radical-promoted aryl C–H silylation. It can be seen from Scheme 6 that the σ -complex intermediates would be formed by

Scheme 6. *Para*-Selectivity in Radical-Promoted Aryl C–H Silylation

addition of the silyl radical to arenes. Although both the *para-* and *ortho*-addition could lead to efficient delocalization that thus stabilize the radical intermediates, *para-*addition would occur prior to *ortho-*addition due to the steric effect. When there is *para-*substituent on the aromatic core, *meta-*addition would occur due to the collective effects of hindrance and polarity.¹⁷

The silyl-substituted arenes generated from this radical process are known to undergo a variety of powerful synthetic transformations. A number of representative examples are demonstrated here (Figure 1). Diverse transformations from arylsilanes to aryl halides, phenols, and biaryls were achieved by halogenation reactions, oxidation reactions, and cross-coupling reactions.

Figure 1. Transformation of the arylsilane products. Reaction conditions: (i) 1 (1 equiv), NCS (5 equiv), N₂, CH₃CN, 40 °C; (ii) 1 (1 equiv), NBS (5 equiv), N₂, CH₃CN, rt; (iii) 1 (1 equiv), NIS (5 equiv), N₂, CH₃CN, rt; (iv) **21** (1 equiv), 5 mol % Pd(OAc)₂, PhI(OCOCF₃)₂ (1.5 equiv), AcOH, 100 °C; H₂O, 100 °C; (v) Benzo[*b*]thiophene (1 equiv), 1 (2 equiv), 5 mol % of PdCl₂(CH₃CN)₂, CuCl₂ (2 equiv), N₂, toluene, 100 °C; (vi) naphthalene (1 equiv), **13** (2 equiv), 5 mol % PdCl₂, CuCl₂ (4 equiv), DCE, 120 °C

On the basis of the above results and previous reports, a plausible mechanism for the present process is proposed and shown in Scheme 7. Initially, heterolysis of the O–O bond in

Scheme 7. Proposed Mechanism

peroxide by Cu(I) would afford *tert*-butoxyl radical and Cu(II) species. Hydrogen abstraction from the hydrosilane by *t*-BuO radical gives *t*-BuOH and a silyl radical, which then adds to arene leading to the σ -complex intermediate **A**. Finally, direct hydrogen-atom transfer from **A** to *tert*-butoxyl radical forms the product, or single-electron oxidation of **A** by Cu(II) would generate a radical anion, which then deprotonates by *tert*-butoxyl anion performs to produce *t*-BuOH and arylsilane. Meanwhile, the Cu(I) is regenerated to enter the next reaction cycle.

In summary, a Cu/peroxide-promoted free-radical aryl/ heteroaryl C–H silylation is developed. It allows a site-selective and predictable access to various arylsilanes. Additionally, the experimental results indicated that a "*para*-selectivity" was found in this homolytic aromatic silylation. The exceptional selectivity enables this radical silylation to be an attractive strategy for C–Si formation.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b02717.

Experimental procedures, characterization, and spectral data (PDF)

AUTHOR INFORMATION Corresponding Author

*E-mail: liuzhq@lzu.edu.cn.

ORCID [®]

Zhong-Quan Liu: 0000-0001-6961-0585

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project is supported by the National Natural Science Foundation of China (Nos. 21472080 and 21672089).

DEDICATION

In memory of Prof. You-Cheng Liu.

REFERENCES

(1) For reviews on silicon chemistry, see: (a) The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley Interscience: New York, 1989. (b) Brook, M. Silicon in Organic, Organometallic and Polymer Chemistry; Wiley: New York, 2000. (c) The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, 2003. (d) Birot, M.; Pillot, J.-P.; Dunogues, J. Chem. Rev. 1995, 95, 1443. (e) Buriak, J. M. Chem. Mater. 2014, 26, 763. (f) Silicon-Containing Polymers; Jones, R. G., Ando, W., Chojnowski, J., Eds; Kluwer: Dordrecht, 2000. (g) Zelisko, P. M. Bio-Inspired Silicon-Based Materials; Springer: Dordrecht, 2014. (h) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375. (i) Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845. (j) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835. (k) Hiyama, T.; Shirakawa, E. Top. Curr. Chem. 2002, 219, 61. (1) Marciniec, B. Coord. Chem. Rev. 2005, 249, 2374. (m) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188. (n) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.

(2) For recent reviews, see: (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946. (b) Yang, Y.; Wang, C. Sci. China: Chem. 2015, 58, 1266. (c) Xu, Z.; Huang, W.-S.; Zhang, J.; Xu, L.-W. Synthesis 2015, 47, 3645. (d) Sharma, R.; Kumar, R.; Kumar, I.; Singh, B.; Sharma, U. Synthesis 2015, 47, 2347.

(3) For selected recent reviews on CDC reactions, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (c) Girard, S.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. (d) Jia, F.; Li, Z. Org. Chem. Front. 2014, 1, 194.

(4) For selected intermolecular Friedel-Crafts-type C-H silylations, see: (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. Dalton Trans. 2010, 39, 9329. (b) Klare, H. T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312. (c) Curless, L. D.; Clark, E. R.; Dunsford, J. J.; Ingleson, M. J. Chem. Commun. 2014, 50, 5270. (d) Yin, Q.; Klare, H. F. T.; Oestreich, M. Angew. Chem., Int. Ed. 2016, 55, 3204. (e) Ma, Y.; Wang, B.; Zhang, L.; Hou, Z. J. Am. Chem. Soc. 2016, 138, 3663. (f) Chen, Q.; Klare, H. T.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 7868. (g) Sollott, G. P.; Peterson, W. R. J. Am. Chem. Soc. 1967, 89, 5054. (h) Olah, G. A.; Bach, T.; Prakash, G. K. S. J. Org. Chem. 1989, 54, 3770. (i) Han, Y.; Zhang, S.; He, J.; Zhang, Y. J. Am. Chem. Soc. 2017, 139, 7399.

(5) For selected intramolecular Friedel-Crafts-type C-H silylations, see: (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. 2009, 131, 14192. (b) Curless, L. D.; Ingleson, M. J. Organometallics 2014, 33, 7241. (c) Omann, L.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 10276.

(6) For selected recent intermolecular transition-metal-catalyzed dehydrogenative silylation, see: (a) Lu, B.; Falck, J. R. Angew. Chem., Int. Ed. 2008, 47, 7508. (b) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502. (c) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092. (d) Klare, H. F.; Oestreich, M.; Ito, J.-i.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312. (e) Oyamada, J.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 10720. (f) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136, 2236. (g) Cheng, C.; Hartwig, J. F. Science 2014, 343, 853. (h) Cheng, C.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 592. (i) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature

2015, *518*, 80. (j) Komiyama, T.; Minami, Y.; Hiyama, T. Angew. Chem., Int. Ed. **2016**, 55, 15787. (k) Elsby, M. R.; Johnson, S. A. J. Am. Chem. Soc. **2017**, 139, 9401. (l) Bähr, S.; Oestreich, M. Angew. Chem., Int. Ed. **2017**, 56, 52.

(7) For selected recent intramolecular transition-metal-catalyzed dehydrogenative silylation, see: (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. **2009**, 131, 14192. (b) Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem. Soc. **2010**, 132, 14324. (c) Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai, K. Angew. Chem., Int. Ed. **2013**, 52, 1520.

(8) For reviews on silyl radicals, see: (a) Chatgilialoglu, C. Acc. Chem. Res. **1992**, 25, 188. (b) Chatgilialoglu, C. Chem. Rev. **1995**, 95, 1229. (c) Chatgilialoglu, C.; Schiesser, C. H. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, 2001; Vol. 3, Chapter 4. (d) Chatgilialoglu, C.; Timokhin, V. I. Adv. Organomet. Chem. **2008**, 57, 117. (e) Chatgilialoglu, C. Chem. - Eur. J. **2008**, 14, 2310. (f) Oestreich, M. Angew. Chem., Int. Ed. **2016**, 55, 494.

(9) For a very recent review on radical-mediated C-H silvlation, see: (a) Shang, X.; Liu, Z.-Q. Org. Biomol. Chem. 2016, 14, 7829. For selected examples of radical C-H silvlation, see: (b) Sakurai, H.; Hosomi, A.; Kumada, M. Tetrahedron Lett. 1969, 10, 1755. (c) Sakurai, H.; Hosomi, A. J. Am. Chem. Soc. 1971, 93, 1709. (d) Du, W.; Kaskar, B.; Blumbergs, P.; Subramanian, P.-K.; Curran, D. P. Bioorg. Med. Chem. 2003, 11, 451. (e) Wang, L.; Zhu, H.; Guo, S.; Cheng, J.; Yu, J.-T. Chem. Commun. 2014, 50, 10864. (f) Romain, E.; Fopp, C.; Chemla, F.; Ferreira, F.; Jackowski, O.; Oestreich, M.; Perez-Luna, A. Angew. Chem., Int. Ed. 2014, 53, 11333. (g) Xu, L.; Zhang, S.; Li, P. Org. Chem. Front. 2015, 2, 459. (h) Leifert, D.; Studer, A. Org. Lett. 2015, 17, 386. (i) Gao, P.; Zhang, W.; Zhang, Z. Org. Lett. 2016, 18, 5820. (j) Gu, J.; Cai, C. Chem. Commun. 2016, 52, 10779. (k) Yang, Y.; Song, R.-J.; Ouyang, X.-H.; Wang, C.-Y.; Li, J.-H.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 7916. (10) (a) Fedorov, A.; Toutov, A. A.; Swisher, N. A.; Grubbs, R. H. Chem. Sci. 2013, 4, 1640.

(11) (a) Tedder, J. M. Angew. Chem., Int. Ed. Engl. 1982, 21, 401.
(b) Viehe, H. G., Janousek, Z., Merenyi, R., Eds. Substituent Effects in Radical Chemistry; Reidel: Dordrecht, 1986. (c) Giese, B. Angew. Chem., Int. Ed. Engl. 1989, 28, 969. (d) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions; VCH: Weinheim, 1996.

(12) (a) Minisci, F. Synthesis **1973**, 1973, 1. (b) Minisci, F.; Mondelli, R.; Gardini, G. P.; Porta, O. *Tetrahedron* **1972**, 28, 2403. (c) Tiecco, M.; Testaferri, L. Homolytic Aromatic Substitution by Alkyl Radicals. In *Reactive Intermediates*; Abramovitch, R. A., Ed.; Plenum Press: New York, 1983.

(13) (a) Zhang, L.; Liu, D.; Liu, Z.-Q. Org. Lett. 2015, 17, 2534.

(b) Zhang, L.; Hang, Z.; Liu, Z.-Q. Angew. Chem., Int. Ed. 2016, 55, 236.
 (14) Russell, G. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York,

1973; Vol. I, p 275.
(15) (a) Giese, B. Angew. Chem., Int. Ed. Engl. 1977, 16, 125. (b) Giese, B. Acc. Chem. Res. 1984, 17, 438.

(16) (a) Tedder, J. M.; Walton, J. C. Acc. Chem. Res. 1976, 9, 183.
(b) Tedder, J. M.; Walton, J. C. Adv. Free Radical Chem. 1980, 6, 155.
(17) (a) Rüchardt, C. Angew. Chem., Int. Ed. Engl. 1970, 9, 830.
(b) Pryor, W. A.; Lin, T. H.; Stanley, J. P.; Henderson, R. W. J. Am. Chem. Soc. 1973, 95, 6993. For discussions on scale of electrophilicity and nucleophilicity for radicals, see: (c) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: New York, 1976. (d) Heberger, K.; Lopata, A. J. Org. Chem. 1998, 63, 8646. (e) Fischer, H.; Radom, L. Angew. Chem., Int. Ed. 2001, 40, 1340. (f) Arthur, N. L.; Potzinger, P. Organometallics 2002, 21, 2874. (g) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Org. Lett. 2007, 9, 2721.