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Gold(I)-Assisted a-Allylation of Enals and Enones with Alcohols
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Abstract: The intermolecular o-allylation of enals and enones
occurs by the condensation of variously substituted allen-
amides with allylic alcohols. Cooperative catalysis by [Au-
(ItBu)NTY,] and AgNTY, enables the synthesis of a range of
densely functionalized a-allylated enals, enones, and acyl
silanes in good yield under mild reaction conditions. DFT
calculations support the role of an a-gold(l) enal/enone as the
active nucleophilic species.

Gold-containing oxocarbenium derivatives A
have been utilized extensively in homogeneous
gold catalysis for the synthesis of new carbon-
carbon and carbon-heteroatom bonds.!! This @) R
family of activated [Au]—C(sp®) species is com-
monly accessible through initial gold-promoted
[3,3] rearrangement of the corresponding propar-
gylic carboxylates, followed by inter- as well as
intramolecular electrophilic interception.”) Alter- by 2

natively, hydrolysis of the oxocarbenium adducts c

has been postulated to deliver the corresponding
a-gold(I) enals/enones B during oxidative cross-
coupling reactions (Scheme 1a)."!

Faza and Lépez have investigated the mecha-
nism of the [Au']-catalyzed oxidative cross-cou-
pling in silico. Their study revealed the presence
and role of a-gold(I) enone species in the [Au'/Au""]-based
redox transformation.” In this context, we recently reported
the spectroscopic identification of an analogous a-gold(I)
enal adduct B’ upon treatment of the complex [Au(P(2,4-
Bu,CH,0);)(tfa)] (tfa=trifluoroacetate)® with the allen-
amide C! in wet CDCI; or CD,Cl, (Scheme 1b)."!

To the best of our knowledge, this alternative approach to
a-[Au'] enals is unprecedented. On the basis of these recent
findings, and in conjunction with our interest in the gold(I)-
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and [H']-assisted manipulation of allenamides,”>® we envi-
sioned the possibility of exploiting the intrinsic nucleophilic
character of B’-type adducts to develop the first gold-
mediated a-allylation of unsaturated carbonyl moieties.”
Moreover, to validate the chemical sustainability of this
method, we selected environmentally desirable allylic alco-
hols"! as potential alkylating agents (Scheme 2). Allena-
mides have already been used in numerous elegant applica-
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Scheme 1. a) Classical approach to the in situ generation of a-[Au']-substituted enals
and enones. b) Our approach to the nucleophilic organogold intermediate
(L=P(2,4-tBu,CsH;0);). TFA=trifluoroacetate, Ts = p-toluenesulfonyl.
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Scheme 2. Working hypothesis for the gold(l)-assisted a-allylation of
o,B-unsaturated carbonyl compounds. EWG = electron-withdrawing

group.
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tions in gold catalysis; however, most often the condensation
of nucleophilic species with the metal-activated allenyl unit is
the dominant chemical event in these transformations."" In
contrast, the proposed methodology would involve the
electrophilic trapping of the organogold intermediate derived
from the hydrolysis of a gold-allenamide adduct.['”
Allenamide 1a and the secondary alcohol 2a (model
substrates) were initially subjected to various reaction
conditions (Table 1). First attempts with [Au(P(2,4-
Bu,C¢H;0);)(tfa)] (2.5 mol %) led to the formation of the
desired product 3aa in modest yield (28 %) and also to the
concomitant formation of by-products II and III in varying
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Table 1: Optimization of the reaction conditions for the formal
a-allylation of “acrylaldehyde”.”

S N1 O
/‘//\N\_/o ’ PhMPh(m)’ HWPh
1a 2a 3aa
Ph o ¢ Ph
(\NJ\/\Ph >\\N/EO ’ o)\/\Ph
0&0 | ) o~ pn P P
Entry [Au]/[Ag] (x [mol %]) T[°C]/ Yield of Yield of
tth]  3aa[%]® 1/11/11 [%]
1 [Au(P(OtBu,Ph);) (tfa)]/- 110/4 28 —/40/50
2 [Au(PPh,)Cl]/AgNTf, (2.5) 110/4 60 35/—/25
3 [Au(JohnPhos)Cl]/AgNTf, (2.5) 110/4 61 32/-/-
4 [Au(XPhos)(NTf,)]/- 110/4 61 30/-/18
5 [Au(IPr)(NTF)]/- 110/4 70 53/—/—-
6  [Au(ItBu)(NTF,)]/- 110/2 84 44/
7 [Au(IPr)Cl]/AgNTF,Y 110/4 96 36/—/—
8l [Au(IPr)Cl]/AgNTf, (2.5) 110/4 68 55/—/—
9 [Au(IPr)Cl]/AgNTf, (5) 110/4 89 41/—/-
10 [Au(IPr)Cl]/AgNTf, (7.5) 110/4 97 35/-/-
110 [Au(IPr)Cl]/AgNTf, (10) 110/4 35 40/—/-
12 [Au(IPr)(NTF)]/AgNTF, (5) 110/4 96 S
13 [Au(ItBu)Cl]/AgNTf, (7.5) 25/24 99 34/-/-
14E [Au(ItBu)Cl]/AgNTf, (7.5) 110/4 94 37/-/-
15 [Au(IAd)Cl]/AgNTf, (7.5) 110/4 65 57/~
16 [Au(IPr¥)Cl]/AgNTF, (7.5) 110/4 71 53/—/-
17 —/AgNTf, (7.5) 110/4 68 26/-/9
18 - 110/4 NR -/-/-

[a] Reactions were carried out under anhydrous conditions (1a/2a/
catalyst 1:1.5:0.025). [b] Yield of the isolated product after flash
chromatography. [c] Yield after flash chromatography. The yields of I and
111 are given with respect to the initial amount of alcohol 2a. By-product I
was always isolated as a 1:1 diastereomeric mixture. [d] An unweighed
amount of AgNTf, was used. [e] [Au]/[Ag] 1:1. [f] [Au]/[Ag] 1:2. [g] [Au]/
[Ag] 1:3. [h] [Au]/[Ag] 1:4. IAd=1,3-di(adamantyl)imidazol-2-ylidene,
1tBu=1,3-di(tert-butyl)imidazol-2-ylidene, IPr=1,3-di(isopropylphenyl)-
imidazol-2-ylidene, IPr*=1,3-bis(2,6-bis (diphenylmethyl)-4-methylphe-
nyl)imidazo-2-ylidene, NR=no reaction, Tf=trifluoromethanesulfonyl.

amounts (Table 1, entry 1). Among them, the condensation
product derived from the oxazolidinone and 2a (compound
II), was present in high enough amounts to be isolated. We
were encouraged by these early results, and the presence of Il
supports our working hypothesis of the initial electrophilic
activation of the allenyl group by the metal.

We reasoned that the isolation of II could be attributable
to the use of a highly electrophilic gold species, and that more
o donating ligands could result in the formation of a more
nucleophilic organogold(I) intermediate, thereby, hopefully,
enabling 3aa to be obtained in higher yields. Gratifyingly, 3aa
was obtained in higher yield by moving from phosphite- to
phosphine-based gold catalysts. In this context, [Au(PPh;)-
(NT,)]™ and [Au(JohnPhos)(NTf,)] formed in situ, and
preformed [Au(XPhos)(NTf,)], provided 3aa in comparable
amounts (Table 1, entries 2-4).

Next, the gold—-N-heterocyclic-carbene (NHC) complexes
[Au(IPr)(NTf,)] and [Au(IrBu)(NTf,)] were tested, with very
promising results (Table 1, entries 5 and 6).' Intriguingly,
when we carried out the reaction by in situ cation formation

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

(Au(IPr)Cl with AgNTf,), a marked improvement in chem-
ical yield was observed (96 %; Table 1, entry 7). We reasoned
that this improved performance might be due to the presence
of excess AgNTf, with respect to the gold source and
therefore carefully investigated the impact of the [Au]/[Ag]
ratio on the reaction outcome (Table 1, entries 8-11). Opti-
mal chemoselectivity was reached by the use of a 1:3
[Au]/[Ag] ratio (2.5:7.5mol%), which provided a nearly
quantitative amount of 3aa (97 % yield; Table 1, entry 10).
This optimization classifies the present gold catalysis as
a “silver-assisted” transformation (see below).">'®! A pecu-
liarity distinguishing carbene-based from other phosphorus-
based gold species is the complete suppression of the
formation of by-product III, which was not detected in the
crude product mixture. This outcome stresses the higher
selectivity of NHC-based catalysts in promoting the cross-
condensation over “homocoupling” processes. Notably, the
use of AgNTf, alone led to the formation of a complex
product mixture (Table 1, entry 17), and no reaction was
observed in the absence of catalytic species (entry 18).

We then examined the scope of the reaction by conducting
the cross-condensation of a range of allylic alcohols 2 with
allenamide 1a (Table 2). A tolerance towards both electron-
withdrawing and electron-donating substituents on the aryl
moiety (at the ortho, meta, and para position) provided the

Table 2: Scope of the formal a-allylation of acrylaldehyde.!
o

)j\ OH [Au(1tBu)CIJ/AgNTf, Ar(R)
(2.5/7.5 mol%)

/ N\_/O * R-)\%\A, — > H 7 Ar(R")

1a 2 toluene, reflux 3

2h
Entry R (1) Ar/R (2) Yield [%] (3)"
1 H (1a) Ar/R'=p-MeCsH, (2b) 5 (3ab)/(71)
2 H (1a) Ar/R =o0-MeC¢H, (2¢) 94 (3ac)
3 H (1a) Ar/R'=m-MeOC¢H, (2d) 5 (3ad)
4 H (1a) Ar/R'=p-FCH, (2€) 94 (3ae)
5 H (1a) Ar/R =p-CICeH, (21) 94 (3af)
6 H (1a) Ar/R' =0-CIC¢H, (2g) 6 (3ag)/(trace)
7 H (1a) Ar/R’:p-BrC6H4 (2h) 4 (3ah)/(52)
8 H (1a) Ar/R =0-BrC¢H, (2i) 4 (3ai)/(trace)
OH
9 H (1a) Z>pPh 8 (32))1
()

10 H (1a) Ar=Ph/R =p-CICH, (2k) 5 (3ak)

[a] Reactions were carried out under anhydrous conditions with

0.1 mmol of 1 (1a/2 1:2.5). [b] Yield of the isolated product after flash
chromatography. Values in brackets are the yields observed with AgNTf,
(7.5 mol %) as the catalyst. [c] Product 3 aj was isolated as a 4:1 mixture
of regioisomers; the major isomer featured an exocyclic C=C bond. [d] A
1:1 mixture of products was obtained.

corresponding a-allylated acrylaldehydes in good to excellent
yield (55-95%; Table 2, entries 1-8).'”) Furthermore, the
asymmetrically substituted allylic alcohols 2j and 2k were
converted into the desired products 3aj and 3ak in moderate
to good yield (45-88%) as mixtures of regioisomers (up to
4:1). These results point to a possible Sy1-type mechanism of
C—C bond formation (see below for a mechanistic discus-
sion).¥
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The scope of the methodology was further A o 9%
. . . OH gNTf, |

assessed by applying the optimal reaction con- )\/\ (5.0 mol%) Pha A O~ Ph & Ph)\/\Ph
ditions to a-substituted allenamides 1b-f Ph Ph toluene, reflux, 2 h bh Ph 6a P
(Table 3). Chemical manipulation at the CI1 2a 1II: 88% Ph/7a\/\F’h
position of the starting allene would also allow
direct access to a-allylated keto derivatives.!"”) 0 AgNTF,
Gratifyingly, a range of a-allylated enones 4 Ph)J\/\Ph e " pn (5.0 mol%)
were isolated in moderate to good yield (40— 6a 7a

65 %), regardless of the nature of the o substitu-
ent or the electronic properties of the allylic
alcohol (Table 3, entries 1-9). The introduction of
a substituent at the a carbon atom of the allenyl
unit of 1 significantly enhanced the overall
reactivity of the m system towards the allylation

3aa

Table 3: Formal a-allylation of enones and acyl silanes.

P 2

[Au(BBUCIVAGNTE, o Ar

(2.5/7.5 mol%)
R | & Ar

toluene RT
15 min R R' 4: R =alkyl

5: R = SiMes
Entry R/R' (1) Ar (2) Yield [%] (4/5)"
1 Bn/H (1b) CeHs (2a) 2 (4ba)
2 Bn/H (1b) p-MeC¢H, (2b) 7 (4bb)
3 Bn/H (1b) p-FCeH, (2e) 65 (4be)
4 Bn/H (1b) p-CICeH, (21) 48 (4bf)
5 Bn/H (1b) p-BrCeH, (2h) (4bh)
6 p-FCeH.CH,/H (1¢) CeHs (2a) 3 (4ca)
7 p-FCsH,CH,/H (1¢) p-MeC¢H, (2b) (4cb)
8 p-FCHL,CH,/H (1¢) p FC6H4 (2e) 6 (4ce)
9 Me/H (1d) Hs (2a) (4da)
101 H/Me (1e) c,,,H5 (2a) 6 (4ea)
114 SiMey/H (1f) Hs (2a) 7 (5a)
124 SiMe;/H (1) pCICGH,, (2b) 0 (5b)
130 SiMe;/H (1f) p-FCeH, (2€) 57 (5e)

[a] Reactions were carried out with 0.1 mmol of 1 under nitrogen in dry
toluene (1/21:1.5). [b] Yield after flash chromatography. [c] The reaction
was carried out under reflux for 2 h. Bn=benzyl.

reaction, so that the temperature could be lowered and the
reaction time shortened to just a few minutes!"*"

Importantly, the method could also be extended to the a-
allylation of o,p-unsaturated acyl silanes 5 (Table 3,
entries 11-13), which are a well-known class of synthetically
versatile building blocks. The products of these reactions were
obtained in 57-77 % yield (reflux, 2 h). Additionally, the vy,y-
disubstituted allenamide 1e was treated with 2a under the
optimized conditions. The corresponding enal 4ea, featuring
a tetrasubstituted C=C double bond, was isolated in moderate
yield (36 %; Table 3, entry 10).

Mechanistically, this transformation poses several ques-
tions, for example: What is the role of the excess silver ? What
is the reaction profile of the C—C bond-forming event? What
is the nature of the nucleophilic species ? Insight into the C—C
bond-forming step comes from the isolation of products 3aj
and 3ak as mixtures of regioisomers (Table 2, entries 9 and
10). Accordingly, a Sy1-type mechanism involving stabilized
allylic carbocations could be invoked.?!]
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Scheme 3. Experiments in support of the proposed role of AgNTf, in the activation of
2a and ether IIl.

40% yield
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[1tBUAUNTf,)/AgNTf,
(2.5/5.0 mol%)

1a

Experiments toward the elucidation of the role of AgNTf,
were next carried out (Scheme 3). We had observed that
AgNTf, alone (7.5 mol%) does promote the reaction, but
with lower chemoselectivity (Table 1, entry 17). This trend
was more evident when a selection of secondary allylic
alcohols was treated under similar conditions for comparison
(see Table 2, entries 1 and 6-8).”2) We reasoned that the
presence of an excess amount of the Lewis acid could
promote the activation of the allylic alcohol (i.e. formation of
the allylic carbocation) and/or convert the ether III into
a chemically active alkylating form. To test this hypothesis, 2a
was heated at reflux in the presence of a catalytic amount of
AgNTH, in toluene for 2 h. The corresponding ether III was
isolated in high yield (88 %) along with the disproportiona-
tion products 6a and 7a in 9% combined yield.***! More-
over, when III was used as the starting material in combina-
tion with water (1 equiv) and AgNTf,, a mixture of 6a and 7a
was obtained with high conversion (90 % ), and when III was
used as the starting material in combination with 1a (2 equiv)
and [Au(IrBu)(NTf,)]/AgNTf,, the desired product 3aa was
isolated in 40 % yield. These experimental results support the
key role of the silver salt in activating 2a and “recycling” III
towards nucleophilic trapping.*>*!

We fully examined the reaction profile by DFT calcula-
tions (see the Supporting Information for an exhaustive
discussion), which accounted for the initial formation of the
postulated organogold intermediate of type B through
hydrolysis® of the gold-activated allenyl unit, and its site-
selective Sy1 addition to the allylic carbocation formed in situ
(see Figures S1-S3 in the Supporting Information). Analo-
gous calculations with AgNTTf, as the catalytic agent led to
significantly higher energy barriers (see the Supporting
Information for more details).

Although the coexistence of a background reaction
involving the spontaneous condensation of the unactivated
allenamide 1a with allylic cationic species cannot be com-
pletely excluded, this reaction pathway seems noncompetitive
with the gold-assisted pathway in terms of chemoselectivity
(see also Table 2, entries 1 and 6-8 for comparison with gold
catalysis). Indeed, when a “naked” allylic carbocation gen-
erated in situ was directly treated with 1a,%" the correspond-
ing enal 3aa was obtained in only 40% yield along with
a large amount of unknown by-products.
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Finally, the further transformation of model allylated
products 3 and 5 highlights their synthetic utility (Scheme 4).
Acyl silane Sa was conveniently converted into the corre-
sponding a,f-unsaturated carboxylic acid 8a in 99 % yield by
treatment with an aqueous mixture of H,O, and NaOH

0
|
Me33i)\//</\ H,0,/NaOH (3 w)
a) o
b~ ~pp, THF.35°C,1h

5a 8a
o)
9y ! i) NaBH,/MeOH MeO
b - = W
) _ ii) CICO,Me/TEA |
Ar Ar

(+/-)-3ad (+/-)-10ad “Ar

Ar: m-MeOCgH,4
Scheme 4. Synthetic manipulation of the allylated compounds 3 and 5:

a) 99% yield; b) i) room temperature, 15 min, 77 %, ii) CH,Cl,, room
temperature, 4 h, 41 %. TEA=triethylamine.

(Scheme 4a).?¥! Additionally, aldehyde 3ad was converted in
two steps into the densely functionalized exo-methylene
dihydroindene structure 10ad (Scheme 4b).”’)

In conclusion, we have disclosed a gold(I)/silver(I)-
cocatalyzed a-allylation of unsaturated carbonyl compounds
with allylic alcohols that provides rapid access to substituted
enals, enones, and acyl silanes. The cooperative action of gold
and silver salts was elucidated by experimental as well as
computational studies. The present methodology represents
a valuable synthetic alternative to the well-known Baylis—
Hillman reaction®™ for the a-functionalization of a.B-unsa-
turated carbonyl compounds, which has found sporadic
application for allylic alkylation. We are currently developing
an enantioselective variant of the present protocol.
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