THE REACTIONS OF SOME ORGANOTIN(IV) CHLORIDES WITH ANTIMONY(V) CHLORIDE AND BORON(III) CHLORIDE

KEITH B. DILLON* and GEOFFREY F. HEWITSON

Chemistry Department, University of Durham, South Road, Durham DH1 3LE, England

(Received 14 November 1983; accepted 10 January 1984)

Abstract—The reactions of the organotin chlorides $R_n SnCl_{4-n}(R = Me \text{ or Ph}; 0 \le n \le 4)$ with the Lewis acids SbCl₅ and BCl₃ have been investigated by ¹¹⁹Sn and (where appropriate) ¹¹B NMR spectroscopy. The results show that transfer of organo-groups to antimony or boron usually takes place rather than chloride abstraction to give cationic tin(IV) species, and this process is more facile for phenyl than methyl groups. These conclusions have been confirmed in some instances by isolation of the non-volatile reaction products.

The reactions of strong Lewis acids such as antimony(V) chloride, boron trichloride or aluminium trichloride with chloroorgano-derivatives of some main group elements including phosphorus(V)¹ and arsenic(V)² have been used to prepare cationic derivatives, eqns (1) and (2), which could then be identified by spectroscopic techniques as well as by elemental analysis of the isolated products.

 $R_n PCl_{5-n} + SbCl_5 \rightarrow [R_n PCl_{4-n}]^+ SbCl_6^- \quad (1)$

$$\mathbf{R}_{n} \operatorname{AsCl}_{5-n} + \operatorname{BCl}_{3} \rightarrow [\mathbf{R}_{n} \operatorname{AsCl}_{4-n}]^{+} \operatorname{BCl}_{4}^{-}.$$
 (2)

In certain instances, however, SbCl, is capable of undergoing exchange reactions with organometallic compounds, resulting in the formation of organoantimony(V) chlorides. Thus the preparation of Ph₂SbCl₃ has been described by reaction of Ph₄Pb with SbCl₅.³ Organoboron halides are also well-established, and ¹¹B NMR shifts have been reported for the phenyl and methyl compounds.⁴⁻⁷ The reaction of Ph₄Sn with BCl₃ in various solvents has been used to prepare PhBCl₂,⁸ but the tin-containing product varied with the solvent. PhSnCl₃ was identified in the residues from reaction in CH₂Cl₂, but SnCl₄ was found in CCl₄ or in the absence of a solvent.⁸ Similarly the methyl boron bromides have been prepared by reaction of Me₄Sn with BBr₃,⁹ but in contrast with the phenyl system not more than two of the alkyl groups could be transferred from tin to boron, and the tin-containing product was found to be Me_2SnBr_2 . It was therefore of considerable interest to investigate the reactions of organotin(IV) chlorides with SbCl₅ and BCl₃, using ¹¹⁹Sn NMR spectroscopy to identify the main tin-containing species present in solution. Formation of a cationic three-coordinate tin(IV) species was expected to cause a large downfield shift of the ¹¹⁹Sn resonance from the position of the starting material,^{10,11} while the occurrence of exchange reactions should also be observable. In the case of BCl₃, ¹¹B NMR spectroscopy could also be used to follow the progress of the reactions. The results obtained have been confirmed in some instances by isolation and analysis of the non-volatile reaction products.

EXPERIMENTAL

All manipulations including NMR sample preparation were carried out in an inert atmosphere of dry nitrogen. Chemicals of the best available commercial grade were used, in general without further purification. For reactions with SbCl₅, the organotin compound was usually dissolved in CH_2Cl_2 and the requisite amount of SbCl₅ diluted with the same solvent was added. The non-volatile products were isolated as required by removing CH₂Cl₂ and any excess SbCl₅ in vacuo, adding a small amount of low-boiling petroleum ether, and again pumping in vacuo to remove the last traces of solvent. Some reactions were carried out with neat $SbCl_5$, as described in the Results section, by cautiously adding SbCl, dropwise to the organotin compound in an NMR tube. The exothermic reactions which resulted were allowed to subside before the ¹¹⁹Sn NMR spectra of the resultant clear solutions were recorded.

^{*}Author to whom correspondence should be addressed.

For reactions with BCl₃, a preweighed amount of the tin(IV) compound was dissolved in CH_2Cl_2 in a thick-walled NMR tube of 8.4 mm outside diameter, which was connected to the vacuum line via a modified socket joint. This section of the line was isolated, and the required amount of BCl₃ condensed into a graduated cold finger attached to the line at 77K. The NMR tube was then cooled to 77K while the cold finger was allowed to warm up slowly to room temperature, resulting in the condensation of BCl₃ into the NMR tube. When this process was complete, the tube was sealed, and allowed to warm up gradually to room temperature.

¹¹⁹Sn NMR spectra were recorded at 307.2K on a Fourier transform multinuclear spectrometer constructed by Dr. A. Royston, which utilises the permanent magnet (1.4T) from a Perkin-Elmer R10 spectrometer, a Racal 9061/2 frequency synthesiser as the frequency source, a Dec pdp 11/34 computer, and a HIPLOT digital plotter. Samples were contained in 8.4 mm o.d. stationary sample tubes. Chemical shifts were measured relative to external Me Sn, with the downfield direction taken as positive. ¹¹B spectra were similarly obtained relative to external (MeO)₃B. IR spectra between 250 cm^{-1} were recorded 650 and on а Perkin-Elmer 457 instrument. C, H and Cl microanalyses were determined as described previously,¹² and Sn and Sb microanalyses by atomic absorption spectroscopy.

RESULTS AND DISCUSSION

(a) Reactions with antimony (V) chloride

Initially reactions were carried out in CH₂Cl₂ as solvent by adding slightly more than an equimolar amount of SbCl₅ to the organotin species $R_n SnCl_{4-n}$ (R = Me or Ph; $0 \le n \le 4$). When reaction had subsided the ¹¹⁹Sn NMR spectra of samples of the resultant solutions were recorded; the results are given in Table 1, together with literature values for the chemical shifts of the starting materials in this solvent where available.^{10,11} Chemical shifts of four-coordinate tin compounds are known to be markedly concentration- and solventdependent,¹¹ and the species formed could be readily identified when this was taken into account, as shown in Table 1. There was no evidence for formation of cationic tin(IV) species, but transfer of organo-groups to antimony(V) appeared to occur with all the phenyltin compounds and with Me₄Sn and Me₃SnCl, whereas Me₂SnCl₂, MeSnCl₃ and SnCl₄ did not react under these conditions. (Me₂SnCl₂ reacted with an excess of SbCl₅ to give MeSnCl₃, although some starting material was still present.) The reactions were repeated (except for SnCl₄) using a larger excess of SbCl₅, and the non-volatile products were isolated after any effervescence had subsided (Experimental section). The results of ¹¹⁹Sn NMR investigations and elemental analyses of the products are shown in Table 2, and indicate that under these more forcing conditions Me₂SnCl₂ also transfers one methyl

Compound	δ ¹¹⁹ Sn (p.p.m.) in CH ₂ Cl ₂ ¹¹	δ ¹¹⁹ Sn (p.p.m.) after reaction with SbCl ₅	Assignment
Ph ₄ Sn	-140 ^a	-29.7	Ph2SnC12
Ph ₃ SnCl	-48	-62.9	PhSnCl ₃
Ph2SnCl2	-32	-62.8	PhSnC13
		-162.3 ^b	SnCl ₄
PhSnCl ₃	-63	-150.1	SnCl ₄
SnCl ₄	-150	~150.1	SnCl ₄
Mẹ ₄ Sn	o	171,3	Me ₃ SnCl
		131.7 ^b	Me2SnCl2
Me ₃ SnCl	155 to 169	143.2	Me2SnCl2
Me2SnCl2	137	139.6	Me2SnC12
MeSnCl ₃	21 ^c	17.5	MeSnCl ₃
1.	1		1

Table 1. δ^{119} Sn (ppm) for reaction of some organotin chlorides with SbCl₅ in CH₂Cl₂

a estimated value

b major peak

c CHCl₃ solvent

Starting material	Product Appearance	δ ¹¹⁹ Sn (p.p.m.)	Product	Analysis found (%)	Analysis required (%)
Me ₄ Sn	white powdery solid	130.3 ^a	Me ₂ SnCl ₂ + Me ₂ SbCl ₃ (1:1)	Sn, 22.7; Sb, 25.9; Cl, 35.2; C, 10.8; H, 3.3.	Sn, 24.9; Sb, 25.5; Cl, 37.1; C, 10.0; H, 2.5.
Me ₃ SnCl	a) off-white crystals	132.6 ^b	Me ₂ SnCl ₂ Me ₂ SbCl ₃ (2:1)	Sn, 33.3; Sb, 16.7; C1, 33.7; C, 10.3; H, 2.9.	Sn, 34.1; Sb, 17.5; Cl, 35.7; C, 10.3; H, 2.6.
	b) orange-red crystals	235.1 ^b	see text	Sn, 35.7; Sb, 16.1; Cl, 35.3; C, 9.2; H, 2.8	
Me2SnC12	red liquid	14.0 ^b	MeSnCl 3		
MeSnCl 3	red liquid	17.5 ^b	MeSnCl ₃		· · · · · ·
Ph ₄ Sn	white solid	-	Ph2SPC13	Sn, -; Sb, 28.7; Cl, 26.7; C, 37.5; H, 2.6.	Sn, -; Sb, 31.9; C1, 27.8; C, 37.6; H, 2.6.
Ph ₃ SnCl	off-white solid	-	Ph2SbC13	Sn, -; Sb, 32.0; Cl, 29.7; C, 37.3; H, 2.6.	Sn, -; Sb, 31.9; C1, 27.8; C, 37.6; H, 2.6.
Ph2 ^{SnC1} 2	off-white solid	-	Ph2SPC13	Sn, -; Sb, 29.5; Cl, 26.9; C, 35.9; H, 3.0.	Sn, -; Sb, 31.9; Cl, 27.8; C, 37.6; H, 2.6.
PhSnCl ₃	grey solid	-	PhSbC1 ₄	Sn, -; Sb, 35.1; Cl, 41.6; C, 21.1; H, 1.5.	Sn, -; Sb, 35.8; Cl, 41.6; C, 21.1; H, 1.5.

Table 2. Products isolated from reactions with SbCl,

a CH₂Cl₂ solvent. b Solid state or neat liquid

group to antimony but MeSnCl₃ does not react. No tin was detected in any of the products isolated from reaction of the phenyltin compounds, and these appear to be converted completely to SnCl₄, which is then removed with the volatiles. The elemental analyses confirm that the non-volatile product is Ph₂SbCl₃ from Ph₄Sn, Ph₃SnCl and Ph₂SnCl₂, and PhSbCl₄ from PhSnCl₃. The reaction of SbCl₅ with Ph₄Sn thus parallels that with Ph₄Pb.³ The IR spectra of the products from Ph₄Sn, Ph₃SnCl and Ph₂SnCl₂ were also virtually identical, and differed from that of the reaction product with PhSnCl₃, as expected. These reactions may indeed provide a useful route for preparation of the phenylantimony chlorides. The white or off-white products from the Me₄Sn and Me₃SnCl reactions were readily identified as 1:1 and 2:1 mixtures of Me₂SnCl₂ and Me₂SbCl₃ respectively, eqns (3) and (4), and may similarly be suitable for preparation of Me₂SbCl₃.

$$Me_4Sn + SbCl_5 \rightarrow Me_2SnCl_2 + Me_2SbCl_3$$
 (3)

$$2Me_{3}SnCl + SbCl_{5} \rightarrow 2Me_{2}SnCl_{2} + Me_{2}SbCl_{3}.$$
 (4)

In one reaction of Me₃SnCl with SbCl₅, however, a crystalline product was obtained which gave a solid state signal at very low field (Table 2), as expected for a three-coordinate cationic species. Nevertheless the analysis of the solid was similar to that of the "normal" product, as shown, and the experiment was not reproducible. Assignment of this signal to a cationic tin(IV) species such as Me₃Sn⁺ is thus very tentative, but is supported by some of the results from reactions of Me_4Sn with neat SbCl₅, described below. Me_2SnCl_2 and $MeSnCl_3$ both gave liquid products, the ¹¹⁹Sn NMR of which indicated the presence of $MeSnCl_3$ as the only tin-containing species. These liquids were not analysed.

Similar reactions were also carried out with neat SbCl₅, as indicated previously. A single ¹¹⁹Sn NMR signal was obtained in most cases from the resultant solutions (Table 3), and the species formed could then be readily identified. Me₃SnCl and Me₂SnCl₂ both appear to lose one methyl group under these conditions while MeSnCl₃ and SnCl₄ do not react. All the phenyltin compounds form SnCl₄ exclusively, however, in agreement with the results from excess SbCl₅ in CH₂Cl₂. No attempt was made to isolate the products from these

Table 3. δ^{119} Sn (ppm) of some organotin chlorides in neat SbCl₅

Starting Material	δ ¹¹⁹ Sn (p.p.m.)	Assignment	
Me ₃ SnCl	137.4	Me2SnCl2	
Me2SnC12	20.9	MeSnCl ₃	
MeSnCl ₃	21.0	MeSnCl ₃	
SnCl ₄	-150.1	SnCl ₄	
Ph ₄ Sn	-150.1	SnCl ₄	
Ph ₃ SnCl	-150.1	SnCl ₄	
Ph2 ^{SnC1} 2	-153.6	SnC14	
PhSnCl ₃	-150.1	SnCl ₄	

reactions since the NMR data appeared quite conclusive.

The most unusual results were obtained from Me₄Sn, where the shifts ascribed to the tri- and dimethyltin species which form the reaction products differed markedly with the relative concentrations of the reagents (Table 4). When a large excess of Me₄Sn was used, the signals were at 160.6 (Me₃SnCl), 97.8 and 0.0 (Me₄Sn) ppm. A 2:1 molar ratio of Me₄Sn to SbCl₅ similarly gave resonances at 160.6, 104.7 and 0.0 ppm. A 1:1 ratio of reagents led to peaks at 208.0, 131.2 (Me_2SnCl_2) and -5.0 ppm. Other solutions with an excess of Me₄Sn, but where this was not measured quantitatively, gave signals in positions intermediate between those for the 1:1 and 2:1 mixtures, as shown, while an excess of SbCl, yielded only one strong signal at 136.4 ppm, readily assigned to Me₂SnCl₂. Thus the resonance for Me₃SnCl has a normal shift value when excess $Me_4Sn (\geq 2:1)$ is present, but moves progressively to lower field and decreases in intensity as the Sn:Sb ratio falls. The downfield movement could be due to partial ionisation, facilitated by the increasing concentration of SbCl₅, eqn (5),

$$Me_{3}SnCl + SbCl_{5} \rightarrow Me_{3}Sn^{+}SbCl_{6}^{-}$$
 (5)

with rapid exchange on the NMR time scale between the covalent and ionic tin(IV) species.

The more difficult data to explain are those for the dimethyltin derivatives, since the shift is initially to higher field of the normal position, which is only reached at Sn:Sb ratios of 1:1 or less. Association of Me_2SnCl_2 molecules might increase the shielding about each tin nucleus and thus cause an upfield shift, but aggregation would seem to be more likely at higher concentrations of Me_2SnCl_2 , the opposite trend to that observed. Me_2SnCl_2 is

Table 4. δ^{119} Sn (ppm) for reaction products from Me₄Sn and SbCl₅

Molar Ratio	δ ¹¹⁹ Sn (p.p.m.)			
Me ₄ Sn: SbCl ₅	Me ₃ SnCl	Me2SnC12	Me ₄ Sn	
Large xs Me ₄ Sn	160.6*	97.8	0.0	
2:1	160.6*	104.7	0.0	
xs Me ₄ Sn ^a	172.8*	113.5	not recorded	
xs Me ₄ Sn ^a	179.2*	117.7	not recorded	
xs Me ₄ Sn ^a	186.8	124.0*	not recorded	
1:1	208.0	131.2*	-5.0	
xs SbCl ₅		136.4*		

* major peak

not measured quantitatively

known to be associated in the solid state, with a distorted octahedral arrangement about each tin atom and asymmetric chlorine bridges in a linear chain polymer.¹³ Me₃SnCl is also polymeric at 135K, with five-coordinate tin and an asymmetric chlorine bridge, but the intermolecular association is apparently disrupted by melting or dissolution in CS₂.¹⁴ An alternative possibility is the formation of aggregates between octahedral SbCl_s and Me₂SnCl₂ such as Cl₄SbCl₂Me₂SnCl₂SbCl₄, but formation of such species would appear more likely at high rather than low SbCl₅ concentrations. In any event there seems no reason to postulate ionisation of dimethyltin species, since no shifts downfield from the values in organic solvents^{10,11} were found.

(b) Reactions with boron trichloride

The solutions were prepared as described in the Experimental section and their ¹¹⁹Sn and ¹¹B NMR spectra were recorded. The results are shown in Table 5, and indicate that organogroup transfer rather than chloride abstraction again takes place. Since BCl₃ is a weaker Lewis acid than SbCl₅, and R₄Sn compounds have been used to prepare organoboron derivatives,^{8,9} this behaviour is not unexpected. Interpretation of the results for the methyltin compounds is quite straightforward and the ¹¹B NMR shifts for MeBCl₂ and Me₂BCl, where formed, are in good agreement with literature data.⁷ Reaction between an excess of Me₄Sn and BCl₃ was also carried out to see whether Me₃B $(\delta^{11}B \ 68.9 \text{ ppm}^7)$ would be formed. The ¹¹B spectrum contained no BCl₃ resonance, showing that it had reacted completely. The major peak present was due to MeBCl₂, with a smaller signal from Me₂BCl, and there was no evidence for formation of Me₃B. Me₂SnCl₂ and MeSnCl₃ did not react under these conditions, even with excess BCl₃.

The results for the phenyltin compounds require more discussion. A small peak at 13.4 ppm was seen in the ¹¹B NMR spectrum from reaction of Ph₄Sn with excess BCl₃, which cannot be ascribed to any of the phenylboron chlorides.⁷ The shift is quite close to that reported for PhB(OH)₂⁴, which could have been formed if a leakage of air or moisture into the tube had occurred, but no hydrolysis products of BCl₃ were detected. This signal was not present when a higher proportion of Ph₄Sn was used, but a broad hump at 38.7 ppm was apparent, intermediate in shift between PhBCl₂ (37.7 ppm) and Ph₂BCl (43.0 ppm).⁷ Since an exchanging system between PhBCl₂ and Ph₂BCl is unlikely, this hump is presumably a composite with contributions from both species and overlapping peaks. A similar signal was observed in the ¹¹B spectrum from the reaction of Ph₂SnCl₂ with excess

System	δ ¹¹⁹ Sn (p.p.m.)	Tin-Containing product	δ ¹¹ B (p.p.m.)	Boron-Containing product
Me ₄ Sn +	146.7	Me2SnC12	29.6*	BC13
excess BC13			45.8	MeBC12
Me Sn +	140.5	Me2SnC12	45.8*	MeBC12
BCI ₃ (~1.1)			60.5	Me2BC1
Me ₃ SnC1 +	167.2*	Me ₃ SnCl	44.1	MeBC12
BCI ₃ (≥1:0.7)	128.7	Me2SnC12	59.3*	Me ₂ BC1
Me ₂ SnCl ₂ + excess BCl ₃ ^a	142.0	Me2SnC12	29.4	BC13
MeSnCl ₃ + excess BCl ₃	19.8	MeSnCl ₃	28.6	BC13
Ph ₄ Sn + excess BCl ₃	-64.0	PhSnCl ₃	13.4	See text
excess bor3			29.4	BC13
			38.3*	PhBC12
$\frac{Ph_4Sn +}{BCl_3}(\sim 1:2)$	-62.7	PhSnC13	38.7	PhBC12/Ph2BC1
Ph ₃ SnCl + excess BCl ₃	-153.7	SnCl ₄	29.6	BC13
exčess BC1.3			37.7*	PhBC12
Ph ₂ SnCl ₂ + excess BCl ₃	-62.9	PhSnC13	29.6	BC13
excess BC13		ļ	39.4*	PhBC12/Ph2BC1
PhSnCl ₃ + cxcess ³ BCl ₃	-146.6	SnCl ₄	28.6	BC13
excess BC13			37.7*	PhBC12

Table 5. ¹¹⁹Sn and ¹¹B shifts of products from reactions between organotin chlorides and BCl₃

* major peak

a Excess BCl₂ means > 1:1 molar ratio

of BCl₃. The other unexpected feature was that the reactions of Ph_4Sn with BCl_3 (~1:2), and Ph_2SnCl_2 with excess BCl₃, both showed PhSnCl₃ as the tin-containing product, even though PhSnCl₃ (and Ph₃SnCl) clearly react with excess BCl₃ to form SnCl₄. This result is in agreement with the previous report of PhSnCl₁ as the reaction product from Ph₄Sn and BCl₃ in CH₂Cl₂.⁸ The reactions are probably still continuing but at a slow rate, and the products observed (PhSnCl₃ or SnCl₄) may well depend on the relative concentrations of BCl₃ and the organotin compound, as well as the solvent. The ultimate product is presumably SnCl₄ in each case, corresponding to the reactions of the phenyltin compounds with SbCl₅ under forcing conditions.

It is thus evident that both SbCl₅ and BCl₃ usually react with the organotin compounds $R_n SnCl_{4-n}$ (R = Me or Ph; $0 \le n \le 4$) to give organoantimony- and -boron-derivatives respectively, rather than cations by halogen abstraction. The only evidence for formation of cationic species is from systems with Me₃SnCl and SbCl₅ present. The exchange of phenyl groups is more facile than that of methyl groups, and MeSnCl₃ does not react with either reagent, even under forcing conditions. Me₂SnCl₂ similarly does not react with BCl₃, or with SbCl₅ in a 1:1 ratio in CH₂Cl₂, but does form MeSnCl₃ when excess SbCl₅ is used. The reactions with SbCl₅ may provide a useful preparative route to PhSbCl₄ and Ph₂SbCl₃, which have been isolated successfully, and possibly to Me₂SbCl₃ also.

We thank Dr. A. Royston for assistance with the NMR spectrometer, J. Lincoln for recording some of the NMR spectra, and the University of Durham for the award of a Research Studentship (to G.F.H.).

REFERENCES

- K.B. Dillon, R.J. Lynch, R.N. Reeve and T.C. Waddington, J. Chem. Soc., Dalton Trans. 1976, 1243.
- 2. K.B. Dillon, R.J. Lynch and T.C. Waddington, J. Chem. Soc., Dalton Trans. 1976, 1478.

- 3. A.E. Goddard, J.N. Ashley and R.B. Evans, J. Chem. Soc. 1922, 121, 978.
- J.E. de Moor and G.P. van der Kelen, J. Organomet. Chem. 1976, 6, 235.
- 5. W.D. Phillips, H.C. Miller and E.L. Muetterties, J. Am. Chem. Soc. 1959, 81, 4496.
- H. Nöth and H. Vahrenkamp, Chem. Ber. 1966, 99, 1049.
- H. Nöth and B. Wrackmeyer, Chem. Ber. 1976, 109, 1075.
- J.E. Burch, W. Gerrard, M. Howarth and E.F. Mooney, J. Chem. Soc. 1960, 4916.
- W. Gerrard, E. F. Mooney and R. G. Rees, J. Chem. Soc. 1964, 740.

- 10. P.J. Smith and L. Smith, Inorg. Chim. Acta Rev. 1973, 7, 11.
- P.J. Smith and A. P. Tupčiauskas, Ann. Rep. NMR Spectroscopy 1978, 8, 291.
- 12. K.B. Dillon, R.N. Reeve and T.C. Waddington, J. Chem. Soc. Dalton Trans. 1977, 1410.
- 13. A.G. Davies, H.J. Milledge, D.C. Puxley and P.J. Smith, J. Chem. Soc.(A) 1970, 2862.
- M. Bilayet Hossain, J.L. Lefferts, K.C. Molloy, D. van der Helm and J.J. Zuckerman, *Inorg. Chim.* Acta 1979, 36, L409.