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ABSTRACT. Using a single half-sandwich iron(II) compound, Cp*Fe(1,2-

Ph2PC6H4S)(NCMe) (Cp*− = C5Me5−, 1) as a catalyst, reductive coupling of nitroarenes 

with olefins has been achieved by a well-defined iron(II)/(EtO)3SiH system. Through 

either inter- or intramolecular reductive coupling, various branched amines and indole 

derivatives have been directly synthesized in one-pot. Mechanistic studies showed that 
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the catalysis is initiated by activation of nitroarenes by the iron(II) catalyst with silane, 

generating iron-nitrosoarene intermediate for the CN bond coupling.

KEYWORDS ： Reductive CN bond coupling, iron catalysis, iron-nitrosoarene 

intermediate, secondary amines, indoles 

INTRODUCTION 

(Hetero)aromatic amines have privileged scaffolds which are widely found in 

natural products, pharmaceuticals, dyes and industrial fine chemicals.1-3 

Hydroamination through intra- and intermolecular addition of amine NH bonds to 

alkenes4 is an attractive strategy with which to construct new CN bonds and 

manipulate (hetero)aryl amines,5 owing to the widespread availability of alkenes 

(Scheme 1a). Although regioselective hydroamination via Markovnikov6 or anti-

Markovnikov7 process is challenging, significant progress has been made in producing 

linear or branched amines based on transition-metal catalysis.8 Since aromatic amines 

are usually obtained from reduction of nitro(hetero)arenes, direct use of 

nitro(hetero)arenes as nitrogenous partners for the CN coupling has the great 

Page 2 of 26

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

advantage of step economy and easy manipulation,9 which can offer an appealing 

process for the construction of CN bonds. 

b) hydroamination of alipahtic alkenes with nitroarenes

a) hydroamination of alkenes with amines

+

i) Fe(acac)3 (30 mol%)
PhSiH3 (2 equiv)
EtOH, 60 oC, 1 h;

N
H

Ar

NO2

R

+

1

N
H

R

N
H

Ar

or

ii) Zn, HClaq, 60 oC, 1 h

N
H

HAr

anti-Markovnikov
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Proposed radical pathway
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c) this work
Ar
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Ph2P S Ar
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R1
R2

R1

R2

R3

R1
Ar NO2

Ar NO2 Ar

O

Me

FeO

N

Me

Me

O

Cl

Shaver and Thomas (2016)

2.0 mol% [Fe(III)]
1.0-2.0 equiv PhSiH3

EtOH (0.2 M), rt, 1-2 h;
ii) Zn, HClaq, 60 oC, 1 h

10 mol% NiI2, 11mol % L
6.0 equiv Me(MeO)2SiH
DMPU/DMA (1:1, 0.5 M)

25 oC 10 min, then 50 oC 12 h

N N
L =

Zhu (2018)

Baran (2015)

4 equiv (EtO)3SiH

1(ArNO)

via

Scheme 1. Approaches to Hydroamination of Alkenes with Nitroarenes

Using a single catalyst or catalyst precursor to realize the reduction of nitro groups, 

coupled with hydroamination of alkenes in a one-pot protocol is challenging. A 
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breakthrough was made by Baran et al.10 in 2015, who reported the first use of a simple 

Fe(acac)3/PhSiH3 catalytic system to achieve reductive CN bond formation between 

nitro(hetero)arenes and aliphatic alkenes, forming various secondary amines in 

moderate to good yields (Scheme 1b). Subsequently, Thomas and Shaver11 reported 

the selective reduction and formal hydroamination of functional nitroarenes with 

aliphatic alkenes by using a bench-stable amine–bis(phenolate) iron(III) complex (2 

mol%) and silane. In these transformations, nitroso compounds was often envisioned as 

the key intermediate which couples with carbon-centered alkyl radicals generated in situ 

from alkenes. Hu and co-workers reported reductive coupling of nitro(hetero)arenes with 

numerous alkyl halides to synthesize various (hetero)aryl amines using a 

FeCl2∙4H2O/TMSCl system. 12 In these iron-catalyzed transformations, Zn is required to 

serve as additional reductant. Recently, Zhu et al. reported an elegant nickel-catalyzed 

CN coupling system achieved by merging alkene isomerization and hydroamination.13 

Although considerable progress have been made in reductive coupling of 

nitro(hetero)arenes with alkenes, aryl olefins often do not perform well in the iron-
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catalyzed reductive C−N coupling system, and with the formation of (hetero)aromatic 

amines in low yields.10 Using a neutral half-sandwich iron(II) compound, Cp*Fe(1,2-

Ph2PC6H4S)(NCMe) (Cp*− = C5Me5−, 1)14 as a catalyst, we report an well-defined 

iron(II)/(EtO)3SiH system which achieves reductive hydroamination of 

nitro(hetero)arenes with alkenes to produce secondary amines and indoles (Scheme 

1c). The catalysis is initiated by activation of nitroarenes, generating the iron-nitroso 

intermediate for the reductive CN bond coupling. 

RESULTS AND DISCUSSION 

Activation of Nitroarenes by 1. Metal-nitroso complexes can be derived from the 

deoxygenation of organic nitro compounds by metal-phosphine15 or metal-carbonyl 

precursors.16 At the outset of this study, we found that 1 reacts readily with 

nitro(hetero)arenes, affording an iron-nitrosoarene complex that mediates the reduction 

of nitroarenes to aryl amines by reaction with (EtO)3SiH.
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Fe

Ph2P S
NCMe

NO2

Cl

(Et3O)SiH/THF, rt
+ Fe

Ph2P S

Cl

N
O

1

-(EtO)3SiOSi(EtO)3

Fe

Ph2P S

S
PPh2

O + 1(ArNO)

1(ArNO)
THF, rt

1'

Scheme 2. Activation of Nitroarenes by 1 and the Structure of Iron-Nitrosoarene 

Intermediate

An addition of 1 to a mixture of 1-chloro-4-nitrobenzene (2a) and an equimolar 

amount of (EtO)3SiH in THF caused the color of the solution to turn from brown to deep 

red. According to GC-MS analysis, polysiloxane (EtO)3SiOSi(EtO)3 (m/z = 342) and 4-

chloroaniline was produced, indicating the deoxygenation of the nitro group by 

hydrosilane. The 31P NMR spectrum of the reaction mixture displayed only a single 

phosphorus resonance at  75. The new iron(II)-nitrosoarene complex, 1(ArNO) was 

isolated and identified. Crystallographic analysis revealed the structure of an η1(N)-

nitroso complex,17 in which the N atom of 4-Cl-C6H4NO is coordinated to the iron center 
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7

(Scheme 2). The NO bond length of 1.282(5) Å is slightly increased relative to that in 

the free 4-Cl-C6H4NO molecule, 1.265(3) Å.18

In the absence of (EtO)3SiH, 1 also reacts with 2a (Scheme 2). In addition to 

1(ArNO), however, a half-sandwich iron(III) species (1’) was also crystallized from the 

reaction mixture (SI, Figure S6). This result indicates that ArNO2 can oxidize the iron 

complex from Fe(II) to Fe(III), with the phosphine unit serving as a deoxygenation 

agent.15 Importantly, 1(ArNO) reacts further with (EtO)3SiH to produce p-chloroaniline 

according to GC-MS analysis. The recovery of the organoiron species was deduced 

from the ESI-MS spectrum, which showed a peak at m/z = 484.1147 for Cp*Fe(1,2-

Ph2PC6H4S). Inspired by the reactivity of 1 and its nitrosoarene derivative, we examined 

the catalytic reduction of 2a with (EtO)3SiH using 1 as the catalyst. With 2 mol% of 1, 

compound 2a was converted to the corresponding primary amine in 94% yield at room 

temperature (eq 1). 

(EtO)3SiH (4 eq)NO2
1 (2 mol%)

neat, rt, 10 h

NH2

Cl Cl
94% yield

(1)

2a

(EtO)3SiH (4 eq)

NO2 1 (4 mol%)

THF, 40 oC, 24 h 4a, 77% yield

Ph (2)
Cl

H
N

Cl

Ph

2a 3a
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Catalytic Intermolecular C−N Bond Coupling. Subsequently, we examined the reductive 

CN bond formation in the reaction between nitro(hetero)arenes and styrene type 

olefins and found that 1 is capable of catalyzing this challenging transformation. Under 

the optimized reaction conditions using 4 mol% of 1 and 4 equivalents of (EtO)3SiH in 

THF, the intermolecular reductive coupling between 2a and styrene (3a) proceeded well 

at 40 oC, affording the branched chain amine (4a) which was obtained in 77% yield (eq 

2). Formation of a linear product was not observed.

Table 1. Scope of Intermolecular C−N Bond Couplinga
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1 (4 mol%)

(EtO)3SiH

4

Ar NO2 +
R4

R3
R1

R2 Ar N
H

H
R1 R2

R4R3

H
N Ph

4h, 58%

4k, 64%

H
N Ph

N

4r, 64%

H
N

4a, R = Cl, 77%
4b, R = H, 69%
4c, R = Me, 65%
4d, R = OMe, 68%

H
N Ph

H
N

R

4m, R = CN, 55%
4n, R = Br, 51%
4o, R = tBu, 67%
4p, R = OEt, 63%

H
N Ph

4i, 60%
4e, R = 2-Me, 64%
4f, R = 3-Me, 61%
4g, R = 3-Cl, 56%

H
N Ph

R

4l, 67%

N

H
N

MeO

tBu

4j, 57%

H
N

tBu

O

O

H
N

4s, 48%b

H
N

4q, 57%

THF, 40 °C, 24 h
32

H
N

Et

Ph

4w, 53%

H
N

4t, 54%

H
N

4v, 57%

Ph

Nitroarenes Scope:

Olefins Scope:

Ph

3l

Ph

3k

H
N

4u, 57%3i 3j

Ph
H
N

O

Ph

O

H
N

4aa, 56%3p3o 4z, 50%

R

Fe

Ph
H
N

O

Ph

O

3m 4x, 46%

Ph
H
N

O

Ph

O

3n 4y, 49%

aReaction conditions: nitro(hetero)arene (0.5 mmol), olefin (2.5 mmol), (EtO)3SiH (2 mmol, 4 equiv), 4 mol% 
catalyst loading relative to the nitroarene in 0.5 mL of THF at 40 °C for 24 h. Isolated yields were given. 
b60 °C for 8 h.

As shown in Table 1, a series of nitroarenes were subjected to reaction with 

styrene, and the corresponding branched amines were obtained in moderate to good 

yields. Various groups at the para, ortho or meta position on the aromatic ring do not 
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affect this reaction (4a-4g). Notably, nitro-heteroarenes were used to deliver medicinally 

relevant building blocks containing indole (4k) and pyridine (4l) ring systems, the latter 

of which was confirmed by X-ray crystallographic analysis. 

Styrene type alkenes and several aliphatic alkenes are suitable substrates, 

delivering the corresponding amines in moderate to good yields (Table 1). Electron-

donating groups (4o and 4p) at the para-position of the phenyl ring appeared to give 

better yields than electron-withdrawing groups (4m and 4n). Although a cyano group 

might coordinate to the Fe center and deactivate the catalyst, it is compatible with the 

reaction, affording the coupled amine product (4m) in 55% yield. Aliphatic alkenes are 

less reactive, and the conversion of cyclopentene (3h) provided the amine product (4s) 

in 48% yield. Disubstituted alkenes are all suitable substrates, giving diverse amine 

products (4t-4w) in moderate yields. With the substrates (3m-3o) containing both 

aromatic and aliphatic alkene moieties, the CN coupling reaction occurs selectively at 

the aromatic alkene sites. It is interesting that a 1,4-addition product (4aa) was formed 

selectively in 56% yield when conjugated diene 3p was used as the substrate. Overall, 

the present transformation allows the direct amination of aromatic alkenes with 
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nitroarenes to afford branched amines bearing an aryl group in alpha position, which is 

complementary to the previously described iron-catalyzed reductive coupling of 

nitroarenes with aliphatic alkenes.10,11

Catalytic Intramolecular CN coupling. Reductive CN bond coupling can lead to 

derivatives of indole, one of the most important heterocycles in organic chemistry.19 

Previous reactions often required strong reductants such as Grignard reagent20 or 

TiCl321 together with toxic reagents. Therefore, developing efficient catalysts based on 

earth-abundant metals and under mild reaction conditions is highly desirable.22 We 

applied our protocol to the synthesis of indoles by using o‑nitrostyrenes as the starting 

materials (Table 2). The intramolecular reductive CN bond coupling is so efficient that 

even at 0.5 mol% catalyst loading the indole product 6a was produced in 88% yield 

within 6 h at 60 oC. A series of monosubstituted or disubstituted indole derivatives were 

synthesized in good to excellent yields following this simple procedure. 

Table 2. Scope of Intramolecular C−N Bond Couplinga
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1 (0.5 mol%)

THF, 60 C

R1

R3

NO2

R2

R1
N
H

R2

R3
(EtO)3SiH

5 6

N
H

6a, R = H, 88%
6b, R = OMe, 87%
6c, R = F, 73%
6d, R = Br, 86%
6e, R = CF3, 91%

N
H

6q, 66% (6 h)b

Ph

N
H

Ph
R

6f, R = OMe, 91%
6g, R = CF3, 89%

N
H

N
H

6m, 85% (10 h)b

N
H

6l, 90% (5 h)b

N
H

Ph
R

R

6h, R = F, 82%
6i, R = Cl, 58%

N
H

N
H

6o, 94% (5 h)

Me

6p, 91% (5 h)b6n, 93% (8 h)b

N
H

Ph

6j, 81%

Me

N
H

Ph

F
6k, 64%

aReaction conditions: substrates (0.1 mmol), (EtO)3SiH (0.4 mmol), 0.5 mol% catalyst loading relative to 
the substrates in 4 mL of THF at 60 °C for 6 h, and isolated yields were given. b80 °C in 1,2-
dimethoxyethane.

Functional groups such as −OMe, −F, −Br and −CF3 are all tolerated under the 

reaction conditions. Nitro compounds with cyclic-alkenes with six to eight membered 

rings are all suitable substrates, and the fused tricyclic indole derivatives (6l-6n) were 

produced in excellent yields in 1,2-dimethoxyethane at 80 oC. The structure of 6l 

containing a seven membered ring was unambiguously established by single crystal X-

ray diffraction. Acyclic trisubstituted olefins were converted to 2,3-disubstituted indoles 

(6o, 6p) in very good yields. 3-Phenyl indole (6q) was obtained from the corresponding 
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13

alkene in 66% yield. The catalysis is amenable to a reductive NN coupling to access 

an indazole (8)23 from the corresponding aldimine (eq 3).

N
N nBu

N
nBu

NO2

7 8, 82%

1 (0.5 mol%)

(EtO)3SiH
THF, 60 °C

(3)

Mechanistic Insights. Several control experiments were conducted to probe the 

mechanism of the catalysis. When a radical trap, 1,1-diphenylethylene (9),24 was 

subjected to intermolecular CN coupling with PhNO2, the reaction was suppressed by 

productions of 1,1-diphenylethane (10) and aniline (Scheme 3a). Such hydrogenation 

reactions suggest that a stepwise addition of hydrogen radical is involved in the 

catalysis, probably because the diphenyl stabilized radical (Int1a) is not sufficiently 

active for the CN coupling with the nitroso intermediate.
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1(ArNO) (4 mol%)

THF, 40 oC, 24 h 4b, 63%

N
H

Ph
Ph

2b 3a

PhNO2 + Ph (EtO)3SiH (4 eq)

+
TEMPO (4 eq)

11a 11b

PhNO2+
Ph

9

THF, 40 C, 6 h
(EtO)3SiH (4 eq)

Ph

Ph

Ph

10

H

Ph

Ph

Int1a

H

2b 3a

PhNO2 + Ph

b) TEMPO as radical trap

THF, 40 °C, 24 h
(EtO)3SiH (4 eq)

1 (4 mol%)

1 (4 mol%)

PhNH2+

2b

a) 1,1-Diphenylethylene as the alkene substrate

c) Reductive C-N bond coupling catalyzed by iron-nitroso intermediate

N
OH

N
O

Ph

Scheme 3. Control Experiments for Mechanistic Study

That the catalysis proceeds by a radical mechanism was further supported by the 

addition of the radical quencher, 2,2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO), to the 

reductive coupling reaction of 2b and 3a. Judging by GC-MS analysis, the desired CN 

coupling was indeed interrupted. The hydrogen radical and benzyl radical involved in 

the coupling were trapped by TEMPO, forming 11a and 11b, respectively (Scheme 3b). 

In contrast, no reaction was detected in the absence of the catalyst. Particularly, the 

nitroso complex 1(ArNO) is capable of catalyzing the reductive amination reaction. As 

examplified by the reaction of 2b with 3a (Scheme 3c), the reaction provided 4b in 63% 
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yield, comparable to the 69% yield obtained from the reaction using catalyst 1. This 

result is indicative of the intermediacy of 1(ArNO) in the CN bond coupling. 

Ar
H
N

R

(EtO)3SiH

R

(EtO)3SiH
Ar N

R

OSi(EtO)3 (EtO)3SiH

N
OSi(EtO)3

O

[1(ArNO)]

FeIII H
FeIII O

N
Ar R

Int3

Fe(II)

FeII

Int1
O

N
O

Ar

FeII

Ar
N
O1

Ar

N
OH

OSi(EtO)3Ar

- (EtO)3SiOH

ArNO
R b

Int2

d

Stage A Stage B

R
b

ArNO2

(EtO)3SiH
ArNH2

a

Scheme 4. Proposed Mechanism for the Iron-Catalyzed Reductive CN Coupling.

Accordingly, a radical mechanism was proposed for the intermolecular CN bond 

coupling (Scheme 4). Based on the dissociation of the MeCN ligand from 1,14 we 

propose that coordination of nitroarene to the iron(II) center leads to the formation of an 

Fe(II)-substrate adduct (Int1) intermediate. In the absence of (EtO)3SiH, Int 1 undergoes 

deoxygenation reaction to produce 1’ and 1(ArNO) (Scheme 2). By the reaction of 

(EtO)3SiH and Int 1, the Fe(III)-H intermediate25 and an aryl-NO radical (a) are 

generated. Fe(III)-H can react with styrene by donating a hydrogen radical,26 forming an 

alkyl radical (b) with recovery of the catalyst to the Fe(II) state. The Fe(III)-H could also 
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donate a hydrogen radical in the reduction of a nitro group to the nitroso compound (d). 

Recombination of Fe(II) with d leads to the Fe(II)-nitroso intermediate. The benzyl 

radical then attacks 1(ArNO) resulting in the formation of an Fe(III) complex (Int3), and 

this is followed by reaction with (EtO)3SiH to produce the amine product while 

regenerating the Fe(III)-H species.

N
Ph

OH

1, 0.5 mol%
(EtO)3SiH (4 equiv)

THF
60 C, 6 h

N
H

Ph

6a, 80%

(4)

With regard to the intramolecular C−N bond coupling, Driver recently reported a 

Fe(OAc)2/4,7-(MeO)2Phen/PhSiH3 system for reductive cyclization of o-nitrostyrenes 

into indoles.22a They proposed that the catalysis is initiated by the reaction of the iron(II) 

precursor with the silane to generate iron(II)-hydride species, which is responsible for 

the reduction of nitrostyrene to nitrosostyrene. In the present case, we propose that the 

nitrostyrene substrates is directly activated by 1 and subsequently reduced to the 

nitroso intermediate by silane (Stage A). The intermediacy of N-hydroxyindole formed 

by electrocyclization of nitrosostyrene is usually proposed for such intramolecular C−N 
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bond coupling process.21,22 Indeed, 1 is capable of catalyzing the transformation of N-

hydroxyindole to the indole product. For instance, the reaction of N-hydroxy-2-

phenylindole under the catalytic conditions produced 6a in 80% yield (eq 4). In contrast, 

the production of 6a was not observed in the absence of the iron catalyst. 

CONCLUSION

In summary, we have developed an iron(II)-catalyzed reductive coupling of nitro 

compounds with styrenes under mild conditions. The intermolecular CN reductive 

coupling led to diverse branched amines, while an intramolecular transformation 

efficiently afforded a variety of indole derivatives. In the reported cases of iron-catalyzed 

reductive CN couplings, reductive workup with Zn/HCl(aq) is necessary to cleave NO 

bond forming the desired products. In the present case, (EtO)3SiH is the only reducing 

agent, and the catalysis is initiated by activation of nitroarenes by the iron(II) catalyst 

with silane. The resultant iron-nitrosoarene intermediate is essential to promote the CN 

coupling and a one-pot synthesis of (hetero)aromatic amines. This reaction offered a 
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promising platform for the use of earth-abundant metals for these important radical-type 

homogeneous transformations.27
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catalysis is initiated by activation of nitroarenes, generating the iron-nitroso intermediate 

for the reductive CN bond coupling.
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