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ABSTRACT

The ortho metalation (RLi/THF/ −93 °C) of 3 followed by quench with a variety of electrophiles constitutes a new general route to substituted
aryl O-sulfamates 4a −k. The Kumada −Corriu cross-coupling of O-sulfamates 4e, 4n −s, and 6a with Grignard reagents gives biaryls 9a −m, and
the use of 2-halo and boron derivatives 4h, 4i, and 4k for Suzuki −Miyaura cross-coupling and generation of benzynes leads to naphthols 7a
and 7b. A relative metalation ranking of the OSONEt 2 is reported.

The conjunction of the directed ortho metalation (DoM)
strategy (Figure 1,1)1,2 with various transition metal-
catalyzed cross-coupling regimens3 has established a foun-

tainhead of reliable methodology for the regioselective
construction of biaryls in a multitude of aryl-aryl and aryl-
heteroaryl bond-forming combinations.4 In the context of the
subsequent manipulation of directed metalation groups
(DMGs), always an important part of synthetic planning, the
powerfulO-carbamate DMG5 and, recently, the sulfonamide

(1) Snieckus, V.Chem. ReV. 1990, 90, 879.
(2) Hartung, C. G.; Snieckus, V. InModern Arene Chemistry; Astruc,

D., Ed.; Wiley-VCH: Weinheim, Germany, 2002; p 330.
(3) For recent comprehensive reviews, see the dedicated special issue:

Tamao, K.; Hiyama, T.; Negishi, E.-i. (Eds.)J. Organomet. Chem. 2002,
653. Diederich, F., Stang, P. J., Eds.Metal-catalyzed Cross-coupling
Reactions; Wiley-VCH: Weinheim, 1998. Stille coupling: Beletskaya, I.
P. J. Organomet. Chem. 1983, 250, 551. Espinet, P.; Echavarren, A. M.
Angew. Chem., Int. Ed.2004, 43, 4704. Negishi coupling: King, A. O.;
Negishi, E.-i.; Villani, F. J.; Silveira, A.J. Org. Chem. 1978, 43, 358.
Klement, I.; Rottlander, M.; Tucker, C. E.; Majid, T. N.; Knochel, P.;
Venegas, P.; Cahiez, G.Tetrahedron1996, 52, 7201. Hiyama coupling:
Hatanaka, Y.; Hiyama, T.Synlett1991, 845. Denmark, S. E.; Sweis, T. F.
Acc. Chem. Res. 2002, 35, 835. Suzuki-Miyaura coupling: Miyaura, N.;
Suzuki, A.J. Chem. Soc., Chem. Commun. 1979, 867. Walker, S. D.; Barder,
T. E.; Martinelli, J. R.; Buchwald, S. L.Angew. Chem., Int. Ed.2004, 43,
1871. Corriu-Kumada-Tamao coupling: Tamao, K.; Sumitani, K.; Ku-
mada, M.J. Am. Chem. Soc. 1972, 94, 4374. Corriu, R. J. P.; Masse, J. P.
J. Chem. Soc., Chem. Commun. 1972, 144. For a recent copper-catalyzed

coupling of siloxanes, see: Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li,
R.; He, M. Y.; DeShong, P.; Clark, C. G.J. Am. Chem. Soc. 2000, 122,
7600. Copper-catalyzed coupling of boronic acids: Lam, P. Y. S.; Bonne,
D.; Vincent, G.; Clark, C. G.; Combs, A. P.Tetrahedron Lett. 2003, 44,
691 and refs cited therein. Iron-catalyzed coupling: Fu¨rstner, A.; Martin,
R. Angew. Chem., Int. Ed. 2004, 43, 3955 and references cited therein.

(4) Anctil, E. J. G.; Snieckus, V.J. Organomet. Chem.2002, 653, 150.
Anctil, E. J. G.; Snieckus, V. InMetal-Catalyzed Cross-Coupling Reactions,
2nd ed.; Diederich, F., de Meijere, A., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; p 761.

(5) Sengupta, S.; Leite, M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V.
J. Org. Chem.1992, 57, 4066. A useful element of theO-carbamate is its
proclivity for anionic ortho Fries rearrangement exposing a phenol that,
upon triflation and Ni-catalyzed hydride reduction, also achieves its removal
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DMG6 have shown the additional features of latency and
cross-coupling capability (2), hence enhancing the synthetic
utility especially in the context of synthesis of meta-
substituted aromatics. Herein we report preliminary results
that demonstrate that theO-sulfamate (3),7 derived by the
union of OCONR2

8b and SO2NR2
8d groups, is a new DMG

and cross-coupling partner in the Kumada-Corriu reaction
and that the 2-halo and boron derivatives4h, 4i, and 4k
undergo Suzuki-Miyaura cross-coupling and provide a new
entry to the benzyne species. In sum, the reported work
provides new methods of general utility in synthetic aromatic
chemistry.

At the outset, the similarity of theO-sulfamate to OTs,9

OMs,10 and especially OTf11 groups raised concerns that it
would suffer, perhaps with similar propensity, ortho anion-
induced benzyne formation,12 an apprehension that was
verified at the-78°C temperatures commonly used for DoM

chemistry. However, at-93 °C (internal temperature by
thermocouple measurement), the simply prepared13 prototype
O-sulfamate3 underwent smooth ortho metalation to the
intermediate lithiated species, which, upon quench with a
variety of electrophiles, provided products4 in modest to
excellent yields (Table 1).14 Thus, introduction of standard

(entries 1 and 3) and DMG (entry 2) carbon, sulfur (entry
4), silicon (entry 5), and nitrogen (entry 6) electrophiles
proceeds unexceptionally; furthermore, halogen (entries
7-9), tin (entry 10), and boron (entry 11) electrophiles may
be introduced, thus inviting a study of cross-coupling
chemistry. In the event, the 2-iodoO-sulfamate4i and, in
one case, the corresponding bromo derivative4h (entry 7),
when subjected to standard Suzuki-Miyaura cross-coupling
conditions with a selection of arylboronic acids5, afforded

with retention of a new amide DMG for further DoM chemistry; see: Cai,
X.; Brown, S.; Hodson, P.; Snieckus, V.Can. J. Chem.2004, 82, 195 and
refs cited therein. For the power and versatility of theO-carbamate DMG
in synthesis, see: Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P.
Angew. Chem., Int. Ed.2004, 43, 2206.

(6) Milburn, R. R.; Snieckus, V.Angew. Chem., Int. Ed.2004, 43, 892.
Milburn, R. R.; Snieckus, V.Angew. Chem., Int. Ed.2004, 43, 888.

(7) Review: Benson, G. A.; Spillane, W. J. InThe Chemistry of Sulphonic
Acids, Esters, and their DeriVatiVes; Patai, S., Rappoport, Z., Eds.; Wiley:
New York, 1991; p 987 ff.O-Sulfamates are of interest in medicinal
chemistry; see: Spillane, W. J.; McGrath, P.; Brack, C.; O’Byrne, A. B.J.
Org. Chem.2001, 66, 6313 and refs cited therein. For use ofO-sulfamates
in Ru-catalyzed C-H-activated processes, see: Wehn, P. M.; Lee, J.; Du
Bois, J. Org. Lett. 2003, 5, 4823 and refs cited therein. For thia-Fries
rearrangement ofO-sulfamates, see: Benson, G. A.; Maughan, P. J.; Shelly,
D. P.; Spillane, W. J.Tetrahedron Lett.2001, 42, 8729 and refs cited therein.

(8) (a) Metallinos, C.; Nerdinger, S.; Snieckus, V.Org. Lett. 1999, 1,
1183. (b) Sibi, M. P.; Snieckus, V.J. Org. Chem.1983, 48, 1935. (c) Gray,
M.; Chapell, B. J.; Felding, J.; Taylor, N. J.; Snieckus, V.Synlett1998,
422. (d) MacNeil, S. L.; Familoni, O. B.; Snieckus, V.J. Org. Chem.2001,
66, 3662 and refs cited therein.

(9) DoM chemistry of this function has, to the best of our knowledge,
not been achieved. For cross-coupling chemistry, see: Tang, Z.-Y.; Hu,
Q.-S.J. Am. Chem. Soc.2004, 126, 3058 (Suzuki-Miyaura). Roy, A. H.;
Hartwig, J. F.J. Am. Chem. Soc.2003, 125, 8704 (Kumada-Corriu).

(10) For Suzuki-Miyaura cross-coupling, see: Percec, V.; Golding, G.
M.; Smidrkal, J.; Weichold, O.J. Org. Chem.2004, 69, 3447.

(11) For Negishi coupling, see: Quesnelle, C. A.; Familoni, O. B.;
Snieckus, V.Synlett1994, 349.

(12) Benzyne generation may be achieved by elimination from 1,2-
dihalides; see: Wittig, G.; Benz, E.Chem. Ber.1959, 92, 1999. Franzen,
V.; Joschek, H. I.; Mertz, C.J. Liebigs Ann. Chem.1962, 654, 82. Seyferth,
D.; Menzel, H. H. A.J. Org. Chem.1965, 30, 649. Brewer, J. P. N.; Heaney,
H. Tetrahedron Lett.1965, 4709. By DMG-induced deprotonation-halide
elimination, see: Pansegrau, P. D.; Rieker, W. F.; Meyers, A. I.J. Am.
Chem. Soc.1988, 110, 7178. Clark, R. D.; Caroon, J. M.J. Org. Chem.
1982, 47, 2804. By fluoride-mediated elimination fromortho-TMS aryl
halides and triflates, see: Himeshima, Y.; Sonoda, T.; Kobayashi, H.Chem.
Lett.1983, 1211. Tsukazaki, M.; Snieckus, V.Heterocycles1992, 33, 533.
Hamura, T.; Hosoya, T.; Yamaguchi, H.; Kuriyama, Y.; Tanabe, M.;
Miyamoto, M.; Yasui, Y.; Matsumoto, T.; Suzuki, K.HelV. Chim. Acta
2002, 85, 3589.

(13) Gupta, S. K.Synthesis1977, 39.
(14) In an attempt to trap the thermodynamically generated anion,

treatment of3 under Martin conditions (1g: LiTMP/TMSCl ) 1:2.1:10)
(Krizan, T. D.; Martin, J. C.J. Am. Chem. Soc.1983, 105, 6155) led to
SM (35%),4e(41%), and 2,2,6,6-tetramethyl-1-(2-(trimethylsilyl)phenyl)-
piperidine (19%) by GC analysis.

Figure 1.

Table 1. Metalation and Electrophile Quench of Phenyl
O-Sulfamate3a

a Typical procedure: (1) 1.1 equiv ofs-BuLi/TMEDA/THF/-93 °C/45
min/0.2-0.5 M; (2) E+/-93 °C to room temperature.
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products6 in excellent yields (Table 2). One inverted partner
combination was tested (entry 8) to demonstrate that
comparable yields may be obtained from reactions of either
combination of cross-coupling partners.

Reaction block experiments defined conditions for benzyne
trapping of4h using furan as the diene to give 7-oxaben-
zonorbornadiene, which was converted to7a in 21% yield
(Scheme 1). Subjection of theortho-bromoO-sulfamates4l
and 4m to metal-halogen exchange at-10 °C in the
presence of furan followed by catalytic HCl treatment
afforded naphthols7a (concurrent protodesilylation) and7b
in 50 and 31% yields, respectively. Improvement of yields
was achieved by adapting the Knochel protocol for Grignard
generation15 on4i, which, after furan trap and acid hydrolysis,
furnished7a in 70% yield.16

Encouraged by the results ofO-carbamate5 and related
phenol-derived cross-coupling partners,9-11 we screened a
number of nickel catalysts17 on 3 using p-tolylmagnesium

bromide as a standard Grignard partner (Table 3). While
using nonliganded (entries 1 and 2) and phosphine mono-
(entry 3) and bidentate (entry 4) Ni catalysis already provided
reasonable yields of product8, use of Cp-containing catalysts
(entries 5-9) showed considerable enhancement in yields,
with the air-stable, conveniently handled NiClCpIMes per-
forming as a superb catalyst at low loading in ether at room
temperature to afford8 in quantitative yield.18

Using this optimized set of conditions, cross-coupling
reactions of selected arylO-sulfamate-aryl Grignard reagent

(15) Sapountzis, I.; Lin, W.; Fischer, M.; Knochel, P.Angew. Chem.,
Int. Ed. 2004, 43, 4364.

(16) Generalization of this result is being pursued.
(17) Pd(PPh3)4, (IPr)Pd(allyl)Cl (Navarro, O.; Kaur, H.; Mahjoor, P.;

Nolan, S. P.J. Org. Chem.2004, 69, 3173), and Fe(acac)3 (Fürstner, A.;
Leitner, A.; Menendez, M. M.; Krause, H.J. Am. Chem. Soc. 2002, 124,
13856) catalysis was ineffective and led to recovery of starting material.

(18) High activity of NiClCpIMes may be attributed to the presence of
a low-valent electron-rich metal center owing to a strongly Lewis basic,
electron σ-donating carbene ligand whose steric nature accelerates the
reductive elimination step, see: Bohm, V. P. W.; Gstottmayr, C. W. K.;
Weskamp, T.; Herrmann, W. A.Angew. Chem., Int. Ed.2001, 40, 3387.
Huang, J.; Nolan, S. P.J. Am. Chem. Soc.1999, 121, 9889.

Table 2. Suzuki-Miyaura Cross-Coupling 2-Bromo-, 2-Iodo-,
and 2-PinacolboronateO-Phenylsulfamate4h, 4i, and4ka

a Typical procedure: 1 equiv of ArX/5 mol % Pd(PPh3)4/DME/2 M Na2-
CO3/80 °C/16 h.b Performed with 2 equiv of ArX/10 mol % Pd(PPh3)4/40
h.

Scheme 1

a Knochel protocol: (1) 1.1 equiv ofi-PrMgCl/Et2O/-78 °C/30
min; (2) 10 equiv of furan/-78°C to rt; (3) cat. HCl/MeOH/reflux/3
h.

Table 3. Optimization of Conditions for the Ni-Catalyzed
PhenylO-Sulfamate3-p-Tolyl Grignard Cross-Coupling
Reaction

entry catalyst/ligand solvent temp (°C) yield (%)a

1 Ni(acac)2 PhMe 120 29
2 NiCl2 PhMe 120 72
3 NiCl2/P(t-Bu)3 PhMe 120 63
4 NiCl2/dppf PhMe 120 74
5 NiClCpPPh3 Et2O 40 83
6 NiClCpPPh3 PhMe 120 91
7 NiClCplMes THF 40 83
8 NiClCplMes PhMe 40 85
9 NiClCplMes Et2O 40 >99

a Determined by GC (undecane as internal standard).
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combinations were carried out to afford biaryl products
9a-m in synthetically useful yields (Table 4). Aside from

simple biaryls (entries 1, 3, and 5-8) and a tertaryl
(completing a metal-tuned coupling sequence, entry 2),
N-protected anilines (entries 3 and 4) and azabiaryls (entries
9-12) were unexceptionally obtained.19,20 To obtain pre-
liminary evidence for the hierarchal position of theO-
sulfamate vis-a´-vis other DMGs,2 inter- and intramolecular
competition experiments were carried out (Figure 2). Thus,

treatment of 4-CONEt2 phenyl O-sulfamate (4t) under the
standard conditions for 10 min followed by CD3OD quench
led to the formation of10aand10b in a 17:1 ratio based on
d1-NMR. Using the same experimental protocol, a 1:1
mixture ofN,N-diethyl phenylO-carbamate and3 afforded
deuterated11 and12 in a 23:1 ratio. Thus, theO-sulfamate
is a relatively poor DMG compared to the tertiary amide
and the tertiaryO-carbamate, which are near the top of the
qualitatively assessed ranking list.2

In conclusion, we have shown that theO-sulfamate is a
new, albeit moderate strength, DMG.ortho-Halo and boron
products4h, 4i, and4k participate in Suzuki-Miyaura cross-
coupling, and, perhaps more significantly, theO-sulfamates
themselves undergo Kumada-Corriu coupling, both reac-
tions leading to functionalized and potentially bioactive
biaryls (Tables 2 and 4). The new reactions extend DoM
concepts and protocols for application in synthetic endeavors.
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(19) Attempts to de-O-sulfamoylate4n in a manner analogous to that
used for arylsulfonamides6 led only to the formation ofp-isopropylanisole
in low yield.

(20) To demonstrate a further DoM-cross-coupling link of potential
synthetic utility, the prototype phenylO-sulfamate3 was subjected to cross-
coupling withp-tolylboronic acid under Suzuki conditions to afford8 albeit
in modest 64% yields (GC) using 20 mol % Ni(acac)2/dppp and 2 equiv of
p-TolylB(OH)2/K3PO4 in PhMe at 90°C for 24 h.

Table 4. Ni-Catalyzed Aryl Cross-Coupling of Aryl
O-Sulfamates with Aryl Grignard Reagentsa

a Typical procedure: 1.2-2.5 equiv of Ar′MgBr/1-2.5 mol %
NiClCpIMes/Et2O/0-40 °C/0.1-19 h. b Deprotection/acylation: 10 equiv
of hydroxylamine HCl/2 equiv of NEt2/2:1 EtOH-H2O/90 °C/24 h, then
1.2 equiv of acetic anhydride/2 equiv of NEt3/CH2Cl2/rt/1 h.

Figure 2. Ratios of D-incorporation products from intra- and
intermolecular DoM competition experiments.
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