Dehalogenation of α -Halo Carbonyl Compounds by a New Efficient Reagent, Triphenylphosphonium Iodide

Naoshi KAMIYA, Hiroshi TANMATU, and Yasutaka ISHII*

Department of Applied Chemistry, Kansai University, Suita, Osaka 564

Triphenylphosphonium iodide, Ph3PHI, was found to be an efficient reagent for the dehalogenation of $\alpha-halo$ carbonyl compounds. $\alpha-Halo$ esters, which were difficult to be reduced with Me3SiCl/NaI reagent, was smoothly debrominated by Ph3PHI. Treatment of $\alpha-halocarbonyl$ compounds with Ph3PDI produced the corresponding $\alpha-deuterated$ compounds.

Dehalogenation of α -halo carbonyl compounds has long been recognized as a useful synthetic transformation. Therefore a number of methods have been developed for this purpose. Hydrogen iodide equivalents derived from sodium iodide and sulfuric acid^2 or phosphoric acid^3 and iodotrimethylsilane have been shown to be efficient reagents for the dehalogenation of α -halo carbonyl compounds. Previously, we have reported that chlorotrimethylsilane/sodium iodide/water (Me₃SiCl/Nal/H₂O) reagent in acetonitrile provides a convenient method for *in situ* generation of hydrogen iodide (HI) under mild conditions in short time, and that the HI thus generated can be used in a variety of synthetic reactions.

In this paper, we wish to report the dehalogenation of α -halo carbonyl compounds by a efficient reagent, Ph₃PHI,⁷) which was easily obtained from Ph₃P and HI generated from Me₃SiCl/Nal/H₂O in CH₃CN at room temperature.⁸)

A typical reaction was carried out as follows. To a solution of α -bromo-acetophenone (1.0 g, 5 mmol) in CH₃CN (10 ml) was added Ph₃PHI (2.34 g, 6 mmol). The solution was stirred at room temperature for 3 h. The reaction was quenched with water (10 ml), and the product was extracted with ether (10 ml X 3). The ether solution was washed with 10% Na₂S₂O₃ (20 ml), and dried over MgSO₄. Column chromatography on silica gel with hexane eluent afforded acetophenone in 85% yield.

Table 1 shows the dehalogenation of a variety of α -halo carbonyl compounds with Ph₃PHI reagent.

Table 1. Dehalogenation of α -Halo Carbonyl Compounds with Ph₃PHI ^{a)}

Run	Substrate		Time / h	Temp / °C	Pro	duct	Yield / % b)
1	1	O PhCCH ₂ Br	3	r.t.	2 Ph	O CCH ₃	85
2	3	O II PhCCH ₂ CI	4	r.t.	2		83
3	4	O CH ₃ CHClCCH ₃	5	r.t.	5 CH ₃ 0	O CH ₂ CCH ₃	60
4		4	24	r.t.	5		89
5		4	3	rf.	5		87
6	6	OBr	4	r.t.	7		80
7	8	CI	5	rf.	7		72
8	9	O U CH ₃ CHBrCOC ₂ H ₅	3	r.t.	10 CH ₃	O ₃ CH ₂ COC ₂ H ₅	80
9	1 1	O CH ₃ CHClCOC ₂ H ₅	6	rf.	10)	78
10	12	o Br	6	r.t.	13 C		82

a) Substrate (5 mmol) was allowed to react with Ph₃PHI (6 mmol) in acetonitrile.

2-Bromo- and 2-chloroacetophenones were dehalogenated at room temperature to give acetophenone in good yields. 3-Chloro-2-butanone was difficult to be reduced at room temperature with short time reaction, but after 24 h 2-butanone was obtained in 89% yield. The same reaction under refluxing gave 2-butanone in good yield. Similar results were also observed in the reaction of α -halocycloalkanones and α -halo esters, *i.e.*, bromo compounds were easily reduced at room temperature, but for chloro derivatives the temperature must be raised to refluxing temperature of CH₃CN (ca. 80 °C).

b) Based on the substrate used.

It is of interest to note that Ph₃PDI was easily prepared from the reaction of DI, derived from Me₃SiCI/NaI and D₂O, ^{6d)} and PPh₃. The reaction of 2-bromoacetophenone with Ph₃PDI gave acetophenone-2-d whose ¹H-NMR showed that the deuterium was incorporated more than 96%.

PhCCH₂Br
$$\begin{array}{c} Ph_3PDI \\ \hline CH_3CN, r.t., 3 h \\ \hline \end{array} \begin{array}{c} O \\ II \\ PhCCH_2D \\ \hline 86 \% \\ \hline \end{array}$$
 (deuterium content > 96%)

Table 2 shows the dehalogenation of ethyl 2-bromopropionate (9) to ethyl propionate (10) by several hydrogen iodide equivalents.

Table 2. Dehalogenation of α-Halo Carbonyl Compounds with Several Reagents ^{a)}

			•					
Run	Substrate	Reagent	Time/ h	Temp / °C	7	F	Product	Yield / % b)
1	9	Ph ₃ PHI	3	r.t.			10	80
2	9	Me ₃ SiCl / NaI / H ₂ O - Ph ₃ P	3	r.t.			10	83
3	9	$Me_3SiCl / NaI / H_2O(=HI)$	6	r.t.			10	17
4	9	Me ₃ SiCl / NaI	3	r.t.	$\left\{ \right.$	14	$\begin{array}{c} \textbf{10} \\ \begin{matrix} O \\ \end{matrix} \\ \textbf{CH}_{3}\textbf{CHICOC}_{2}\textbf{H}_{5} \end{array}$	4 65
5	9	Me ₃ SiCl / NaI / H ₂ O - Et ₃ N	6	r.t.			14	69
6	9	Ph ₃ PDI	3	r.t.		15	O CH ₃ CHDCOC ₂ H ₅	88
7	8	Ph ₃ PDI	6	rf.		16	D	72

a) Substrate (5 mmol) was allowed to react with several reagents (6 mmol) in acetonitrile.

The dehalogenation was found to be carried out without isolation of Ph₃PHI. To an acetonitrile solution of HI generated from Me₃SiCI/NaI/H₂O system was added PPh₃, and the mixture was stirred for 3h at room temperature. The Ph₃PHI thus generated in situ was allowed to react with 9 to give 10 in almost the same yield as that of the debromination of 9 with the isolated Ph₃PHI. However, 9 was difficult to be reduced by treating with Me₃SiCI/NaI/H₂O reagent (HI), and most of 9 was recovered unchanged. On the other hand, treatment of 9 with Me₃SiCI/NaI reagent induced the substitution reaction rather than the debromination, forming ethyl 2-iodopropionate (14) with a small amount of debrominated product 10 (4%), although

b) Based on the substrate used.

Me₃SiCl/Nal system was an efficient reagent for the dehaloganation of 2-haloalkanones and 2-halocycloalkanones.⁴⁾ In the similar manner as Me₃SiCl/Nal reagent, triethylammonium iodide (Et₃NHI), generated *in situ* from Me₃SiCl/Nal/H₂O-Et₃N system, promoted also the substitution of 9 to 14. The reactivity of Ph₃PHI and Et₃NHI toward 9 may reflect the difference between phosphorus atom having vacant d-orbital and nitrogen atom lacking d-orbital, *i.e.*, phosphonium salt is capable to coordinate to the carbonyl oxygen by taking five coordination sites, but not ammonium salt does.

The reaction of 9 and 8 with Ph₃PDI afforded the corresponding deuterated compounds, 15 and 16, in good yields.

References

- I.Pri-Ban and O. Buchman, J. Org. Chem., 51, 734 (1986); G. A. Molander and G. Hahn, ibid., 51, 1135 (1986); T. Oriyama and T. Mukaiyama, Chem. Lett., 1984, 2069; A. Osuka and H. Suzuki, ibid., 1983, 119; S. K. Chung and Q. Y. Hu, Synth. Commun., 12, 261 (1982); D. Savoia, E. Tagliavini, C. Trombini, and A. U. Roachi, J. Org. Chem., 47, 876 (1982); D. L. J. Clive and P. L. Beaulieu, ibid., 47,1124 (1982); J. N. Dennis and A. Krief, Tetrahedron Lett., 22, 1431 (1981); T. H. Luh, C. H. Lai and S. W. Tam, J. Org. Chem., 44, 641 (1979); H. Alper and L. Petene, ibid., 44, 2568 (1979); G. Cainelli, F. Manescalchi A. U.Rondii, and M. Panunzio, ibid., 43, 1598 (1978).
- 2) A. L. Gamal and J. L. Luche, Tetrahedron Lett., 21, 3195 (1980).
- 3) A. K. Mandal and A. K. Nijasure, Synlett, 1990, 554.
- 4) T. L. Ho, Synth. Commun., 11, 101 (1981); G. A. Olah, A. Arranghi, and Y. Vanker, J. Org. Chem., 45, 3531 (1981); G. A. Olah, Y. Vanker, and A. P. Fang, Synthesis, 1979, 59; T. L. Ho, Synth. Commun., 9, 241 (1979).
- 5) Conventionally, HI was prepared by the use of excess KI and orthophosphoric acid at higher temperature (80 °C): H. Stone and H. Schecher, Org. Synth., Coll. Vol. IV, 543 (1963).
- 6) a) N. Kamiya, Y. Chikami, and Y.Ishii, *Synlett*, **1990**, 675; b) T.Kanai, Y. Kanagawa, Y. Ishii, and M. Ogawa, *J. Org. Chem.*, **55**, 3274 (1990); c) S. Irifune, T. kibayashi, Y. Ishii, and M. Ogawa, *Synthesis*, **1988**, 366; d) T. Kanai, Y. kanagawa, Y. Ishii, and M. Ogawa, *ibid.*, **1989**, 283.
- 7) E. Sonnet, Synthesis, 1980, 828.
- 8) Ph₃PHI was easily prepared as follows: To a solution of NaI (1.8 g, 12 mmol) and Me_3SiCI (1.54 ml, 12 mmol) in CH_3CN (20 ml) was added H_2O (0.1 ml, 6 mmol). After evaporation of CH_3CN under reduced pressure, the resulting product was dissolved in $CHCI_3$ to remove impurities such as NaCl. After filtration, the solution was concentrated to form a white solid. Washing with ether followed by drying *in vacuo* gave Ph₃PHI (4.42 g, 94%): m p 169-170 °C.

(Received November 15, 1991)