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ABSTRACT: Cost-effective and efficient photocatalysis are 
highly desirable in chemical synthesis. Here we demonstrate that 
readily prepared suspensions of APbBr3 (A = Cs or 
methylammonium (MA)) type perovskite colloids (ca. 2-100 nm) 
can selectively photocatalyze carbon-carbon bond formation 
reactions, i.e. -alkylations. Specifically, we demonstrate α-
alkylation of aldehydes with a turnover number (TON) of over 
52,000 under visible light illumination. Hybrid organic/inorganic 
perovskites are revolutionizing photovoltaic research and are now 
impacting other research fields, but their exploration in organic 
synthesis is rare. Our low-cost, easy-to-process, highly-efficient 
and bandedge-tunable perovskite photocatalyst is expected to 
bring new insights in chemical synthesis.

Carbon-carbon (C-C) bond formation is one of the most 
fundamental transformations in organic synthesis. Nature is 
capable of storing solar energy in chemical bonds via 
photosynthesis. The photoconversion process, involves a series of 
C-C bond forming photoredox catalytic reactions starting from 
CO2 and light.1,2 Tremendous advances in artificial photoredox C-
C bond formations have been made, including the development of 
robust and reliable protocols to merge photoredox catalysis with 
organocatalysis.3-5 A fundamental aim is the development of new 
modes of small molecule activation via cheap, effective and easy-
to-process catalytic systems. Many protocols, including Ru/Ir-
based complexes,3-6 organic dyes,7 semiconductors QDs 8,9 etc., 
can be employed under mild reaction conditions and have broad 
substrate scope. However, typically these systems either need 
noble metals or require complicated synthetic protocols, both of 
which are not desirable.

The recent renaissance in ABX3 hybrid perovskite semiconductors 
has revolutionized photovoltaics, enabling solution-processable 
solar cells that have now reached 23.3% power conversion 
efficiency.10-13 In addition to the exceptional photovoltaic 
performance, hybrid perovskite systems have also demonstrated 
breakthroughs in piezoelectrics,14 high-gain photodetectors,15 
light-emitting diodes,16 lasers 17 and transistors.18 The excellent 
photovoltaic and optoelectronic performance is attributed to 
beneficial opto-electronic properties, such as, strong light 
absorption,19 long charge-carrier lifetimes20,21 and long charge-
carrier diffusion lengths.22,23 Our previous work also reported low 
trap densities and small surface recombination velocities, leading 
to a noticeable enhancement of the photo-generated carrier 
lifetime and mobility.19,24,25 Thus, given the beneficial properties 

for photovoltaic applications, they also should be of interest in 
photocatalytic applications.26,27

Here we report a cost-effective, highly-efficient and easy-to-
process photocatalytic system centering on ABX3 Pb-halide 
perovskite nanocrystals (NCs) for direct C-C bond formation 
reactions. To demonstrate their photocatalytic characteristics, we 
explore a model reaction, -alkylation of aldehydes, a widely 
employed valuable chemical transformation. Particularly, we 
demonstrate that APbBr3 NCs can directly photocatalyze the -
alkylation reaction with high yield and without N2-sparging. By 
slight modification of the reaction conditions, we show that our 
photocatalytic system can selectively catalyze other important 
chemical reactions, such as, sp3 C-couplings and alkyl-halide 
reductions. The perovskite photocatalyst studied here are a 
versatile material system easily prepared from earth-abundant 
elements and low-cost starting materials.10 The as-prepared NCs 
are not only stable in common organic solvents (Fig. S1-5), but 
also are effective in photocatalysis with a TON of over 52,000 for 
-alkylation, three orders of magnitude higher than precious Ir or 
Ru catalysts. As a result, the perovskite photocatalyst are much 
more economical than Ir/Ru (2-order cost lower, Table S1), 
rendering them as new promising candidates for broad application 
in organic synthesis.

The exploration of the perovskites’ photocatalytic characteristics 
for organic synthesis was inspired by a simple one-pot reaction 
(Fig. 1a). After mixing of the readily available starting materials 
in an open vial, a one-pot perovskite emissive suspension was 
formed due to the solvents’ emulsion/de-emulsion effect.28 To the 
resulting suspension organic substrates 2-bromoacetophenone 1a, 
and octanal 2a are added at room temperature. Upon blue-LED 
illumination, several products are generated, including 
dehalogenated acetophenone 3a (yield 76%), sp3 C-coupling 
product 4a (8%), and α-alkylation product 5a (7%). Next, we 
explore the photocatalytic selectivity towards the desired product.

Gram scale colloids of APbBr3 are readily prepared and are 
further isolated via centrifugation. We obtained perovskite 
colloids with sizes ranging from 2 ~100 nm (Fig. 1b and S2). 
Perovskites’ photoluminescence (PL) is shown in a variety of 
solvents (Fig. 1c and S3a). The PL lifetimes in various solvents 
are recorded from ~10 to ~100 ns which are long-lived enough to 
induce charge transfer in these catalytic systems according to 
Nicewize.8 (Fig. 1d and S3b) The lifetimes do not exhibit single 
exponential decay times likely resulting from a broad size 
distribution.28 Overall, these NCs’ are significantly larger than the 
reported Bohr radius of APbBr3, and thus their optical properties 
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resemble that of their thin film versions.29,30 The colloids display a 
major absorption peak at 500 nm and PL at 513 nm in hexane, 
indicating a band gap energy of 2.4 eV matching well with bulk 
APbBr3. X-ray diffraction (Fig. 1e) confirmed the perovskite 
structure.10,11 

Figure 1. (a) The one-pot reaction demonstration; (b) TEM of 
CsPbBr3; (c) Absorption and PL spectra of CsPbBr3 in different 
solvents. Inset: under ambient light (left) and 365 nm UV light 
(right); (d) PL lifetimes of CsPbBr3 in various solvents; (e) PXRD 
of CsPbBr3 and MAPbBr3, * indicated PbBr2 peaks.

Selectivity. A high yield of 3a, 4a and 5a can be selectively 
obtained under simple alterations of the reaction conditions. 
Apparently, 5a is of more synthetic significance towards C-C 
formations. Starting with 1a and 2a, in the presence of CsPbBr3 
NCs, dicyclohexylamine and 2,6-lutidine without N2-sparging, the 
reaction vessel is illuminated with an LED and produces 5a in 
75% yield in DCM (Table 1, entry 1). Importantly, freshly 
prepared solvents, removing water and stabilizer, suppresses 
dehalogenation but encourages 5a formation (entries 2-7).31 
Furthermore, using N,N-diisopropyl-ethylamine (DIPEA) (entries 
8-9), produces 3a in a yield of 95%, demonstrating a highly 
selective alkyl-halide reduction. When the amine is replaced with 
6, (5S)-(−)-2,2,3-trimethyl-5-benzyl-4-imidazolidinone, an 
expensive co-catalyst commonly used in photoredox catalysis,3 

surprisingly, the sp3-C coupling product 4a is obtained in 80% 
yield (entry 16). Hence, under slight changes in reaction 
conditions, we can selectively produce 3a, 4a or 5a. Next, we 
screened various amines as co-catalyst (entry 10-18). Primary 
amines result in no alkylation products. (entries 14-15) Our results 
corroborate previous findings that secondary ammonium salts are 
superior to their respective amines for -alkylation.32 Overall, 
bis(2-chloroethyl)amine hydrochloride, provides the highest 
selectivity and yield, up to 96% for 5a, (entry 10) with substrate 
ratio (1a/2a) 1/2 (ratio exploration details in Table S2). Anaerobic 
conditions are not required for 5a formation. (entries 10-11; 17-
18) As expected, the control experiments revealed no product in 
the absence of perovskite, light, co-catalyst, or base. (entries 19-
22).

Table 1. Optimization of reaction condition for α-alkylation of 
aldehydes.a

Br
O OBlue LED

Perovskite Photocatalyst
base, co-catalyst

solvent, R.T.

+

O

+ +

O

O

5a

Hex

O

H

4a 3a

H

2a1a

H
Hex

O

a.Conditions: 1a (0.5 mmol), 2a (1.0 mmol), CsPbBr3 (1.0 mg), 
Co-catalyst (20 mol%), 2,6-lutidine (1.0 mmol) and solvent (1 
mL) under 455 nm LED illumination at R.T. (Note: no N2 
sparging); b.Yield determined by 1H NMR; c.molecule sieves pre-
dried solvent; d.freshly distilled THF; e.freshly distilled THF 
adding 1% water; f.DIPEA instead of 2,6-lutidine as base; g.with 
N2-sparging; h.MAPbBr3 instead of CsPbBr3; i.without light; 
j.without CsPbBr3; k.without base.

Stability and TON. One of major obstacles concerning the 
application of Pb-halide perovskites is their instability, 
particularly towards moisture.33,34 The situation is quite distinct if 
Pb-halide perovskites are applied to organic synthesis. We find a 
surprisingly strong stability of CsPbBr3 in organic solvents 
indicated by observing the PL spectrum of CsPbBr3 in different 
organic solvents for several weeks (MAPbBr3 is less stable, Fig. 
S5). The good stability is also corroborated by a large TON. The 
CsPbBr3 remain emissive after a typical reaction (Fig. S6) 
indicating they likely remain catalytically active. The colloids are 
isolated from the previous reaction mixture via centrifuging and 
then re-used for a new reaction without any treatment under 
identical conditions. The photocatalyst remains active for at least 
four cycles (Fig. S7) suggesting a lower limit of the TON to be at 
least 52,000 (SI and Table S1). A large aliquot of water will 
deactivate and completely dissolve the perovskites, rendering a 
desired opportunity to easily separate the photocatalyst from 
organic products. Note that the separation of photocatalyst from 
photoredox reactions remains an issue using Ru/Ir or organic 
dyes.35

Mechanism. A proposed mechanism for these observations is 
outlined in Fig. 2a. Photoexcited electrons reduce 1 to form a 
radical 7, which is a key step for all three products. In path I and 
II, 7 either extracts a hydrogen atom from a sacrificial donor (i.e. 
DIPEA) forming 3 or when a sacrificial donor is not present, self-
couples producing 4. Regeneration of the perovskite catalysts can 
be achieved via oxidation of the sacrificial donor in I or oxidation 
of an aldehyde in II. We also speculate that oxidative quenching 
by enamine 8 leads to radical 9 (pathway III). Iminium cation 10 
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is thus produced via a radical-radical reaction followed by 
hydrolysis to release the product 5 to regenerate the co-catalyst. 
Radical intermediates are the key components for photoredox 
catalysis. To further explore our proposed mechanism, radical 
trapping experiments were conducted with 1a and enamine 8, 
respectively (SI and Figure 2b). Corroborating with perovskite 
quenching experiment (enamine, kq = 2.0 ×1011 M-1s-1; 1a, kq = 
2.7 ×1010 M-1s-1, SI and Figure S8-10), the radical trapped product 
TM-1 and TM-2 were all isolated and confirmed by 1H NMR 
from reaction I and II, while no trapped products were detected in 
control experiments without CsPbBr3 (Fig. S11-14). Note that 
TM-2 has been previously illustrated to form from radical 9 
trapped by TEMPO.36 The TEMPO trapped products prove the 
direct formation of radicals 7 and 9 as shown in our mechanism, 
supporting our proposed closed-cycle mechanism. However, our 
observation cannot completely rule out the previous reported 
chain reaction mechanism using a molecular photocatalyst.37 

Figure 2. (a) Proposed mechanism for perovskite catalyzed 
dehalogenation, sp3C-coupling and α-alkylation. (b) TEMPO 
trapped experiment for radical intermediate validation

Reaction Scope. Electron-donating and withdrawing tolerances 
were observed on α-bromo carbonyls (5b, 5c, 5e, 5f; 79 to 90% 
yield). The extended aromatic rings afforded the desired products 
5g (85%) and 5j (82%). Simple α-bromo ester leads to a moderate 
alkylation yield (5h 65%, 5l 55%). Overall, aromatic aldehydes 
demonstrate slightly less yields, respectively. Product 5k, with 8 
chiral centers was also produced with over 56% yield, exhibiting a 
general acceptance of our photocatalysis. Moreover, the library of 
product 3 and 4 was expanded. High yields of alkyl-halide 
reductions (3a-c, 3e above 90%, 3d 79%) with DIPEA are shown 
in Table 2. Selective reduction of alkyl-halide over aryl-halide is 
also achieved. (3e, 90%) The sp3C-coupling products 4 were also 
explored (4a-c, 59-80%, 4d 15%). The lower yield of 3d and 4d is 
likely due to the finite absorption and PL of naphthalene which 
interferes with the CsPbBr3 NCs absorption, resulting in less-
efficient photocatalysis. 

Table 2. Scope of photocatalytic reductive dehalogenation, sp3-C 
couplings, and α-alkylation of aldehydes. 38

Bandedge Tuning. One promising property of the Pb-halide 
perovskite photocatlysts is that their band structure can be easily 
tuned.39-41 The excited-state redox potentials, E* of a 
photocatalyst governs organic substrate activation.5 E* can be 
defined by: E*ox= Eox - E00 and E*red= Ered + E00, where E is the 
potential of the ground-state redox couple and close to the redox 
level of the conduction and valence bands, E00 is the energy gap 
between the zeroth vibrational levels of the ground and excited 
states and is roughly equal to the energy of the PL with error ca. 
100 mV.42 Thus E* can be manipulated via perovskite bandedge-
tuning. Halide composition of APbClxBryI3-x-y (0 ≤ x, y ≤3) with a 
ratio varying on x, and y, leads to bandgaps covering from 3.2 eV 
to 1.5 eV.43-45 Such large bandedge-tuning (1.7 eV), can be easily 
reached via simply mixing of different ratio of halides at the 
initial mixing, or via anion-exchange after synthesis.

10,46,47 Other 
catalysts, i.e. Ir/Ru complexes, require significant synthetic efforts 
to reach specific E* values. Estimation E* of APbClxBryI3-x-y 
(Table S3) leads to perovskites covering almost all known noble-
metal catalysts E*, implying potential for broader substrate 
photoactivations via perovskite. 

With regards to cost-effective, operational convenience and 
possible scale up, it is notable to consider that our perovskite 
protocol: (1) only requires readily available non-noble materials, 
with 2-orders of magnitude lower costs than Ru/Ir catalyst; (2) 
presents high catalytic TON evidenced by 3-orders of magnitude 
higher value than Ru/Ir catalysts; (3) only requires minimum 
synthetic effort to produce the catalysts; (4) may activate a 
broader scope of organic substrates due to easy bandedge-tuning; 
(5) is easy-to-process since perovskites are water washable; (6) 
only requires visible light; (7) does not require anaerobic 
sparging; and (8) does not require heating or cooling.

In summary, we established a hybrid halide perovskite 
photocatalytic system for organic synthesis. APbBr3 NC colloids 
are directly employed in organic solvents to demonstrate highly-
efficient -alkylation of aldehydes, sp3-C couplings and alkyl-
halide reductions. High TON and low-cost garners a significant 
progress of the current perovskite system. Easy and wide 
bandedge-tuning of perovskites NCs ripostes the key challenge to 
activate broader range of organic substrates requiring different 
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energy level from enamine intermediates, alkenes, carbonyls, 
halides, acetic acids to amines etc. for C-C, C-O and C-N 
formations. The potential broad application of this cost-effective, 
easily-prepared, highly-efficient and band-tunable hybrid halide 
perovskites may bring in new insights in photocatalysis of organic 
reactions.
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