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A B S T R A C T

A convenient rhodium catalyzed oxidative arene homologation of aniline derivatives with symmetrical

or unsymmetrical alkynes using Cu(OAc)2 as oxidant is described. Urea group is shown to be effective as

a directing group for initial ortho C–H activation. Two migratory insertion events of alkyne into Rh–C

bond occur successively, both with complete regioselectivity. This method is particularly useful for

synthesis of polyarenes with different substituents, which has not been reported with conventional

protocol. A mechanism has been proposed to explain the observed data.

� 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.
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1. Introduction

Great advancement has been made in transition metal
catalyzed C–H bond activation and functionalization in the past
20 years [1–4]. The merits of direct C–H bond functionalization
could reach its full extension only when site selective is achieved
because there are almost always multiple C–H bonds in any
organic substrate. The most common and successful strategy to
address this selective challenge is using substrates containing
coordinating ligands, namely directing groups [5,6]. By coordinate
to transition metal, the directing group could deliver the catalytic
center to a proximal C–H bond and therefore force the C–H bond-
activating event to occur in a controlled manner. A plenty of
directing groups have been devised for this purpose, and due to its
vast structural diversity, the N-containing directing groups
constitute the major and most important part. These N-containing
directing groups span from various aromatic N-heterocycles,
amines, amides, imides and imines to hydrazones, oximes,
triazoles, and ureas, etc.[7–40].

Polycyclic aromatic compounds have been found increasing
applications in functional materials in virtue of their excellent
46
47
48
49
50
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electro- and photo-chemical properties [41–45], which very often
could be modulated through the introduction of multiple
substituents on the arene core [46–49]. Metal catalyzed coupling
of arene with two fold internal alkynes provides an efficient arene
homologation method for poly-substituted polycyclic aromatic
compounds [50–61]. Direct site selective homologation of un-
preactivated arenes, which involves double C–H activation is
highly appreciated as this method can provide polycyclic aromatic
compounds in both efficient and controlled manner from easily
accessible un-functionalized arenes [62–65]. Here, we would like
to report a urea group directed arene homologation catalyzed by
Rh(III) complex employing either symmetric or unsymmetrical
internal alkynes as coupling partners.

2. Experimental

2.1. General

1H NMR and 13C NMR spectra were recorded using Bruker AV-
300/AV-400/AV-500 spectrometers. Analytical thin layer chroma-
tography was performed on 0.25 mm extra hard silica gel plates
with UV254 fluorescent indicator and/or by exposure to phos-
phomolybdic acid followed by brief heating with a heat gun. Liquid
chromatography (flash chromatography) was performed on 60 Å
(40–60 mm) mesh silica gel (SiO2). All reactions were carried out
under nitrogen or argon with anhydrous solvents in flame-dried
d regioselective arene homologation of aryl urea via double C–H
. (2016), http://dx.doi.org/10.1016/j.cclet.2016.05.011
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assware, unless otherwise noted. All reagents were commercially
tained and, where appropriate, purified prior to use.

2. General procedure for the homologation of aryl ureas

A mixture of the diphenylacetylene 2 (1.0 mmol, 2.5 eq.), 1
.4 mmol), [Cp*RhCl2]2 (6.2 mg, 0.01 mmol, 2.5 mol%), Cu(OAc)2

88 mg, 1 mmol, 2.5 eq.), and AgSbF6 (28 mg, 0.08 mmol,
.0 mmol %) were weighted into a Schlenk tube equipped with
tir bar. t-AmOH (2 mL) was added and the mixture was stirred at
0 8C for 24 h under N2 atmosphere. The reaction mixture was
tracted with DCM for three times, and the combined organic

yers were then dried over anhydrous Na2SO4, filtered, and the
lvent was removed under reduced pressure. The crude product
as purified by column chromatography on silica gel, eluted by
xane/EtOAc = 3:1 then 2:1 to afford the desired product 3.
Characterization and spectra for new compounds are compiled

 Supporting information.

 Results and discussion

Our study commenced with urea 1a and diphenyl acetylene 2a
able 1). Using an effective protocol disclosed by Fagnou team,
veral popular transition metal catalysts for oxidative C–H
nctionalization were explored. Pd(OAc)2 and [RuCl2(P-Cym-
e)]2 failed to promote any reaction (entries 1–3). (Cp*RhCl2)2

tivated by AgSbF6 did catalyze the desired arene homologation
action and t-AmOH is the solvent of choice for good yield (entries
and 5). It was also found that Cu(OAc)2 was a necessary oxidant
ble 1
ndition optimization for oxidative condensation of phenyl urea with alkyne.a

ntry Catalyst Oxidant 

 Pd(OAc)2 Cu(OAc)2

 [RuCl2(p-Cym)]2 Cu(OAc)2

 [RuCl2(p-Cym)]2 Cu(OAc)2

 [Cp*RhCl2]2 Cu(OAc)2

 [Cp*RhCl2]2 Cu(OAc)2

 [Cp*RhCl2]2 Air 

 [Cp*RhCl2]2 Cu(OAc)2

Reaction conditions: 1a (0.4 mmol, 1.0 eq.), 2a (1.0 mmol, 2.5 eq.), oxidant air or Cu

ated to 120 8C in a Schlenk tube for 24 h;

Isolated yield.

ble 2
ene homologation of aryl ureas with dipenyl acetylene.a

ntry 1 R1 R2

 1a Me Me 

 1b Me Me 

 1c Me Me 

 1d Me Me 

 1e Me Me 

 1f Ph Pr 

Reaction conditions: 1 (0.4 mmol, 1.0 eq.), 2a (1.0 mmol, 2.5 eq.), Cu(OAc)2 (1 mm

OH (2.5 mL) was heated to 120 8C in a Schlenk tube for 24 h under N2;

Isolated yield.

Please cite this article in press as: Y. Wang, et al., Rhodium catalyz
bond activation and migratory insertion of alkyne, Chin. Chem. Let
and AgSbF6 was a critical additive for this reaction to proceed
smoothly (entries 5–7).

With the optimal conditions in hand, an array of urea substrates
1 were submitted to the reaction with diphenyl acetylene 2a
(Table 2). Meta substituted ureas, such as 1b and 1c were feasible
substrates to give 5, 6, 7, 8-tetraphenyl naphthalene 3ba and 3ca in
yields of more than 60% (entries 2–3). On the other hand, ortho-
and para- substituents decreased the yield dramatically, as both
tetraphenyl naphthalenes 3 da and 3ea were obtain from 1d to 1e
in less than 20% yields (entries 4–5). N,N-diphenyl urea 1f
condensed with diphenyl acetylene to give rise to 3fa in 27%
yield (entry 6). These outcomes may be the results of collective
steric effects of both aryl substituents and bulky Cp* ligand on
metal center, which will be discussed later on.

Further studies using unsymmetrical alkynes as the homologa-
tion partners highlight the virtue of this protocol (Table 3).
Condensation of phenyl methyl acetylene 2b with urea 1a, 1b, 1c
gave related 5,8-dimethyl-6,7-diphenyl naphthalenes 3ab, 3bb,
3cb in 60–70% yields. The structure of 3ab was established by
extensive NMR experiments including, 2D 1H–1H Noesy experi-
ments. The selectivity demonstrated by these reactions is amazing
as only one single regioisomer is produced out of four possible
isomers. Moreover, to our delight, ortho substituted phenyl urea 1e
achieved a much higher yield for 5,8-dimethyl-6,7-diphenyl
naphthale 3eb (Table 3, entry 4, 63%) than the yield for 5,6,7,8-
tetraphenyl naphthalene 3ea (Table 2, entry 5, 18%). Methox-
ymethyl phenyl acetylene 2c is also condensed with 1a to give 3ac
in 51% yield with exclusive regioselectivity, while alkynes 2d and
2e are not feasible coupling partners for this reaction.
Additive Solvent Yield (%)b

– t-AmOH –

– t-AmOH –

– DCE –

AgSbF6 toluene 20

AgSbF6 t-AmOH 50

AgSbF6 t-AmOH –

– t-AmOH complex

(OAc)2 (1 mmol, 2.5 eq.) and catalyst (0.01 mmol, 2.5 mol%) in t-AmOH (2.5 mL) was

R3 Product Yield (%)b

H 3aa 50

3-Me 3ba 61

3-Cl 3ca 63

4-Me 3 da 17

2-Cl 3ea 18

H 3fa 27

ol, 2.5 eq.), AgSbF6 (0.02 mmol, 5 mol%), and [Cp*RhCl2]2 (0.01 mmol, 2.5 mol%) in t-

ed regioselective arene homologation of aryl urea via double C–H
t. (2016), http://dx.doi.org/10.1016/j.cclet.2016.05.011
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Table 3
Arene homologation of aryl ureas with unsymmetrical acetylenes.a

Entry 1 R3 2 R4 Product Yield (%)b

1 1a H 2b Me 3ab 60

2 1b 3-Me 2b Me 3bb 69

3 1c 3-Cl 2b Me 3cb 65

4 1e 2-Cl 2b Me 3eb 63

5 1a H 2c CH2OMe 3ac 51

6 1c 3-Cl 2d COOMe –

7 1a H 2e CH2OH –

a Reaction conditions: 1 (0.4 mmol, 1.0 eq.), 2 (1.0 mmol, 2.5 eq.), Cu(OAc)2 (1 mmol, 2.5 eq.), AgSbF6 (0.02 mmol, 5 mol%) and [Cp*RhCl2]2 (0.01 mmol, 2.5 mol%) in t-AmOH

(2.5 mL) was heated to 120 8C in a Schlenk tube for 24 h under N2.
b Isolated yield.
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Based on previous studies [11,66–70] and the data collected in
this research, a mechanism has been proposed as shown in Scheme
1. Pre-catalyst [RhCp*Cl2]2 is initially converted into an active
cationic Rhodium species A by the action of AgSbF6. A is directed to
activate the ortho C–H bond in urea 1 to finish aryl Cp*Rh(III)
species B which coordinates with alkyne 2 followed by migratory
insertion giving alkenyl Cp*Rh(III) intermediate C. A second C–H
bond activation event then took place intramolecularly leading to
Rhodacycle D. A second insertion of alkyne molecule provide two
possible Rhodacycles E or/and F and consequent reductive
elimination delivers the homologated arene 3 and the reduced
Cp*Rh(I) species is oxidized by Cu(II) to regenerate Cp*Rh(III)
complex A ready for a second catalytic circle.

According to this mechanism, it can be deduced from the
product structure of 3ab-3eb that D is formed favorably over D’
from B and this is also in line with Fagnou’s observations [11],
Scheme 1. Proposed mechanism for the arene homologation

Please cite this article in press as: Y. Wang, et al., Rhodium catalyze
bond activation and migratory insertion of alkyne, Chin. Chem. Lett
where electronic effect was raised to explain this intrinsic
regioselectivity. For the same reason, the second alkyne insertion
will take place at one of the two C–Rh bonds of D to give
preferentially E over E’ and F over F’, respectively. After reductive
elimination, rhodacycle E will give the observed naphthalene 3aa,
whereas F will give its regioisomer 3’aa which is not detected,
disproving the intermediacy of rhodacycle F (Scheme 2). These
analyses support a pathway B-C-D-E as the operating pathway
shown in Scheme 1.

The low yield associated with meta- and para-substituted
phenyl ureas when diphenyl acetylene 2a was used as condensa-
tion partner may derive from the serious steric repulsions in the
intermediates along the pathway, such as indicated in G and H
(Fig. 1). Those steric interactions can be relieved when diphenyl
acetylene 2a was replaced by methyphenyl acetylene 2b to afford
increased yield.
 (RS stands for small group, RL stands for large group).

d regioselective arene homologation of aryl urea via double C–H
. (2016), http://dx.doi.org/10.1016/j.cclet.2016.05.011
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Scheme 2. Discrimination of two possible pathways.

Fig. 1. The steric repulsions in intermediates G and H leading to low yields.
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 Conclusion

In summary, we have established a facile method for arene
mologation of aryl urea with internal alkyne. This rhodium
talyzed transformation features a double C–H activation process
d two successive completely regioselctive migratory insertions

 unsymmetrical alkynes into Rhodium–carbon bonds enable this
ethod particularly useful for poly-substituted polyarenes.
rthermore, a mechanism proposal has been discussed.
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