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A convenient rhodium catalyzed oxidative arene homologation of aniline derivatives with symmetrical
or unsymmetrical alkynes using Cu(OAc), as oxidant is described. Urea group is shown to be effective as
a directing group for initial ortho C-H activation. Two migratory insertion events of alkyne into Rh—C
bond occur successively, both with complete regioselectivity. This method is particularly useful for

synthesis of polyarenes with different substituents, which has not been reported with conventional
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protocol. A mechanism has been proposed to explain the observed data.
© 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.

1. Introduction

Great advancement has been made in transition metal
catalyzed C-H bond activation and functionalization in the past
20 years [1-4]. The merits of direct C-H bond functionalization
could reach its full extension only when site selective is achieved
because there are almost always multiple C-H bonds in any
organic substrate. The most common and successful strategy to
address this selective challenge is using substrates containing
coordinating ligands, namely directing groups [5,6]. By coordinate
to transition metal, the directing group could deliver the catalytic
center to a proximal C-H bond and therefore force the C-H bond-
activating event to occur in a controlled manner. A plenty of
directing groups have been devised for this purpose, and due to its
vast structural diversity, the N-containing directing groups
constitute the major and most important part. These N-containing
directing groups span from various aromatic N-heterocycles,
amines, amides, imides and imines to hydrazones, oximes,
triazoles, and ureas, etc.[7-40].

Polycyclic aromatic compounds have been found increasing
applications in functional materials in virtue of their excellent
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electro- and photo-chemical properties [41-45], which very often
could be modulated through the introduction of multiple
substituents on the arene core [46-49]. Metal catalyzed coupling
of arene with two fold internal alkynes provides an efficient arene
homologation method for poly-substituted polycyclic aromatic
compounds [50-61]. Direct site selective homologation of un-
preactivated arenes, which involves double C-H activation is
highly appreciated as this method can provide polycyclic aromatic
compounds in both efficient and controlled manner from easily
accessible un-functionalized arenes [62-65]. Here, we would like
to report a urea group directed arene homologation catalyzed by
Rh(III) complex employing either symmetric or unsymmetrical
internal alkynes as coupling partners.

2. Experimental
2.1. General

TH NMR and '3C NMR spectra were recorded using Bruker AV-
300/AV-400/AV-500 spectrometers. Analytical thin layer chroma-
tography was performed on 0.25 mm extra hard silica gel plates
with UV254 fluorescent indicator and/or by exposure to phos-
phomolybdic acid followed by brief heating with a heat gun. Liquid
chromatography (flash chromatography) was performed on 60 A
(40-60 wm) mesh silica gel (SiO,). All reactions were carried out
under nitrogen or argon with anhydrous solvents in flame-dried
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glassware, unless otherwise noted. All reagents were commercially
obtained and, where appropriate, purified prior to use.

2.2. General procedure for the homologation of aryl ureas

A mixture of the diphenylacetylene 2 (1.0 mmol, 2.5 eq.), 1
(0.4 mmol), [Cp*RhCl,], (6.2 mg, 0.01 mmol, 2.5 mol%), Cu(OAc),
(188 mg, 1 mmol, 2.5 eq.), and AgSbFs (28 mg, 0.08 mmol,
20.0 mmol %) were weighted into a Schlenk tube equipped with
a stir bar. t-AmOH (2 mL) was added and the mixture was stirred at
120 °C for 24 h under N, atmosphere. The reaction mixture was
extracted with DCM for three times, and the combined organic
layers were then dried over anhydrous Na,SO,, filtered, and the
solvent was removed under reduced pressure. The crude product
was purified by column chromatography on silica gel, eluted by
hexane/EtOAc = 3:1 then 2:1 to afford the desired product 3.

Characterization and spectra for new compounds are compiled
in Supporting information.

3. Results and discussion

Our study commenced with urea 1a and diphenyl acetylene 2a
(Table 1). Using an effective protocol disclosed by Fagnou team,
several popular transition metal catalysts for oxidative C-H
functionalization were explored. Pd(OAc), and [RuCl(P-Cym-
ene)], failed to promote any reaction (entries 1-3). (Cp*RhCl;),
activated by AgSbFg did catalyze the desired arene homologation
reaction and t-AmOH is the solvent of choice for good yield (entries
4 and 5). It was also found that Cu(OAc), was a necessary oxidant

and AgSbFg was a critical additive for this reaction to proceed
smoothly (entries 5-7).

With the optimal conditions in hand, an array of urea substrates
1 were submitted to the reaction with diphenyl acetylene 2a
(Table 2). Meta substituted ureas, such as 1b and 1c were feasible
substrates to give 5, 6, 7, 8-tetraphenyl naphthalene 3ba and 3ca in
yields of more than 60% (entries 2-3). On the other hand, ortho-
and para- substituents decreased the yield dramatically, as both
tetraphenyl naphthalenes 3 da and 3ea were obtain from 1d to 1e
in less than 20% yields (entries 4-5). N,N-diphenyl urea 1f
condensed with diphenyl acetylene to give rise to 3fa in 27%
yield (entry 6). These outcomes may be the results of collective
steric effects of both aryl substituents and bulky Cp* ligand on
metal center, which will be discussed later on.

Further studies using unsymmetrical alkynes as the homologa-
tion partners highlight the virtue of this protocol (Table 3).
Condensation of phenyl methyl acetylene 2b with urea 1a, 1b, 1c
gave related 5,8-dimethyl-6,7-diphenyl naphthalenes 3ab, 3bb,
3cb in 60-70% yields. The structure of 3ab was established by
extensive NMR experiments including, 2D 'H-'H Noesy experi-
ments. The selectivity demonstrated by these reactions is amazing
as only one single regioisomer is produced out of four possible
isomers. Moreover, to our delight, ortho substituted phenyl urea 1e
achieved a much higher yield for 5,8-dimethyl-6,7-diphenyl
naphthale 3eb (Table 3, entry 4, 63%) than the yield for 5,6,7,8-
tetraphenyl naphthalene 3ea (Table 2, entry 5, 18%). Methox-
ymethyl phenyl acetylene 2c is also condensed with 1a to give 3ac
in 51% yield with exclusive regioselectivity, while alkynes 2d and
2e are not feasible coupling partners for this reaction.

Table 1
Condition optimization for oxidative condensation of phenyl urea with alkyne.?
(6]
M
I'\,e I3 MeHNJ\NMe Ph
©/ Y Me  ph—=——Ph 2a Ph
0 _—
1a conditions OO Ph
3aa Ph
Entry Catalyst Oxidant Additive Solvent Yield (%)°
1 Pd(OAc), Cu(OAc), - t-AmOH -
2 [RuCl,(p-Cym)], Cu(OAc), - t-AmOH -
3 [RuCly(p-Cym)], Cu(OAc), - DCE -
4 [Cp*RhCl,]» Cu(OAc);, AgSbFg toluene 20
5 [Cp*RhCl, ], Cu(OAc), AgSbFg t-AmOH 50
6 [Cp*RhCl,], Air AgSbFg t-AmOH -
7 [Cp*RhCl,]» Cu(OAc), - t-AmOH complex

@ Reaction conditions: 1a (0.4 mmol, 1.0 eq.), 2a (1.0 mmol, 2.5 eq.), oxidant air or Cu(OAc), (1 mmol, 2.5 eq.) and catalyst (0.01 mmol, 2.5 mol%) in t-AmOH (2.5 mL) was

heated to 120°C in a Schlenk tube for 24 h;
b Isolated yield.

Table 2
Arene homologation of aryl ureas with dipenyl acetylene.”
0 (0]
JC
Ph——=——P>Ph 2 1
RZHN)J\NRI 2a RHN” "NR! Ph o
L0 [Cp*RhCL ], R3 Z
R¥—5-
/ Cu(OAc),, AgSbFq x Ph
1 3 Ph
Entry 1 R! R? R3 Product Yield (%)°
1 1a Me Me H 3aa 50
2 1b Me Me 3-Me 3ba 61
3 1c Me Me 3-Cl 3ca 63
4 1d Me Me 4-Me 3da 17
5 1e Me Me 2-Cl 3ea 18
6 1f Ph Pr H 3fa 27

2 Reaction conditions: 1 (0.4 mmol, 1.0 eq.), 2a (1.0 mmol, 2.5 eq.), Cu(OAc), (1 mmol, 2.5 eq.), AgSbFg (0.02 mmol, 5 mol%), and [Cp*RhCl,], (0.01 mmol, 2.5 mol%) in t-

AmOH (2.5mL) was heated to 120°C in a Schlenk tube for 24 h under Nj;
b Isolated yield.
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Table 3
Arene homologation of aryl ureas with unsymmetrical acetylenes.?
(@]
Me o [Cp*RhCl,], MeHN” “NMe R,
N. N Cu(OAc),, AgSbFg Ph
X > il el B =
Ry—- O Me _ Ry
= [¢] Ph———R, A Ph
2
! 3 Ry
Entry 1 Rs 2 R4 Product Yield (%)°
1 1a H 2b Me 3ab 60
2 1b 3-Me 2b Me 3bb 69
3 1c 3-Cl 2b Me 3cb 65
4 1e 2-Cl 2b Me 3eb 63
5 1a H 2c CH,OMe 3ac 51
6 1c 3-Cl 2d COOMe -
7 1a H 2e CH,0H -

2 Reaction conditions: 1 (0.4 mmol, 1.0 eq.), 2 (1.0 mmol, 2.5 eq.), Cu(OAc), (1 mmol, 2.5 eq.), AgSbFs (0.02 mmol, 5 mol%) and [Cp*RhCl,], (0.01 mmol, 2.5 mol%) in t-AmOH

(2.5mL) was heated to 120°C in a Schlenk tube for 24 h under N,.
b Isolated yield.

Based on previous studies [11,66-70] and the data collected in
this research, a mechanism has been proposed as shown in Scheme
1. Pre-catalyst [RhCp*Cl;], is initially converted into an active
cationic Rhodium species A by the action of AgSbFe. A is directed to
activate the ortho C-H bond in urea 1 to finish aryl Cp*Rh(III)
species B which coordinates with alkyne 2 followed by migratory
insertion giving alkenyl Cp*Rh(IIl) intermediate C. A second C-H
bond activation event then took place intramolecularly leading to
Rhodacycle D. A second insertion of alkyne molecule provide two
possible Rhodacycles E or/and F and consequent reductive
elimination delivers the homologated arene 3 and the reduced
Cp*Rh(I) species is oxidized by Cu(ll) to regenerate Cp*Rh(III)
complex A ready for a second catalytic circle.

According to this mechanism, it can be deduced from the
product structure of 3ab-3eb that D is formed favorably over D’
from B and this is also in line with Fagnou’s observations [11],

where electronic effect was raised to explain this intrinsic
regioselectivity. For the same reason, the second alkyne insertion
will take place at one of the two C-Rh bonds of D to give
preferentially E over E’ and F over F’, respectively. After reductive
elimination, rhodacycle E will give the observed naphthalene 3aa,
whereas F will give its regioisomer 3’aa which is not detected,
disproving the intermediacy of rhodacycle F (Scheme 2). These
analyses support a pathway B-C-D-E as the operating pathway
shown in Scheme 1.

The low yield associated with meta- and para-substituted
phenyl ureas when diphenyl acetylene 2a was used as condensa-
tion partner may derive from the serious steric repulsions in the
intermediates along the pathway, such as indicated in G and H
(Fig. 1). Those steric interactions can be relieved when diphenyl
acetylene 2a was replaced by methyphenyl acetylene 2b to afford
increased yield.

NHR?
RhCp*Cl RL
[RhCp*Cl,], N0
AgSbF, 1
Cu(l)
[Cp*RhCI]*SbF4
NHR2 Cu(n)\)/'
A
s RhCp* R! )\
Ry N0
G HSbF, i
RhCp*Cl
R
3 Rg B
, , R¢—=—R,
;I\I\HR )N\HR 2
O “NR! Rg 07 "NR! Ry R s
L NHRZ steric
= == E C interaction
)Rs |/Rth* aol 97 TNR)(Rg
Rh or D Ry
Cp* Ry H)( Ry 2 o
Rg NHR ¥
‘ 2\ RhCp*Cl
prefered path 0P NR! Rg
R¢—=——R_, R Ry
2 RhCp*

Scheme 1. Proposed mechanism for the arene homologation (Rs stands for small group, R, stands for large group).
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NHR?2 NHR2

R'\)§ Rl

N0

ll{th*Cl Ph
o)\

B | electronic operating
control observed pathway
NHR? NHR2
0 "NR! Ph NR' R?
AN
RhCp* Rth
Dl
electronically electromcal]y ‘\\ o
disfavored favored “.‘
NHR2
NR' R?
3'aa

not observed

NHR? NHR?
NR' R* pyy 07 NR!' R* pp
= R3 S
| Rh |  Rh
_— —
Rt Bb Ph R?
E El
electronically electronically
favored disfavored
NHR? )N\HRZ
1 R4 1 R4
NRERT o O7NRERT b
= =
4 Pl
i VR
h R*

,IR(.%\PI]

F_
electronically
favored

electronically
disfavored

Scheme 2. Discrimination of two possible pathways.

NHMe

NMe) (Ph Ph

ok

Fig. 1. The steric repulsions in intermediates G and H leading to low yields.

\\Ph \élq ®

R)(

G

NHMe

4. Conclusion

In summary, we have established a facile method for arene
homologation of aryl urea with internal alkyne. This rhodium
catalyzed transformation features a double C-H activation process
and two successive completely regioselctive migratory insertions
of unsymmetrical alkynes into Rhodium-carbon bonds enable this
method particularly useful for poly-substituted polyarenes.
Furthermore, a mechanism proposal has been discussed.
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