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Abstract: Treatment of ketodiynes or allenynones with hot aqueous acid results in the facile formation of
di- or tri-substituted y-pyrones. The mechanism of this new process was established.

The enediyne class of antitumor antibiotics has generated intense interest within the synthetic
community.] We were curious whether a 3-keto-1,5-diyne would undergo a Bergman cyclization? as
shown below. If so, a ketone can be carried through a synthesis in numerous forms, offering flexibility in

the synthetic design.
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To test this concept, we treated ynal 1 with propargyl magnesium bromide to afford alcohol 2a and
allenic alcohol 3a in a 4:1 ratio, respectively (Scheme 1).34 Although Swemn oxidation of 2a afforded
ketodiyne 4a, this material failed to cycloaromatize under a variety of Bergman conditions and instead
afforded allenynone $a, an isomerization product.5 Surprisingly, the use of Jones reagentS to oxidize

alcohol 2a gave y-pyrone 6a in 24% yield; the balance of the material was allenynone 5a. Further work
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showed that treatment of § with aqueous acid in refluxing acetone produced y-pyrone 6 in 82% yield.

Because the methods commonly used to prepare y-pyrones are limited to the formation of 2,6-

symmetrically substituted analogues,’-? we determined the scope of this cyclization and established its

mechanism.

Table 1 presents five additional acid-promoted ketodiyne cyclizations which produce y-pyrones

substituted at C(2) and C(6) with different alkyl groups. In these cases, higher yields of pyrones were

obtained if the crude oxidation product was cyclized without purification. We have also found that

functionalized allenynones produce trisubstituted y-pyrones using identical cyclization conditions. The

requisite allenynone substrates were prepared from allenic alcohols using known procedures. 1011
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R2 Product  Yield
H 6a 82%
H 6b 75%
H 6¢ 66%
H 6d 70%
H 6e 54%
H 6f 42%
H 6b 82%
CH3 6g 79%
nC4Ho 6h 75%
nC4Ho 6i 54%
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Scheme 2 presents our mechanistic rationalization of these results. The initial step is the
irreversible isomerization of the ketodiyne to a conjugated allenynone intermediate as observed in Scheme
1. Hydration of the allenynone unit forms p-diketone ii, which undergoes acid-catalyzed pyrone
formation. In theory, addition of water to the ynone moiety would produce p-diketone iii, which can form
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a pyrone upon further reaction with the allene moiety. However, we have established that the ynone
moiety is inert under the acidic conditions employed, while the a-allenone functionality hydrolyzes easily

(Equation 1).
Equation 1
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In summary, we have found that 3-keto-1,5-diynes do not produce phenols via Bergman
cyclization but can be hydrated to produce y-pyrones. Moreover, functionalized di- or trisubstituted v~
pyrones can be casily prepared by cyclizing the appropriately substituted ketodiyne or allenynone

precursor.
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