Month 2016

Synthesis of Symmetrical Bis(5-substituted oxadiazolyl/thiadiazolyl/ triazolylmethyl)sulfones

Padmaja Adivireddy,* Pedamalakondaiah Devanaboina, Lavanya Gopala, and Rajasekhar Chittoor

A new class of bis(oxadiazolyl/thiadiazolyl/triazolylmethyl)sulfones were prepared by the cyclocondensation of sulfonyldiacetic acid with aryl acid hydrazide and arylmethanesulfonylacetic acid hydrazide.

J. Heterocyclic Chem., 00, 00 (2016).

INTRODUCTION

Aryl sulfones are widely used in medicinal chemistry and found in several drugs including the recently developed selective COX-2 inhibitor Vioxx [1]. The five-membered heterocycles particularly 1,3,4-oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazoles are prominent compounds that possess various pharmacological activities. Some 1,3,4-oxadiazole sulfones exhibit antibacterial and antifungal activities [2,3]. The important method for the synthesis of 1,3,4oxadiazoles involves cyclization of diacylhydrazines prepared by the reaction of acyl chlorides and hydrazine. Several cyclodehydrating agents Et₂O·BF₃ [4], triffic anhydride [5], polyphosphoric acid [6], and so on, have been used. One-pot synthesis of 1,3,4-oxadiazoles from hydrazine and carboxylic acids has also been reported [7,8]. 1,3,4-Thiadiazole nucleus constitutes the active part of several compounds including antibacterial, antimycotic, and antiinflammatory agents [9,10]. Most frequently used methods for the synthesis of thiadiazoles include the reaction of acylthiosemicarbazides with acidic reagents such as trifluoroacetic acid [11] and methanesulfonic acid [9]. Besides, 1,2,4-triazole and their derivatives show insecticidal [12], antifungal [13], antimicrobial [14], and anti-inflammatory [15] properties. One of the synthetic methods for the preparation of triazoles involves the use of N,N'dimethyl formamide dimethyl acetals [16]. Replacement of -O- by -S- or -NH- in some heterocycles was reported viz., Bordner's [17] preparation of pyrroles from furan and the transformation of epoxides to episulfides by the action of thiocyanates or thiourea [18-20]. However, reports about the conversion of 1,3,4-oxadiazoles to 1,3,4thiadiazoles and 1,2,4-triazoles are relatively less [21,22]. Thus, there is a quest for the synthesis of a variety of azoles linked by different pharmacophoric units. In fact, we have reported the synthesis of multifunctional 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, and 1,2,4-triazoles via potassium salt of different acid hyrazides [23]. We have also reported these heterocycles from various acids and acid hydrazides followed by interconversion in the presence of appropriate nucleophiles [24]. Encouraged by these results and our continued interest in the development of a variety of heterocycles with different pharmacophore unit, the present work has been taken up.

RESULTS AND DISCUSSION

The synthetic routes adopted to prepare the target molecules are outlined in Schemes 1 and 2. The cyclocondensation of one mole of sulfonyldiacetic acid (2) with two moles aryl acid hydrazide (5) in the presence of POCl₃ led to the formation of bis(5-aryl-1,3,4-oxadiazolylmethyl)sulfone (9). Interconversion of oxadiazole to thiadiazole was effected by treating compound 9 with thiourea in tetrahydrofuran to obtain bis(5-aryl-1,3,4-thiadiazolylmethyl)sulfone (10). On the other hand, the reaction of compound 9 with hydrazine hydrate in the presence of KOH in *n*-butanol furnished bis (5-aryl(4-amino)-1,2,4-triazol-3-ylmethyl)sulfone (11) (Scheme 1 and Table 1). The ¹H NMR spectra of **9a** and **10a** exhibited a singlet at δ 4.92 and 5.15 because of methylene protons attached to C-2 while 11a at 5.01 ppm because of methylene protons attached to C-3 in addition to aromatic protons. Moreover, in compound 11a, a broad singlet appeared at δ 5.62 ppm was attributed to NH₂, which disappeared on deuteration. The 70-eV mass spectra of 9a, 10a, and 11a displayed molecular ion peaks at 382.07, 414.03, and 410.13 corresponding to their molecular formulae C₁₈H₁₄N₄O₄S, C₁₈H₁₄N₄O₄S, and C₁₈H₁₈N₈O₂S.

Adopting similar methodology, the reaction of sulfonyldiacetic acid (2) with two moles of arylmethanesulfonylacetic acid

 Table 1

 Physical and analytical data of compounds 9–14.

				Analysis % calcd. (found)		
Compound	Mp (°C)	Yield (%)	Molecular formula (mol. wt)	С	Н	Ν
9a	141-143	75	C ₁₈ H ₁₄ N ₄ O ₄ S (382.39)	56.66 (56.54)	3.74 (3.69)	14.79 (14.65)
9b	134-136	72	C ₂₀ H ₁₈ N ₄ O ₄ S (410.45)	58.60 (58.53)	4.45 (4.42)	13.75 (13.65)
9c	155-157	80	C ₁₈ H ₁₂ Cl ₂ N ₄ O ₄ S (451.28)	48.07 (47.91)	2.74 (2.68)	12.60 (12.41)
10a	150-152	77	C ₁₈ H ₁₄ N ₄ O ₄ S (414.52)	52.25 (52.15)	3.48 (3.40)	13.68 (13.52)
10b	146-148	74	C ₂₀ H ₁₈ N ₄ O ₂ S ₃ (442.58)	54.24 (54.28)	4.12 (4.10)	12.76 (12.66)
10c	162-164	82	C ₁₈ H ₁₂ Cl ₂ N ₄ O ₂ S ₃ (483.41)	44.79 (44.72)	2.49 (2.50)	11.72 (11.59)
11a	159-161	78	C ₁₈ H ₁₈ N ₈ O ₂ S (410.45)	52.43 (52.27)	4.47 (4.42)	27.51 (27.30)
11b	143-145	76	C ₂₀ H ₂₂ N ₈ O ₂ S (438.51)	54.87 (54.78)	5.10 (5.06)	25.57 (25.55)
11c	171-173	81	C ₁₈ H ₁₆ Cl ₂ N ₈ O ₂ S (479.34)	45.21 (45.10)	3.34 (3.36)	23.53 (23.38)
12a	188-190	84	C ₂₂ H ₂₂ N ₄ O ₈ S ₃ (566.63)	44.78 (44.63)	3.96 (3.91)	10.06 (9.89)
12b	167-169	79	C ₂₄ H ₂₆ N ₄ O ₈ S ₃ (594.68)	48.53 (48.47)	4.44 (4.41)	9.31 (9.42)
12c	203-205	87	C ₂₂ H ₂₀ Cl ₂ N ₄ O ₈ S ₃ (655.52)	41.66 (41.58)	3.13 (3.17)	8.96 (8.82)
13a	210-212	83	C ₂₂ H ₂₂ N ₄ O ₆ S ₅ (598.76)	44.08 (44.13)	3.72 (3.70)	9.48 (9.36)
13b	191-193	78	C ₂₄ H ₂₆ N ₄ O ₆ S ₅ (626.81)	46.10 (45.99)	4.16 (4.18)	9.12 (8.94)
13c	218-220	86	$C_{22}H_{20}Cl_2N_4O_6S_5$ (667.65)	39.67 (39.58)	3.03 (3.02)	8.53 (8.39)
14a	207-209	84	C ₂₂ H ₂₆ N ₈ O ₆ S ₃ (594.69)	44.54 (44.43)	4.45 (4.41)	19.02 (18.84)
14b	197-199	80	C ₂₄ H ₃₀ N ₈ O ₆ S ₃ (622.74)	46.36 (46.29)	4.88 (4.86)	18.11 (17.99)
14c	216-218	88	$C_{22}H_{24}Cl_2N_8O_6S_3\ (663.58)$	39.87 (39.82)	3.64 (3.65)	16.98 (16.89)

Table 2IR data of compounds 9–14.

		-					
		IR (KBr) cm ⁻¹					
Compound	N	NH ₂		SO ₂			
9a 9b	_	_	1577 1576	1312 1310	1148 1142		
9c	_	_	1584	1318	1153		
10a	_	_	1582	1331	1145		
10b			1579	1342	1140		
10c	_	_	1585	1322	1147		
11a	3480	3362	1564	1319	1130		
11b	3475	3360	1560	1314	1132		
11c	3486	3375	1582	1325	1135		
12a	_	_	1568	1341	1139		
12b	_	_	1565	1334	1137		
12c	_	_	1574	1345	1143		
13a	_	_	1586	1330	1136		
13b	_	_	1583	1339	1131		
13c	_	_	1590	1328	1138		
14a	3488	3370	1578	1338	1136		
14b	3475	3365	1576	1332	1128		
14c	3492	3376	1582	1326	1150		

hydrazide (8) in the presence of POCl₃ yielded bis(5arylmethanesulfonylmethyl-1,3,4-oxadiazolylmethyl)sulfone (12). The compound 12 on treatment with thiourea in tetrahydrofuran produced bis(5-arylmethanesulfonylmethyl-1, 3,4-thiadiazolylmethyl)sulfone (13). Furthermore, bis(5arylmethanesulfonylmethyl(4-amino)-1,2,4-triazol-3-ylmethyl) sulfone (14) was prepared by the reaction of the compound 12 with hydrazine hydrate in the presence of KOH in *n*-butanol (Scheme 2 and Table 1). The ¹H NMR spectra of 12a displayed three singlets at δ 4.85, 5.49, 5.60 ppm; 13a at 5.11, 5.58, 5.72 ppm; and 14a at 5.07, 5.51, 5.55 ppm because of methylene protons attached to C-2/C-3, C-5, and Ar-CH₂, respectively. In addition to these, compound 14a presented a broad singlet at 5.75 ppm for NH₂. The signals due to highly acidic protons disappeared when D₂O was added. The 70-eV mass spectra of 12a, 13a, and 14a showed molecular ion peaks at 566.06, 598.01, and 594.11 corresponding to their chemical composition C22H22N4O8S3, C₂₂H₂₂N₄O₆S₅, and C₂₂H₂₆N₈O₆S₃. The structures of all the new compounds were further established by IR (Table 2), ¹³C NMR (Table 3), and elemental analyses.

 Table 3

 ¹H and ¹³C NMR data of compounds 9–14.

Compound	¹ H NMR (CDCl ₃ /DMSO- <i>d</i> ₆)	¹³ C NMR (CDCl ₃ /DMSO- <i>d</i> ₆)
9a	4.92 (s, 4H, CH ₂ -(C-2)), 7.21–7.59 (m, 10H, Ar-H)	50.4 (CH ₂ -(C-2)), 159.2 (C-5), 161.8 (C-2), 127.3, 128.9, 129.4, 130 1 (aromatic carbons)
9b	2.26 (s, 6H, Ar-CH ₃), 4.88 (s, 4H, CH ₂ -(C-2)), 7.11-7.46 (m, 8H, Ar-H)	23.9 (Ar-CH ₃), 49.6 (CH ₂ -(C-2)), 159.5 (C-5), 161.2 (C-2), 126.3, 128.6, 129.7, 131.2 (aromatic carbons)
9c	4.98 (s, 4H, CH ₂ -(C-2)), 7.27–7.62 (m, 8H, Ar-H)	51.2 (CH ₂ -(C-2)), 161.2 (C-5), 163.5 (C-2), 127.8, 129.5, 132.7, 136.5 (aromatic carbons)
10a	5.15 (s, 4H, CH ₂ -(C-2)), 7.24–7.58 (m, 10H, Ar-H)	51.3 (CH ₂ -(C-2)), 174.2 (C-5), 175.6 (C-2), 128.2, 129.8, 13.5, 134.2 (aromatic carbons)
10b	2.28 (s, 6H, Ar-CH ₃), 5.13 (s, 4H, CH ₂ -(C-2)), 7.20-7.52 (m, 8H, Ar-H)	24.6 (Ar-CH ₃), 51.6 (CH ₂ -(C-2)), 173.4 (C-5), 175.3 (C-2), 127.8, 129.6, 130.3, 136.2 (aromatic carbons)
10c	5.16 (s, 4H, CH ₂ -(C-2)), 7.29–7.70 (m, 8H, Ar-H)	52.7 (CH ₂ -(C-2)), 176.6 (C-5), 178.2 (C-2), 128.4, 129.9, 131.4, 135.2 (aromatic carbons)
11a	5.01 (s, 4H, CH ₂ -(C-3)), 5.62 (bs, 4H, NH ₂), 7.19-7.64 (m, 10H, Ar-H)	51.6 (CH ₂ -(C-3)), 159.4 (C-5), 162.8 (C-3), 127.4, 129.5, 130.2, 131.3 (aromatic carbons)
11b	2.24 (s, 6H, Ar-CH ₃), 5.03 (s, 4H, CH ₂ -(C-3)), 5.60 (bs, 4H, NH ₂), 7.15–7.57 (m, 8H, Ar-H)	24.1 (Ar-CH ₃), 50.9 (CH ₂ -(C-3)), 157.9 (C-5), 161.4 (C-3), 126.8, 128.0, 131.2, 135.6 (aromatic carbons)
11c	5.08 (s, 4H, CH ₂ -(C-3)), 5.64 (bs, 4H, NH ₂), 7.25-7.75 (m, 8H, Ar-H)	51.8 (CH ₂ -(C-3)), 159.8 (C-5), 163.1 (C-3), 129.9, 131.8, 132.8, 134.5 (aromatic carbons)
12a	4.85 (s, 4H, CH ₂ -(C-2)), 5.49 (s, 4H, CH ₂ -(C-5)), 5.60 (s, 4H, Ar-CH ₂), 7.13–7.48 (m, 10H, Ar-H)	54.8 (CH ₂ -(C-2)), 58.5 (CH ₂ -(C-5)), 60.3 (Ar-CH ₂), 161.4 (C-5), 163.4 (C-2), 124.5, 126.4, 128.7, 130.6 (aromatic carbons)
120	2.29 (s, oH, AF-CH ₃), 4.78 (s, 4H, CH ₂ -(C-2)), 5.58 (s, 4H, CH ₂ -(C-5)), 5.58 (s, 4H, AF-CH ₂), 7.03–7.35 (m, 8H, AF-H) 5.02 (c, 4H, CH, (C, 2)) 5.52 (c, 4H, CH, (C, 2)) 5.52 (c, 4H)	(C_{13}) (C-2), 122.4, 129.8, 131.5, 136.4 (aromatic carbons) (C-5), 162.9 (C-2), 122.4, 129.8, 131.5, 136.4 (aromatic carbons)
120	$3.05 (8, 4H, CH_2(C-2)), 3.52 (8, 4H, CH_2(C-5)), 5.05 (8, 4H, Ar-CH_2), 7.22-7.51 (m, 8H, Ar-H)$	55.8 (CH ₂ -(C-2)), 59.2 (CH ₂ -(C-3)), 01.3 (AI-CH ₂), 102.8 (C-3), 163.7 (C-2), 123.4, 128.3, 132.9, 135.7 (aromatic carbons) 55.5 (CH ₂ (C-2)), 60.4 (CH ₂ (C-5)), 63.8 (Ar-CH ₂), 17.4 (C-5),
13a 13b	3.11 (s, 4H, CH ₂ -(C-2)), 5.36 (s, 4H, CH ₂ -(C-3)), 5.72 (s, 4H, Ar-CH ₂), $7.16-7.49$ (m, 10H, Ar-H) 2.31 (s, 6H Ar-CH) 5.09 (s, 4H CH (C 2)) 5.47 (s, 4H CH	5.5. $(CH_2^{-1}(-2)), 0.5 + (CH_2^{-1}(-5)), 0.5.8 (AI-CH_2), 170.4 (C-5), 178.6 (C-2), 124.9, 126.9, 130.7, 131.9 (aromatic carbons) 26.7 (Ar-CH_2) 55.7 (CH_2^{-1}(-2)), 59.8 (CH_2^{-1}(-5)), 62.7 (Ar-CH_2) 175.3 (AI-CH_2^{-1}(-5)), 62.7 (Ar-CH_2^{-1}(-5)), 62.7 (Ar-C$
130	$(C-5)$, $(5, 72)$ (s, $4H$, $Ar-CH_2$), $(7, 74)$, $($	(C-5), 177.9, (C-2), 124.2, 126.8, 132.9, 137.3 (aromatic carbons) (S-5), (C+1), (C-2), 124.2, 126.8, 132.9, 137.3 (aromatic carbons)
14a	$Ar-CH_2$, 7.23–7.53 (m, 8H, Ar-H) 507 (s. 4H, CH ₂ -(C-3)), 5.51 (s. 4H, CH ₂ -(C-5)), 5.55 (s. 4H)	178.2 (C-2), 125.6, 127.9, 133.2, 136.8 (aromatic carbons) 3.8 (CH ₂ -(C-2)), 59.5 (CH ₂ -(C-5)), 62.5 (Ar-CH ₂), 153.8 (C-5)
14h	Ar-CH ₂), 5.62 (bs, 4H, NH ₂), 7.10–7.47 (m, 10H, Ar-H) 227(6 6H Ar-CH ₂), 5.04 (c, 4H CH ₂ -(C, 5))	164.2 (C-3), 124.6, 125.4, 131.6, 132.9 (aromatic carbons) 258(4r-CH.) 59.0 (CH. (C-3)) 59.3 (CH. (C-5)) 62.2 (4r-CH.) 154.7
14c	5.60 (s, 4H, Ar-CH ₂), 5.64 (bs, 4H, NH ₂), 7.67 (s, 4H, CH ₂ (\sim 5)), 5.14 (s, 4H, Ar-CH ₂), 5.54 (bs, 4H, NH ₂), 7.67 (m, 8H, Ar-H)	(C-5), 163.9 (C-3), 123.2 (217.(C-3)), 0.12 (217.(C-5)), 0.22 (217.(C-5)), 0.13.9 (C-3), 123.2 (125.0, 131.0, 137.1 (aromatic carbons)) 54.3 (CH-(C-3)), 60.2 (CH-(C-5)), 63.5 (ArcCH-) 154.8 (CF-)
140	Ar-CH ₂), 5.66 (bs, 4H, NH ₂), 7.17–7.52 (m, 8H, Ar-H)	165.0 (C-3), 124.9, 125.7, 132.6, 135.7 (aromatic carbons)

Journal of Heterocyclic Chemistry

CONCLUSION

A new class of bis(5-aryl-1,3,4-oxadiazolyl/thiadiazolyl/ 1,2,4-triazolylmethyl)sulfones and bis(5-arylmethanesulfonyl methyl-1,3,4-oxadiazolyl/thiadiazolyl/1,2,4-triazolyl methyl) sulfones were synthesized by exploiting the ester functionalities in aryl acid methyl ester and arylmethanesulfonylacetic acid methyl ester adopting simple and well-versed methodologies. All the new compounds were characterized by spectral parameters and elemental analyses.

EXPERIMENTAL

General. Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by TLC (silica gel H, BDH, hexane/ethyl acetate, 3:1). The IR spectra were recorded on a Thermo Nicolet IR 200 FT-IR spectrometer as KBr pellets, and the wave numbers were given in cm⁻¹. The ¹H NMR spectra were recorded in CDCl₃/DMSO-*d*₆ on a Brucker-400 spectrometer (400 MHz). The ¹³C NMR spectra were recorded in CDCl₃/DMSO-*d*₆ on a Brucker spectrometer operating at 100 MHz. All chemical shifts are reported in δ (ppm) using TMS as an internal standard. The mass spectra were recorded on Finnigan Mat 1210 B at 70 eV with an emission current of 100 μ A. The microanalyses were performed on a Perkin-Elmer 240C elemental analyzer. The starting compound sulfonyldiacetic acid (2) was prepared by the literature procedure [25].

Aryl acid hydrazide (5)/arylmethanesulfonylacetic acid hydrazide/(8): general procedure. To a solution of aryl acid methyl ester (4)/arylmethanesulfonylacetic acid methyl ester (7) (10 mmol) in methanol (6 mL), hydrazine hydrate (11 mmol), and three drops of pyridine were added and refluxed for 4–6 h. The reaction mixture was cooled, and the solid separated was collected by filtration, dried, and recrystallized from methanol.

Bis(5-aryl-1,3,4-oxadiazolylmethyl)sulfone (9)/bis(5-arylmeth anesulfonylmethyl-1,3,4-oxadiazolylmethyl)sulfone (12): general procedure. A mixture of sulfonyldiacetic acid (2) (1 mmol), aryl acid hydrazide (5)/arylmethanesulfonylacetic acid hydrazide (8) (2 mmol), and POCl₃ (7 mL) was heated under reflux for 8–10 h . The excess POCl₃ was removed under reduced pressure, and the residue was poured onto crushed ice. The solid separated was filtered washed with saturated sodium bicarbonate solution, followed by water. It was dried and recrystallized from ethanol.

Bis(5-aryl-1,3,4-thiadiazolylmethyl)sulfone (10)/bis(5-arylmeth anesulfonylmethyl-1,3,4-thiadiazolylmethyl)sulfone (13): general procedure. In a sealed test tube, the compound bis(5-aryl-1,3,4oxadiazolylmethyl)sulfone (9)/bis(5-arylmethanesulfonylmethyl-1,3,4oxadiazolylmethyl)sulfone (12) (2.5 mmol), thiourea (20 mmol), and tetrahydrofuran (5 mL) were taken and heated at 120–150°C in an oil bath for 22–24 h. After the reaction was completed, it was extracted with dichloromethane. The organic layer was washed with water, brine solution, and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the resultant solid was recrystallized from 2-propanol.

Bis(5-aryl(4-amino)-1,2,4-triazol-3-ylmethyl)sulfone (11)/bis (5-arylmethane sulfonylmethyl(4-amino)-1,2,4-triazol-3-ylmethyl) sulfone (14): general procedure. To a solution of 9/12 (1 mmol) in *n*-butanol (10 mL), hydrazine hydrate (6 mmol) was added and refluxed for 9–11 h. Then, KOH (4 mmol) was added to the reaction media, and the precipitate formed was filtered. The solid obtained was acidified with conc. HCl to $pH \approx 3$ and washed with water. It was dried and recrystallized from ethanol.

Acknowledgement. One of the authors Dr. A. Padmaja is thankful to *Council of Scientific and Industrial Research* (CSIR), New Delhi, for financial assistance under a major research project.

REFERENCES AND NOTES

[1] Prasit, P.; Wang, Z.; Brideau, C.; Chan, C.-C.; Charleston, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Léger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Thérien, M.; Vickers, P.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R. Bioorg Med Chem Lett 1999, 9, 1773.

[2] Keshari, K. J.; Abdul, S.; Yatendra, K.; Mohd, S.; Ratan, L. K.; Jainendra, J.; Vikash, K.; Priyanka, S. Eur J Med Chem 2010, 45, 4963.

[3] Chen, C. J.; Song, B. A.; Yang, S.; Xu, G. F.; Bhadury, P. S.; Jin, L. H.; Hu, D. Y.; Li, Q. Z.; Liu, F.; Xue, W.; *et al.* Bioorg Med Chem 2007, 15, 3981.

[4] Tandon, V. K.; Chhor, R. B. Synthetic Comm 2001, 31, 1727.
[5] Liras, S.; Allen, M. P.; Segelstein, B. E. Synthetic Comm 2000, 30, 437.

[6] Tully, W. R.; Cardner, C. R.; Gillespie, R. J.; Westwood, R. J Med Chem 1991, 34, 2060.

[7] Bentis, F.; Lagrenee, M. J Heterocycl Chem 1999, 36, 1029.

[8] De Oliveira, C. S.; Lira, B. F.; Barbosa-Filho, J. M.; Fernandez Lorenzo, J. G.; de Athayde Filho, P. F. Molecules 2012, 17, 10192.

[9] Palaska, E.; Sahin, G.; Kelicen, P.; Durlu, N. T.; Altinok, G. II Farmaco 2002, 57, 101.

[10] Schenone, S.; Brullo, C.; Bruno, O.; Bondavalli, F.; Ranise, A.; Filippelli, W.; Rinaldi, B.; Capuano, A.; Falcone, G. Bioorg Med Chem 2006, 14, 1698.

[11] Wang, X. X.; Li, Z.; Da, Y. X.; Chang, J. C. Indian J Chem 2001, 40B, 422.

[12] Hull, J. W.; Romer, D. R.; Podhorez, D. E.; Ash, M. L.; Brady, C. H. Beilstein J Org Chem 2007, 3, 23.

[13] Wang, B. L.; Liu, X. H.; Zhang, X. L.; Zhang, J. F.; Song, H. B.; Li, Z. M. Chem Biol Drug Des 2011, 78, 42.

[14] Aggarwal, N.; Kumar, R.; Dureja, P.; Khurana, J. M. Eur J Med Chem 2011, 46, 40890.

[15] Al-Omar, M. A.; Al-Abdullah, E. S.; Shehata, I. A.; Habib, E. E.; Ibrahim, T. M.; El-Emam, A. A. Molecules 2010, 15, 2526.

[16] Stocks, M. J.; Cheshire, D. R.; Reynolds, R. Org Lett 2004, 6, 2969.

[17] Bordner, C. A. U.S. Patent 2,600,689, June 10, 1952. Chem Abstr 1953, 47, 4373.

[18] Van Tamelen, E. E. J Am Chem Soc 1951, 73, 3444.

[19] Price, C. C.; Kirk, P. F. J Am Chem Soc 1953, 75, 2396.

[20] Culvenor, C. C.; Davies, W.; Savige, W. E. J Chem Soc 1952, 4480.

[21] Linganna, N.; Lokanatha Rai, K. M. Synthetic Comm 1998,

28, 4611.

[22] Kiyoshi, F.; Senji, T. Chem Pharm Bull 1960, 8, 908.

[23] Padmavathi, V.; Thriveni, P.; Padmaja, A. J Chem Res (S) 2004, 556.

[24] (a) Mahabooob Basha, N.; Seenaiah, D.; Padmaja, A.; Padmavathi, V.; Suresh Bhargav, D.; Vijaya, T. Arch Pharm Res 2013, 347, 54; (b) Padmavathi, V.; Nagi Reddy, S.; Dinneswara Reddy, G.; Padmaja, A. Eur J Med Chem 2010, 44, 4557; (c) Padmaja, A.; Muralikrishna, A.; Rajasekhar, C.; Padmavathi, V. Chem Pharm Bull 2011, 59, 1509.

[25] Bearse, A. E. U.S. patent, C.A. 1947, 41, 7412.