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ABSTRACT: Metal-hydride hydrogen atom transfer 
(MHAT) functionalizes electronically unbiased alkenes 
with predictable branched (Markovnikov) selectivity. 
The breadth of these transformations has been confined 
to π-radical traps; no sp3 electrophiles have been 
reported. Here we describe a Mn/Ni dual catalytic 
system that hydroalkylates unactivated olefins with 
unactivated alkyl halides, yielding aliphatic quaternary 
carbons.

Olefins represent versatile feedstocks and 
intermediates for chemical synthesis. Metal-hydride 
hydrogen atom transfer (MHAT) has emerged as a 
useful reaction platform for the branched-selective 
hydrofunctionalization of olefins. Its high 
chemoselectivity for olefins and mild reaction conditions 
have allowed its deployment in medicinal chemistry and 
natural product synthesis.1 The bulk of these 
transformations involve carbon–heteroatom bond 
formation, whereas intermolecular C–C formation has 
been relatively unexplored and has largely required 
stoichiometric radical traps by π-electrophiles. 
Pioneering advances in the formation of C–C bonds are 
represented by hydrocyanations and hydrooximation 
from Carreira2 and Boger.3 More recently, Baran and 
coworkers developed a powerful variant of the Giese 
reaction4,7d as well as a two-step procedure for 
hydromethylation (Figure 1A).5 Finally, our group6 and 
others7 have investigated the branched-selective 
hydroarylation of olefins using MHAT, establishing 
olefins as progenitors for arylated quaternary centers. 

One contributing factor to the limited range of 
Markovnikov hydro-alkylations is a dearth of alkyl 
radicalophiles. Whereas MHAT has relied historically 
on stoichiometric radical traps such as O2,1a our group 
has become interested in combining MHAT with a 
second catalytic cycle, thereby expanding the variety of 
coupling partners.1b Recently, we established a dual 

catalytic platform to allow for the hydroarylation of 
unactivated olefins6b,c as well as the addition of 
carbanion surrogates to aldehydes,8 yielding branched-
selective products otherwise inaccessible by tradition 
radical reactions. A dual catalytic approach for the 
hydroalkylation of olefins would allow us to use known 
alkyl coupling partners (e.g. alkyl halides9, carboxylic 
acids10) in lieu of alkyl radical traps, and cross a 
longstanding methodological gap. 
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Figure 1. Prior hydroalkylation reactions using (a) 
MHAT and (b) Ni catalysis.

Markovnikov hydroalkylation would also provide a 
new transform to dissect quaternary carbons, which 
remain challenging motifs in natural products and drug 
scaffolds. While radical chemistry has emerged as a 
useful platform for the construction of sterically 
congested motifs,11,12 sp3–sp3 cross-coupling remains an 
underdeveloped area for quaternary carbon 
formation.9a,13 The use of nickel catalysis to generate 
and engage open-shell intermediates has been 
revolutionized by Fu,9a,14 but its use in the construction 
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of quaternary carbons has only recently been 
described,6c,15,16 with the development of alkylation 
reactions restricted to stabilized radicals17 or Giese 
reactions.18 Recently, olefins have become viable 
coupling partners in reductive coupling19 and nickel 
catalysis as surrogates for organometallic reagents.17,20 

Whereas these nickel hydride-mediated methods yield 
anti-Markovnikov (linear) hydrofunctionalized products, 
MHAT dual catalysis provides access to branched 
products, even quaternary carbons, using similarly 
benign starting materials and conditions (Figure 1B). 
Herein we describe an approach for the hydroalkylation 
of unactivated olefins using Mn/Ni dual catalysis.
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     Entry Deviations from Above Yield %a

1 none 77 (72)b

2 Fe(dpm)3 instead of Mn(dpm)3 0 (20)c

3 no Mn(dpm)3 none
4 no Ni(acac)2 20 (trace)d

5 no K2CO3 55
6 no HFIP 36
7 no propylene carbonate (PC) 55
8 iPrOH instead of HFIP 54
9 Ph(i-PrO)SiH2 instead of PhSiH3 50 (27)c

Figure 2. (a) Plausible catalytic cycle for the 
hydroalkylation of olefins. (b) Optimization parameters. 
a0.1 mmol scale, yield determined by GC-FID using 
1,3,5-trimethoxybenzene as an internal standard. b0.3 
mmol scale, isolated yield 15:1 branched (b): linear (l) 
product. cno HFIP. dusing 2-iodoethyl benzoate instead 
of 1. dpm=dipivaloylmethane; HFIP=1,1,1,3,3,3-
hexafluoro-2-propanol; 1,2-DCE=1,2-dichloroethane; 
PC=propylene carbonate

Our previous method to form arylated quaternary 
centers6c led us to hypothesize that our reaction design 
might translate to alkylation. Namely, an MHAT-
generated tertiary radical or organometallic could be 
intercepted by a low valent nickel species, which could 
subsequently engage with an alkyl halide (or alkylnickel 
species) and yield our desired product upon reductive 
elimination (Figure 2A).10b,21 Regeneration of low valent 
nickel may proceed through formation of Ni–H via 
silane or Mn–H.

A successful Markovnikov olefin coupling would 
require an override of the inherent anti-Markovnikov 
migratory insertion found in Liu20a and Fu’s17 Ni–H 
systems. Unfortunately, initial attempts to utilize our 
Fe/Ni system6c that provides such override yielded only 
trace product (Figure 2B). A polar solvent screen, 
however, indicated propylene carbonate (PC)22 was 
superior to N-methylpyrrolidinone (NMP). Curiously, 
PC as a co-solvent obviated the need for Mn0 and MnO2 
co-reactants, which we proposed to turn over the 
catalytic cycles. Instead the reaction could be run open 
to air.23 

Alkyl iodides coupled efficiently, whereas alkyl 
bromides, redox active esters, and sulfones yielded trace 
or no product (see SI). A screen of MHAT catalysts 
indicated that Mn(dpm)324 outperformed Fe(dpm)3 and 
Co(dpm)2. We did observe some product formation in 
the absence of Ni, but this background reactivity did not 
prove general and the yield could not be improved 
without the Ni co-catalyst.  Similar to our arylation 
chemistry, traditional mono-, di- and tridentate ligands 
on Ni either provided no improvement in yield or 
ablated reactivity. Preparatively-useful yields were 
finally obtained with alcoholic additives: isopropanol led 
to marginal improvement and HFIP was found to almost 
double the yield. Due to decreased efficiency observed 
with Ph(iPrO)SiH2, it is unlikely that the improved yield 
is due to an alcohol-silane complex. However, a 
noticeable color change from black to rust-red occurs 
when HFIP/K2CO3 is added to Mn(dpm)3 in the absence 
of silane. Attempts to isolate and characterize this 
complex were unsuccessful. We cannot rule out the 
formation of a dimeric species bridged by the alcohol 
additive.7d,25

With optimized conditions in hand we began to 
investigate the breadth of olefin compatibility (Table 1, 
2–28). The para-methoxybenzyl ester of 4-iodobutyric 
acid (1) allowed the clear identification of products by 
both UV/VIS and mass spectrometry.26 While our 
interest was on the formation of quaternary centers, we 
were pleased to find that all variants of olefin 
substitution were well-tolerated (2–10) and even 
tetrasusbtituted olefins coupled, albeit in diminished 
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yield. Overall, the transformation exhibited exquisite 
regiocontrol with tri- and tetrasubstituted olefins 
yielding products with high branched-to-linear ratios 
(b:l), highlighting the selectivity of our developed 
method. Whereas trisubstituted olefins generally 
afforded higher regioselectivity than their exocyclic 
counterparts (3a vs 3a’), 5-membered rings with 
exocyclic alkenes retained the normally high branched-

selectivity (15), potentially a result of increased rate of 
MHAT due to strain release. Interestingly, terminal 
olefins (8–10) were subject to a background linear 
reaction, a trend also noted by Carreira with Mn(dpm)3-
mediated transformations.27 Three hypo-

Table 1. Hydroalkylation Olefin Scopea
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I

Mn(dpm)3 (20–40 mol %)
Ni(acac)2 (2.5–10 mol %)

PhSiH3 (3 equiv)

HFIP (2 equiv), K2CO3 (1 equiv)
1,2-DCE/Propylene Carbonate, rt
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20b (61% from 
65% from 

3:1 ring open : ring closed) 21b (71%, >20:1 b:l) 22b (30%, 7:1 b:l)
23b (42%, 4:1 d.r.,

7:1 b:l)

dihydrocarvone 18a limonene oxide 19a - (20a) & -pinene 20a’ -citronellol 21a isopulegol 22a 3-carene 23a
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 a0.3 mmol scale, isolated yield, see SI for specific catalyst loading. b:l= branched/linear ratio. breaction run under an 
air balloon. c5 equiv of olefin added in 2 portions (2.5 equiv at start and 2.5 equiv at 24 h). 

Page 4 of 9

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

theses may explain this aberrant selectivity: a 
background Ni-only mediated pathway, analogous to 
reactivity observed by Liu,20a lowered regioselectivity 
of MHAT itself due to similar potential energies of 
developing C-centered radicals, or a competitive 
hydrometallation pathway mediated by low valent 
manganese.28 

The reaction displayed high functional group 
compatibility in its tolerance of esters (11, 13, 21, 26), 
phthalimides (14), carbamates (4, 15, 26), silyl enol 
ethers  (16), boronic esters (17), and epoxides (19). 
Interestingly, the reaction with alkenes proceeded 
with high chemoselectivity even in the presence of a 
primary alkyl bromide (12), which did not engage in 
the reaction or undergo protodehalogenation. 
Although primary (21) and secondary alcohols (22) 
required protection under the reaction conditions due 
to competitive silylation, tertiary alcohols did not 
affect catalysis (24). Heteroatom substitution29 on or 
adjacent to the alkene was well tolerated (16, 17, 25), 
but, in general, remotely-functionalized alkenes 
returned the highest yields (e.g. 21) and proximal 
branching lowered efficiency (22, 28). 

The abundance and diversity of olefins from 
commercial sources allowed a rapid survey of alkene 
scope. We were pleased to observe that a variety of 
natural product scaffolds (18–28) could be cleanly 
alkylated. A range of simple to complex terpenoids 
were successfully employed, which constitutes a new 
utilization of the chiral pool and potential access to 
new flavors and fragrances. The transformation of 
terpenes, whose hallmark features often are 
electronically unbiased,30 hindered alkenes, have 
benefited immensely from MHAT 
methodology,1,4,6,7d,29 and served as particularly 
efficient scaffolds for this methodology. Notably, 
limonene oxide (19a) and 3-carene (23b) were both 
hydroalkylated with their scaffolds intact: no 
retrocyclization of the epoxide or cyclopropane motifs 
was observed. Pinene (20), on the other hand, 
predominantly underwent ring opening (3:1 ring 
opened: closed ratio) and yielded alkylated limonene 
derivative (20b), which did not undergo further 
hydrogenation of the resulting trisubstituted olefin.31 
In some cases, alkylation noticeably altered the odor 
of these scaffolds, as was the case with rose oxide 
(25), which underwent alkylation with high branched 
selectivity. Substrates that contained

Table 2. Alkyl Halide Scopea
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a0.3 mmol scale, isolated yield, see SI for specific catalyst loading. b:l= branched/linear ratio. b0.1 mmol scale. 
cisolated as a mixture with hydrogenation, yield determined by NMR. Further purified by prep HPLC.

existing stereocenters exhibited modest stereoselectivity, 
as was the case with terpineol (24b) and carene (23b). 

This method allowed the union of diverse metabolic 
building blocks (terpenes, amino acids, sugars) by strong 
covalent bonds. In addition to terpenes, ketide-like 
fragments corresponding to oxygen-polarized carbon-
chains could be appended. This merger complements 
Giese reactivity, which yields β-substitution, whereas 24 
and 25 correspond to γ- and α-connections relative to a 
latent carbonyl. Allylglycine (26) proved a poor 
substrate (amino acids could be incorporated efficiently 
in Table 2, see below), but glucals coupled efficiently 
and yielded the C-glycoside product (27) as a single 
diasteromer.32,33 Furthermore, a single diasteromer of 
estrone derivative 28b was observed, remarkably 
forming vicinal quaternary centers, albeit in reduced 
yield.

A diverse range of alkyl halides successfully 
coupled to form quaternary carbon centers (Table 2, 29–
48). Sensitive functional groups like acetals (43) and 
nitrogen containing heterocycles (33) were unaffected 
by the coupling. Numerous simple alkyl chains could be 
appended to affect hydromethylation, ethylation, and 
pentylation reactions with similar efficiency. Ethylation 
of terpineol (37) resulted in a marked change in 
fragrance: from the sharp pine parent compound odor to 
a less-pungent musty, citrus. Methyl-d3 iodide was also 
compatible under the reaction conditions, providing the 
isotopically-mixed geminal dimethylpyrrolidine 35. 
More complex alkyl iodides also proceeded in good 
yield, allowing for one-step installation of sugar- and 
steroid-bearing motifs 45 and 46. Prenyl groups are 
important motifs found in natural products. While prenyl 
bromide displayed poor reactivity due to competitive 
MHAT, we were pleased to find that prenyl surrogate, 4-
iodo-2-methylbutan-2-ol, yielded unnatural terpene 44 
with excellent selectivity. 

MHAT dual catalysis provides an orthogonal 
approach to phthalimide containing compounds 30 and 
36.34 Phthalimide 36 has previously been accessed 
through disconnection at the quaternary center using a 
Cu-nanoparticle catalyzed Kumada coupling with the 
tert-alkyl Grignard.35,36 Phthalimide 31, previously 
accessed in 5 steps from dimedone, has been described 
in the patent literature in the development of drugs for 
the treatment of inflammatory disorder and microbial 
disease.37 Conversely, our method allows direct access 
to the quaternary center, yielding 30 in two steps after 
deprotection. 

Stereochemistry on the alkyl iodide was found to 
translate well to the products, with no epimerization 
observed in the case of the iodoalanine (39), proline (40) 
or sugar substrates (45). Importantly, the use of 
iodoalanine provides enantiomerically pure access to 
unnatural amino acid 39, providing an orthogonal 
approach to the racemic conjugate addition product from 
dehydroalanine. 

Whereas benzyl iodides were poorly tolerated under 
the reaction conditions, we were please to find that 
benzyl bromides coupled in moderate yield (47, 48). 
Furthermore, benzyl electrophiles provide an intriguing 
disconnection. An sp2–sp3 bond scission would 
transform the product to an arene and neopentyl cross-
coupling partner, which retains structural complexity 
and oftentimes requires an organometallic reagent. 
Consequently, similar scaffolds have been accessed by 
formation of a mixed ketone, alkylation, and Wolff-
Kishner deoxygenation—overall a 7-step sequence.38 
Disconnection to the benzyl electrophile and alkene 
allows scission of the quaternary carbon in a logical and 
simplifying transform. 

While this method makes significant progress in the 
formation of sterically congested aliphatic centers, the 
transformation is sensitive to the steric environment on 
the alkyl halide. -Branching (49), neopentyl (50) and 
secondary alkyl iodides (51) were found to proceed in 
low yield, predominantly lost to competitive 
protodehalogenation. This could imply that oxidative 
addition or a more sterically congested Ni center 
impedes productive reductive elimination.

In summary, we have reported a Markovnikov-
selective hydroalkylation of unbiased olefins30 using 
diverse alkyl iodides and benzyl bromides. The 
combination of Mn-mediated MHAT catalysis and Ni 
catalysis enable an unprecedented synthesis of 
quaternary carbons. The mild reaction conditions and 
robust functional group compatibility support its utility 
for late stage modification of small molecules. Efforts 
are underway to expand this chemistry to more sterically 
congested centers and complex natural products. 
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The Supporting Information is available free of charge on 
the ACS Publications website.
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