UNUSUAL CONJUGATE ADDITION OF ORGANOLITHIUM REAGENT TO α, β -UNSATURATED KETONE

Keiji Maruoka, Katsumasa Nonoshita, and Hisashi Yamamoto* Department of Applied Chemistry, Nagoya University Chikusa, Nagoya 464, Japan

Abstract: The conjugate addition of organolithium reagent to α,β -unsaturated ketone has been accomplished with methylaluminum bis(2,6-di-tert-butyl-4-alkylphenoxide) (MAD and MAT). Here combination of alkyllithium and MAD (or MAT) constitutes an amphiphilic system that allows to exhibit unusual selectivity in the alkylation of enones with alkyllithium.

Conjugate addition to α,β -unsaturated ketone is mostly effected by soft organometallics (Cu, Ni, Zr. Zn, Al, etc.)¹ and the sole use of organolithium has never been developed in view of its hard nucleophilic character.² Here we wish to report an unusual example in the conjugate addition of organolithium reagent to α . β -unsaturated ketone.

A nucleophilic reaction to electrophilically activated substrate by combination with certain reactive nucleophile and Lewis acid, i.e. amphiphilic reaction,³ has been increasingly important in organic synthesis for obtaining unusual reactivity and selectivity not observable in ordinary electrophilic and/or nucleophilic reactions. Several recent reports indicated that $BF_2 \cdot OEt_2$ facilitated the addition of moderately basic main-group nucleophiles like organolithiums, Grignard reagents, and lithium enolates to a variety of electrophiles.⁴⁻⁷ Others observed the efficiency of Me₃SiCl and its analogues as Lewis acid in the organocopper-mediated conjugate addition to carbonyl compounds as well as deprotonation of ketones and esters. 8,9 Apparently, the choice of Lewis acid is crucial for generating new amphiphilic systems. Oxygenophilic organoaluminum compound that is capable of forming a stable 1:1 complex with carbonyl substrate seems to be quite expectable for this purpose.¹⁰ In fact, we have already reported that the exceptionally bulky, oxygenophilic organoaluminum reagents, methylaluminum bis(2,6-di-tert-butyl-4-alkylphenoxide) (MAD and MAT), have proved to exhibit the excellent diastereoface-differentiating ability (i.e. equatorial and <u>anti-Cram</u> selectivity) in carbonyl alkylation and reduction.^{3,11} Yet another, new example is the MAD- or MAT-facilitated conjugate addition of organolithium reagent to $\alpha_{,\beta}$ -unsaturated ketone.

Organolithium reagent normally adds to α, β -unsaturated ketone in a 1,2 fashion. For example, alkylation of 6-methyl-2-cyclohexenone with MeLi in ether at -78°C gave rise to 1,2 adducts (cis/trans = $\sim 1:1$) in 75% yield. However, initial complexation of the enone with MAD (2 equiv) followed by treatment with MeLi (2 equiv) at -78°C resulted in total reversal of selectivity,

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	entry	enone	RLi	1,4 adduct % yield ^b (c/t) ^C	1,2 adduct % yield <u>b</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	ç.	MeLi	68 (29:71) ^g	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	\searrow	<u>n</u> -BuLi <u>d</u>	59 (17:83) <u>h</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3		<u>t</u> -BuLi	73 (18:82) <u>g</u>	
5 $CH_2=C(OBu^{t})OLi^{\underline{C}}$ 87 (10:90) ^{<u>h</u>} 6 $\stackrel{\bullet}{\downarrow}$ MeLi 70 7 $\stackrel{\bullet}{\downarrow}$ MeLi 0 $77^{\underline{h}}$ 8 $\stackrel{\bullet}{\downarrow}$ MeLi 0 $77^{\underline{h}}$ 8 $\stackrel{\bullet}{\downarrow}$ MeLi 26 11 9 $\stackrel{\bullet}{\downarrow}$ MeLi 65 ^{<u>1</u>} 16 10 $\stackrel{\bullet}{\downarrow}$ MeLi 65 ^{<u>1</u>} 12 12 $\stackrel{\bullet}{\Box}$ MeLi 65 ^{<u>1</u>} 12 13 $\stackrel{\bullet}{\downarrow}$ MeLi j. 12 14 $\stackrel{\bullet}{\downarrow}$ MeLi 1 1 15 $\stackrel{\bullet}{\downarrow}$ MeLi 0 78 16 $\stackrel{\bullet}{\downarrow}$ MeLi 0 78 16 $\stackrel{\bullet}{\downarrow}$ MeLi 24 60 18 (<u>E</u>)-PhCH=CHC(=O)CH ₃ MeLi 0 78 18 (<u>E</u>)-PhCH=CHC(=O)CH ₃ MeLi 24 60 18 (<u>E</u>)-PhCH=CHC(=O)CH ₃ MeLi 24 60 19 <u>i</u> -BuLi 77 9 9 <	4		PhLi	71 (33:67) <u>h</u>	
6	5		CH ₂ =C(OBu ^t)OLi <u>e</u>	87 (10:90) <u>h</u>	
7	6	\rightarrow	MeLi	70	
8 $+$ MeLi 26 11 9 $+$ MeLi $65^{\frac{1}{2}}$ 16 10 $+$ MeLi $63^{\frac{1}{2}}$ 31 11 \pm 5^{-1} 12 12 12 $CH_2=C(Me)Li$ $75^{\frac{1}{2}}$ 12 13 $+$ MeLi 1 1 14 $+$ $+$ MeLi 1 15 $+$ $+$ $ 1$ 16 $+$ $+$ $ 1$ 17 (E)-PhCH=CHC(=0)CH_3 MeLi 0 78 18 (E)-PhCH=CHC(=0)CH_3 MeLi 24 60 19 MeLi 28 55 52 20 t t - t - 77 9	7	Ļ	MeLi	0	77 <u>k</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	+ U	MeLi	26	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	Ŷ	MeLi	65 <u>i</u>	16
11 \downarrow \underline{S} -BuLi $65^{\underline{i}}$ 12 12 $CH_2=C(Me)Li$ $75^{\underline{i}}$ 12 13 \downarrow MeLi \underline{i} 14 \downarrow MeLi \underline{j} 15 \downarrow MeLi 74 ($37:63$) ^{\underline{h}} 16 \downarrow \underline{j} MeLi 83 ($24:76$) ^{\underline{h}} 17 (<u>E</u>)-PhCH=CHC(=O)CH_3 MeLi 0 78 18 (<u>E</u>)-PhCH=CHC(=O)Ph MeLi 24 60 19 MeLi ^{\underline{f}} 28 55 20 <u>t</u> -BuLi 77 9	10		MeLi <u>f</u>	63 <u>i</u>	31
12 $CH_2=C(Me)Li$ 75^{1} 13 \downarrow $MeLi$ I 14 \downarrow $MeLi$ I 15 \downarrow $MeLi$ 74 ($37:63$) ^h 16 \downarrow L^{-BuLi} 83 ($24:76$) ^h 17 (E)-PhCH=CHC(=O)CH_3 MeLi 0 78 18 (E)-PhCH=CHC(=O)Ph MeLi 24 60 19 MeLi ^f 28 55 20 t-BuLi 77 9	11	\mathbf{Y}	<u>s</u> -BuLi	65 <u>-</u>	12
13 $\stackrel{\circ}{\downarrow}$ MeLi j 14 $\stackrel{\circ}{\downarrow}$ MeLi j 15 $\stackrel{\circ}{\downarrow}$ MeLi 74 (37:63) ^h 16 $\stackrel{\circ}{\downarrow}$ $\stackrel{\circ}{t}$ -BuLi 83 (24:76) ^h 17 (E)-PhCH=CHC(=O)CH ₃ MeLi 0 78 18 (E)-PhCH=CHC(=O)Ph MeLi 24 60 19 MeLif 28 55 20 t-BuLi 77 9	12		CH ₂ =C(Me)Li	75 <u>i</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	Ļ	MeLi	Ĺ	
15 9 MeLi 74 $(37:63)^{h}$ 16 t -BuLi 83 $(24:76)^{h}$ 17 (E)-PhCH=CHC(=O)CH ₃ MeLi 0 78 18 (E)-PhCH=CHC(=O)Ph MeLi 24 60 19 MeLif 28 55 20 t-BuLi 77 9	14	Ļ	MeLi	Ţ	
16 \underline{t} -BuLi 83 (24:76) ^h 17 (E)-PhCH=CHC(=O)CH ₃ MeLi 0 78 18 (E)-PhCH=CHC(=O)Ph MeLi 24 60 19 MeLi ^f 28 55 20 t-BuLi 77 9	15	Q	MeLi	74 (37:63) <u>h</u>	
17 (E)-PhCH=CHC(=0)CH ₃ MeLi 0 78 18 (E)-PhCH=CHC(=0)Ph MeLi 24 60 19 MeLi ^f 28 55 20 t-BuLi 77 9	16	Physic	<u>t</u> -BuLi	83 (24:76) <u>h</u>	
18 (\underline{E}) -PhCH=CHC(=O)PhMeLi246019MeLi $\frac{f}{}$ 285520 \underline{t} -BuLi779	17	(<u>E</u>)-PhCH≠CHC(=O)CH ₂	MeLi	0	78
19 MeLif 28 55 20 <u>t</u> -BuLi 77 9	18	 (E)-PhCH≠CHC(=O)Ph	MeLi	24	60
20 <u>t</u> -BuLi 77 9	19		MeLi <u>f</u>	28	55
	20		<u>t</u> -BuLi	77	9

Table I. Conjugate Addition of Alkyllithium to Enone in the Presence of MADa

^a Unless otherwise specified, alkylation was carried out at -78°C by adding RLi (2 equiv) to the enone (1 equiv)-MAD (2 equiv) complex in toluene. ^b Isolated yield. ^c Ratio of the cis and trans isomers. ^d As an ethereal solution. Use of <u>n</u>-BuLi in hexane gave 1,4 adduct in only 15% yield. ^e Prepared from CH₃COOBu^t and LDA in ether at -78°C. ^f Use of MAT in CH₂Cl₂ in place of MAD. ^g Determined by GC analysis. ^h Determined by ¹H NMR analysis. ⁱ The high trans selectivity (>95%), which referred to the stereochemistries of the 3,5-dialkyl substituents, was observed. ^j Total recovery of the enone under the standard condition. ^k Cis/trans = 14:86 by GC analysis.

conjugate adducts, 2,5-dimethylcyclohexanone (cis/trans = 29:71)¹² exclusively in 68% producing yield. None of the 1,2 adducts were detected by TLC analysis. Notably, treatment of the enone with a mixture of MeLi and MAD at -78° C afforded 1,2 adducts almost exclusively in 60% yield (cis/trans = \sim 1:1). This result implies that the initial ate complex formation by the attack of MeLi to MAD followed by conjugate addition to the enone seems to be unlikely, 13 The effect of exact stoichiometry in the reagent was also examined with MAD/t-BuLi system, and yields of the conjugate adducts with each 1.5, 2, and 3 equiv of MAD/t-BuLi under the similar conditions are 52, 73, and 77%, respectively. Hence, each 2 equiv of MAD/RLi can be satisfactorily utilized for other alkylation experiments. The preliminary results summarized in Table I show the following (1) The α , β -unsaturated ketone possessing the sterically less demanding carbonyl moiety, features. even when combined with MAD, is readily susceptible toward the nucleophilic attack of alkyllithium in a 1,2 fashion. The parent 2-cyclohexenone, 4-tert-butyl-2-cyclohexenone, and benzalacetone afforded only 1,2 adducts with MAD/RLi system (entries 7 and 17). Carvone, 2-methyl-2cyclohexenone, and chalcone gave a mixture of 1,2 and 1,4 adducts depending on the steric and/or electronic effect of alkyllithiums (entries 8-12 and 18-20). The similar tendency was also observed in the cyclopentenone system (entries 15 and 16). In contrast, attempted alkylation of 2,6-dimethyl-2-cyclohexenone and 3,5-dimethyl-2-cyclohexenone resulted in total recovery of the starting enones (entries 13 and 14). (2) A variety of alkyllithium reagents can be utilized. In addition, alkylation with lithium enolate appeared feasible (entry 5). Introduction of alkynyl group failed, however. Grignard reagents as nucleophile are less reactive to the enone-MAD complex, providing the conjugate adduct in much lower yield with some recovery of the enone. (3) The stereochemistry in the conjugate addition is mostly governed by the size of alkyl substituents on the cycloalkenones, and the trans isomer always predominated over the cis. This selectivity is complementary to that in the organocopper-mediated conjugate addition of 6-methyl-2-cyclohexenone, in which the cis isomer is obtained as a major product.¹⁴ (4) Use of nonpolar solvents such as toluene, CH_2Cl_2 , ether, or their mixtures gave consistently satisfactory results. (5) MAT may be equally employed in place of MAD (entries 10 and 19).

The following procedure for the synthesis of 2,5-dimethylcyclohexanone is illustrative. To a solution of 2,6-di-<u>tert</u>-butyl-4-methylphenol (440 mg, 2 mmol) in toluene (5 mL) was added a 2 M hexane solution of Me_3Al (0.5 mL, 1 mmol) and the resulting colorless solution was stirred at room temperature for 1 h. The mixture was then cooled to $-78^{\circ}C$ and 6-methyl-2-cyclohexenone (55 mg, 0.5 mmol) was added at this temperature to give the enone-MAD complex as an orange solution. Subsequent treatment of this complex with a 1.5 M ethereal solution of MeLi (0.67 mL, 1 mmol) at $-78^{\circ}C$ induced the immediate disappearance of the orange color. The reaction mixture was stirred at $-78^{\circ}C$ for 30 min and worked up with 10% HCl. The ethereal extracts were dried over Na_2SO_4 and evaporated. The residue was purified by column chromatography on silica gel (ether/hexane, 1:8 as eluant) to give 2,5-dimethylcyclohexanone (43 mg, 68% yield) as a colorless oil. The cis/trans ratio was determined by capillary GC to be 29:71.¹²

References and Notes

 (a) "Comprehensive Organometallic Chemistry"; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 7 and 8. (b) Posner, G. H. <u>Org. React.</u> 1972, <u>19</u>, 1. (c) Watson, R. A.; Kjonaas, R. A. <u>Tetrahedron Lett.</u> 1986, <u>27</u>, 1437, and references cited therein.

- (2) For restricted examples in the conjugate addition of organolithium to enone, see: (a) Mulzer, J.; Hartz, G.; Kühl, U.; Brüntrup, G. <u>Tetrahedron Lett.</u> 1978, 2949. (b) Lucchetti, J.; Dumont, W.; Krief, A.; <u>Ibid.</u> 1979, 2695. (c) Seebach, D.; Locher, R. <u>Angew. Chem. Int. Ed.</u> <u>Engl.</u> 1979, <u>18</u>, 957. (d) Roux, M. C.; Wartski, L.; Seyden-Penne, J. <u>Tetrahedron</u> 1981, <u>37</u>, 1927.
- (3) (a) Maruoka, K.; Itoh, T.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 4573. (b) Maruoka, K.; Sakurai, M.; Yamamoto, H. <u>Tetrahedron Lett.</u> 1985, 26, 3853. See also: Maruoka, K.; Yamamoto, H. <u>Angew. Chem. Int. Ed. Engl.</u> 1985, 24, 668.
- (4) Cleavage of epoxides with RLi/BF₃·OEt₂: (a) Eis, M. J.; Wrobel, J. E.; Ganem, B. J. Am. <u>Chem. Soc.</u> 1984, <u>106</u>, 3693. See also: (b) Yamaguchi, M.; Hirao, I. <u>Tetrahedron Lett.</u> 1983, <u>23</u>, 391. (c) Yamaguchi, M.; Nobayashi, Y.; Hirao, I. <u>Ibid.</u> 1983; <u>24</u>, 5121. (d) Brown, H. C.; Racherla, U. S.; Singh, S. M. <u>Ibid.</u> 1984, <u>25</u>, 2411.
- (5) Reaction of acetals with lithium enolates/BF₃·OEt₂: (a) Suzuki, M.; Yanagisawa, A.; Noyori, R. <u>Tetrahedron Lett.</u> 1982, 23, 3595. (b) Pelter, A.; Al-Bayati, R. <u>Ibid.</u> 1982, 23, 5229.
- (6) Alkylation of imines with RLi, RMgX, or lithium enolate/BF₃ · OEt₂: (a) Meltz, C. N.; Volkmann, R. A. <u>Tetrahedron Lett.</u> 1983, 24, 4503. (b) Volkmann, R. A.; Davis, J. T.; Meltz, C. N. J. Am. Chem. Soc. 1983, 105, 5946.
- (7) The BF₃·OEt₂ facilitated addition of organocopper nucleophiles to various electrophiles was advanced by Yamamoto and Maruyama. Maruyama, K.; Yamamoto, Y. J. Am. Chem. Soc. 1977, 99, 8068; 1978, 100, 3240. For reviews, see: Yamamoto, Y. J. Syn. Org. Chem., Jpn. 1986, 44, 829; Angew. Chem. Int. Ed. Engl. 1986, 25, 947.
- (8) (a) Corey, E. J.; Boaz, N. W. <u>Tetrahedron Lett.</u> 1985, <u>26</u>, 6015, 6019. (b) Horiguchi, Y.; Matsuzawa, S; Nakamura, E.; Kuwajima, I. <u>Ibid.</u> 1986, <u>27</u>, 4025. (c) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. <u>Ibid.</u> 1986, <u>27</u>, 4029. (d) Alexakis, A.; Berlan, J.; Besace, Y. <u>Ibid.</u> 1986, <u>27</u>, 1047. (e) Linderman, R. L.; Godfrey, A. <u>Ibid.</u> 1986, <u>27</u>, 4553. (f) Johnson, C. R.; Marren, T. J. <u>Ibid.</u> 1987, <u>28</u>, 27.
- (9) Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495.
- (10) Mole, T.; Surtees, J. R. Aust. J. Chem. 1964, 17, 961.
- (11) For an amphiphilically activated reduction of imines with Me₃Al/LiAlH₄ system, see: (a) Matsumura, Y.; Maruoka, K.; Yamamoto, H. <u>Tetrahedron Lett.</u> 1982, 23, 929. (b) Maruoka, K.; Miyazaki, T.; Ando, M.; Matsumura, Y.; Sakane, S.; Hattori, K.; Yamamoto, H. <u>J. Am.</u> <u>Chem. Soc.</u> 1983, 105, 2831.
- (12) Bartlett, P. D.; Schueller, K. E. J. Am. Chem. Soc. 1968, 90, 6077.
- (13) Conjugate addition of lithium (<u>E</u>)-1-alkenyltrialkylaluminate to cyclopentenones has been developed in prostaglandin synthesis with limited synthetic utility in view of several side reactions including the undesired alkyl transfer, conjugate reduction, and anionic oligomerization of cyclopentenones: Bernady, K. F.; Weiss, M. J. <u>Tetrahedron Lett.</u> 1972, 4083; Floyd, M. B.; Weiss, M. J. <u>Prostaglandins</u> 1973, <u>3</u>, 921; Bernady, K. F.; Poletto, J. F.; Weiss, M. J. <u>Tetrahedron Lett.</u> 1975, 765; Floyd, M. B.; Weiss, M. J. <u>J. Org. Chem.</u> 1979, <u>44</u>, 71; Bernady, K. F.; Floyd, M. B.; Poletto, J. F.; Weiss, M. J. <u>Ibid.</u> 1979, <u>44</u>, 1438. The Ni(acac)₂ catalyzed conjugate methylation of enones by lithium tetramethylaluminate has been also reported: Ashby, E. C.; Heinsohn, G. J. Org. Chem. 1974, <u>39</u>, 3297.
- (14) The isomeric ratio of cis/trans is 7:3 in the conjugate methylation of 6-methyl-2cyclohexenone with Me₂CuLi.
 (Received in Large 21 7 1 1007)

(Received in Japan 21 July 1987)