
•COMMUNICATIONS• https://doi.org/10.1007/s11426-019-9501-4
SPECIAL ISSUE: Organic Free Radical Chemistry

Nickel-catalyzed reductive coupling of glucosyl halides with
aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl

glucosides
Jiandong Liu, Chuanhu Lei* & Hegui Gong*

School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry,
Shanghai University, Shanghai 200444, China

Received April 11, 2019; accepted May 13, 2019; published online June 18, 2019

This work describes stereoselective preparation of β-C-aryl/vinyl glucosides via mild Ni-catalyzed reductive arylation and
vinylation of C1-glucosyl halides with aryl and vinyl halides. A broad range of aryl halides and vinyl halides were employed to
yield C-aryl/vinyl glucosides in 42%–93% yields. Good to excellent β-selectivities were obtained for C-glucosides by using
tridentate ligand.
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C-glycosides embody an important class of bioactive com-
pounds found in nature and commercial drugs [1]. The
prestigious examples of natural products include (+)-varitriol
(anticancer activities) [2], Aspalathin (antimutagenic and
antioxidant properties) [3] and Salmochelins (e.g., Sal-
mochelin S1 as a metabolite of the ferric-binding side-
rophores) (Figure 1) [4]. C-glycosides are inert towards the
metabolic processes as compared to their O-counterparts,
where a plethora of C-glycosides were synthesized as potent
therapeutic agents [5]. Among them, canagliflozin (In-
vokana), empagliflozin (Jardiance) and dapagliflozin (Far-
xiga) have been widely used for the treatment of type-2
diabetes (Figure 1) [6].
The cross-coupling methods to access fully oxygen satu-

rated β-C-glycosides, in particular β-C-glucosides, often re-
quire transition-metal-catalysis (Scheme 1) [7–16]. Gagné
first utilized Ni-catalyzed Negishi strategy for the coupling
of C1-glycosyl halides with alkyl- and aryl-Zn reagents,

which delivered high β-selectivities for C-aryl glucosides
(Reaction (1)) [7,8]. Knochel et al. [9] employed Ar2Zn as
the organometallic nucleophiles under catalyst-free condi-
tions to react with glucosyl bromide (Reaction (1)). The re-
action generates C-aryl glucosides with excellent β-
selectivities. By contrast, Walczak et al. [12,13] disclosed
that C1-glycosyl stannanes underwent an excellent stereo-
retentive cross-coupling reaction with aryl halides (Reaction
(2)). Recently, our group [14] developed a method employ-
ing pyridine/DMAP as ligand to prepare α-C-vinyl/aryl
glycosides via nickel-catalyzed reductive coupling of gly-
cosyl halides with vinyl and aryl halides in mild conditions.
Such a method adds a new entry to α-selective preparation of
C-glycosides as compared to the concurrent protocols that
generally produce moderate α-selectivities for arylation of
C1-glucosyl bromide [10,11].
Herein, we report efficient preparation of β-C-aryl and

-vinyl glucosides and galactosides using Ni-catalyzed cross-
electrophile coupling strategy (Reaction (3), Scheme 1) [17].
This work features a ligand-controlled β-selective construc-
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tion of C-glucosides and represents a rare example for
transition metal-catalyzed stereoselective preparation of C-
vinyl glucosides/galactosides. The application of this method
was manifested by expeditious access to the intermediates of
Salmochelin derivatives and a commercial anti-diabetes drug
canagliflozin [4,6].
We commenced our work with the reaction of Ac-pro-

tected glucosyl bromide 1 and methyl 4-iodobenzoate. Ex-
tensive examination revealed a combination of Ni/tBu-
Terpy/Zn in tetrahydrofuran (THF) at 15 °C to be optimal,
with which C-aryl glucoside 2a was obtained in 85% yield
with an α/β ratio of 1:12 (Table 1, entry 1) [18]. Other nickel
sources and ligands, as well as solvents did not give a better
result (entries 2–7). Without nickel catalyst and ligand, or
without the ligand only no desired product was detected
(entries 8 and 9). When one equivalent of MgCl2 was used,
similar yield but lower β-selectivity was observed, indicating
MgCl2 can interfere β-selectivity, likely due to halide ex-
change within the aryl-Ni intermediates (entry 10) [14].
Keeping the temperature at 15 °C appeared to be crucial to

high yields (entries 11–13).
To further probe the applicability of the present method,

coupling of a range of substituted aryl iodides with Ac-
protected glucosyl bromide 1 was carried out using method
A. As shown in Figure 2, compounds 2b–2ewere obtained in
good to excellent yields with high β-selectivities. Compound
2f bearing less electron deficient substituents was obtained in
a good yield and high β-selectivity, which is the Ac-protected
commercial drug empagliflozin for type-2 diabetes [6]. Use
of 3-iodothiophene as coupling partner gave 2g in a moderate
yield and excellent β selectivity. Aryl iodides decorated with
meta-bomo furnished 2h with good yield and selectivity,
which is useful for further functionalization. For electron-
rich and -neutral arenes, method A also yielded moderate to
good yields and high β-selectivities by employing 15 mol%
MgCl2, as exemplified by 2i–2m. For the low-yielding re-
actions, we observed that the formation of glucal accounted
for the mass balance for glucosyl bromides, whereas hy-
drodehalogenation by-products did for aryl halides. We
reason that MgCl2 is required to activate Zn and reduce
Ni(II) to Ni(0), particularly in the cases of electron-rich aryl
halides (Figure 2). We performed an experiment using
Ni(COD)2 as the precatalyst without addition of MgCl2

Figure 1 The representative examples of natural-occurring C-glycosides
and drugs for type II diabetes (color online).

Scheme 1 β-Selective preparation of C-aryl/vinyl-glucosides (color on-
line).

Table 1 Optimization for the formation of 2a a), b)

Entry a) Variation from the standard method A Yield b)

1 None 85% (1:12) c)

2 Ni(ClO4)2∙6H2O instead of Ni(acac)2 32% (1:11)

3 L1 instead of tBu-Terpy trace

4 L2 instead of tBu-Terpy N.D.

5 L3 instead of tBu-Terpy trace

6 DMAinstead of THF trace

7 DMFinstead of THF N.D.

8 w/o Ni(acac)2, w/o tBu-Terpy N.D.

9 Without tBu-Terpy N.D.

10 MgCl2 (100 mol%) 80% (1:3)

11 0 °C N.D.

12 21 °C 74% (1:12)

13 25 °C 66% (1:12)

a) Method A as in entry 1; b) yield determined by 1H NMR spectroscopy
using 2,5-dimethylfuran as an internal reference, and ratio in parenthesis
refers to α/β ratio; c) isolated yields.
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(Scheme S3, Supporting Information online), and similar
results for 2j were obtained. Without MgCl2, a control ex-
periment showed that no reaction occurred for 2j using
method A.
The utility of this work was further showcased by the

synthesis of β-2n and β-2o (Figure 3), which served as key
intermediates of Salmochelin derivatives (Fe3+-side-
rophores) and the precursor of a commercial drug canagli-
flozin for type-2 diabetes, respectively (Figure 4) [4,6,19].
Saponification of the latter provided canagliflozin in 90%
yield. Finally, a brief investigation of the scope of other
glycosyl halides for the coupling with 4-iodoanisole and 4-
iodobenzoate was explored. Arylation of benzyl-protected
glucosyl chloride with 4-iodoanisole in the presence of
15 mol% MgCl2 delivered 3 in 60% yield with a 1:5 of α/β
ratio. Galactosyl bromide displayed similar selectivities to
the glucosyl analogs (e.g., 4); high β selectivities were also
observed in 2-phthalimido glucosyl bromide (α/β=1:19) and
2,3,5-tri-O-aceto-D-ribofuranosyl chloride (e.g., 5 and 6).
We also investigate the preparation of β-C-vinyl glyco-

sides using the same coupling protocol. It was noted that
vinyl halides are generally more prone to dimerization as
compared to aryl counterparts [20]. Thus, coupling of Piv-
protected glucosyl bromide 7 with E-8 under Ni(acac)2/tBu-
Terpy/Zn/MgCl2/THF conditions provided 9a in an optimal
65% yield with an α/β ratio of 1:8 (Figure 4, method B). By
contrast, the acetyl-protected glucosyl bromide 1 gave 78%
yield with an α/β ratio of 1:3 (Table S2, Supporting In-
formation online) [18]. The aryl moiety bearing 4-CO2Me
within the styrene resulted in an enhanced yield, whereas a
MeO-group was slightly inferior without eroding the ste-

Figure 2 Scope of the aryl iodides. Yield refers to as isolated yield, and
ratio in parenthesis refers to α/β ratio (color online). Figure 3 Selective preparation of β-C-aryl-glycosides. Yield refers to as

isolated yield, and ratio in parenthesis refers to α/β ratio (color online).

Figure 4 Selective preparation of β-C-vinyl-glycosides. Yield refers to as
isolated yield, and ratio in parenthesis refers to α/β ratio (color online).
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reoselectivity, as evidenced by 9b and 9c (Figure 4). Method
B was also effective for the construction of Piv-protected β-
C-galactosides (e.g., 10a–10c), but not for β-mannoside 11.
Only the α-anomer was isolated, suggesting that substrate-
controlled stereochemistry dictates in this case. With slight
modifications, method B was suited for alkyl-substituted
vinyl and dienyl bromides furnishing β-selective preparation
of 12a–12c (Figure 4). In these cases, 1 was more effective
than 7, possibly due to enhanced reactivity of the former
arising from less steric hindrance. A quick application of the
vinyl product β-12a was conducted by hydrogenation to af-
ford the reduction product 13. It was noted that the pre-
paration of C-alkyl glucosides with good control of α- and β-
selectivities remains a challenge [7].
According to previously reported Ni-catalyzed reductive

cyclization/coupling of alkyl halides [11,14], coupling of 14
and methyl 4-iodobenzoate using method A produced 15 in
64% yield (Reaction (4)). Thus, we proposed this glycoside
forming protocol involves a radical mechanism, wherein an
aryl-NiII intermediate may intercept a glucosyl radical gen-
erated from halide abstraction by a NiI intermediate [8,17].

To further understand the reaction mechanism, a tridentate
NiII complex 16 was obtained by reaction of methyl 4-io-
dobenzoate with Ni0 in the presence of tBu-Terpy [18]. 1H
NMR studies indicated it was paramagnetic and cationic in
polar solvents (Scheme S2) [18,21,22]. No appreciable 2a
was detected for the reactions of 16 with 1 (Reaction (5)),
regardless of the presence of MgCl2. With Zn, 2a was ob-
tained in 55% yield with high β-selectivity. We reason that it
is likely that complex 16 was reduced by Zn to tBu-Terpy-
NiI-Ar, to which oxidative addition of 1 leads to Ar-NiIII-
alkyl prior to the reductive elimination giving 2a (Scheme
S1), similar to Vicic’s proposal for Ni-catalyzed Negishi
mechasim [23,24].

The origin of β selectivity in this C-glucoside forming
approach is explained by a favourable β-attack of the Ac-
protected glucosyl radical to a Terpy-Ni(II)-Ar intermediate
(e.g., 17). It was known that Ac-protected glucosyl radical
adopts a boat-like B2,5-comfomer which is more stable than
the chair-like one with a free energy (ΔG) difference by
0.57 kcal/mol (Reaction (6)) [10,25]. Thus, radical attack

using the boat conformer is possible, and it favors β site due
to the bulkiness of Terpy-Ni(II) intermediate (Reaction (6)).
In contrast to our previous report, the use of labile pyridine
and DMAP resulted in good α selectivities under similar
reaction conditions [14]. In those cases, α-attack is favoured
possibly due to reduced steric interactions between Ni-Py
complex and the α-site of the glucosyl scaffold, in addition to
the anomeric stabilization of σ*(α-Ni–C) by p-lone electron
pair of the oxygen atom [25].

In summary, we have described an efficient Ni-catalyzed
cross-electrophile coupling method for stereoselective pre-
paration of β-C-aryl/vinyl glucosides. A unique tBu-Terpy
ligand-controlled diastereoselectivity was observed. We en-
visage that this method is synthetically practical for acces-
sing the relevant bioactive compounds containing β-
glucosides and -galactosides by using readily available gly-
cosyl and aryl/vinyl halides, and by avoiding the preparation
of organometallic reagents.
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