

•COMMUNICATIONS• SPECIAL ISSUE: Organic Free Radical Chemistry

Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides

Jiandong Liu, Chuanhu Lei^{*} & Hegui Gong^{*}

School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China

Received April 11, 2019; accepted May 13, 2019; published online June 18, 2019

This work describes stereoselective preparation of β -*C*-aryl/vinyl glucosides via mild Ni-catalyzed reductive arylation and vinylation of *C*1-glucosyl halides with aryl and vinyl halides. A broad range of aryl halides and vinyl halides were employed to yield *C*-aryl/vinyl glucosides in 42%–93% yields. Good to excellent β -selectivities were obtained for *C*-glucosides by using tridentate ligand.

nickel-catalyzed, reductive coupling, β-selective preparation, C-aryl/vinyl glucosides

Citation: Liu J, Lei C, Gong H. Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of *C*-aryl/vinyl glucosides. *Sci China Chem*, 2019, 62, https://doi.org/10.1007/s11426-019-9501-4

C-glycosides embody an important class of bioactive compounds found in nature and commercial drugs [1]. The prestigious examples of natural products include (+)-varitriol (anticancer activities) [2], Aspalathin (antimutagenic and antioxidant properties) [3] and Salmochelins (e.g., Salmochelin S1 as a metabolite of the ferric-binding siderophores) (Figure 1) [4]. *C*-glycosides are inert towards the metabolic processes as compared to their *O*-counterparts, where a plethora of *C*-glycosides were synthesized as potent therapeutic agents [5]. Among them, canagliflozin (Invokana), empagliflozin (Jardiance) and dapagliflozin (Farxiga) have been widely used for the treatment of type-2 diabetes (Figure 1) [6].

The cross-coupling methods to access fully oxygen saturated β -*C*-glycosides, in particular β -*C*-glucosides, often require transition-metal-catalysis (Scheme 1) [7–16]. Gagné first utilized Ni-catalyzed Negishi strategy for the coupling of C1-glycosyl halides with alkyl- and aryl-Zn reagents, which delivered high β -selectivities for C-aryl glucosides (Reaction (1)) [7,8]. Knochel et al. [9] employed Ar₂Zn as the organometallic nucleophiles under catalyst-free conditions to react with glucosyl bromide (Reaction (1)). The reaction generates C-aryl glucosides with excellent βselectivities. By contrast, Walczak et al. [12,13] disclosed that C1-glycosyl stannanes underwent an excellent stereoretentive cross-coupling reaction with aryl halides (Reaction (2)). Recently, our group [14] developed a method employing pyridine/DMAP as ligand to prepare α -C-vinyl/aryl glycosides via nickel-catalyzed reductive coupling of glycosyl halides with vinyl and aryl halides in mild conditions. Such a method adds a new entry to α -selective preparation of C-glycosides as compared to the concurrent protocols that generally produce moderate α -selectivities for anylation of C1-glucosyl bromide [10,11].

Herein, we report efficient preparation of β -*C*-aryl and -vinyl glucosides and galactosides using Ni-catalyzed crosselectrophile coupling strategy (Reaction (3), Scheme 1) [17]. This work features a ligand-controlled β -selective construc-

^{*}Corresponding authors (email: chlei@shu.edu.cn; hegui_gong@shu.edu.cn)

2

Figure 1 The representative examples of natural-occurring *C*-glycosides and drugs for type II diabetes (color online).

Scheme 1 β -Selective preparation of *C*-aryl/vinyl-glucosides (color online).

tion of *C*-glucosides and represents a rare example for transition metal-catalyzed stereoselective preparation of *C*-vinyl glucosides/galactosides. The application of this method was manifested by expeditious access to the intermediates of Salmochelin derivatives and a commercial anti-diabetes drug canagliflozin [4,6].

We commenced our work with the reaction of Ac-protected glucosyl bromide **1** and methyl 4-iodobenzoate. Extensive examination revealed a combination of Ni/tBu-Terpy/Zn in tetrahydrofuran (THF) at 15 °C to be optimal, with which *C*-aryl glucoside **2a** was obtained in 85% yield with an α/β ratio of 1:12 (Table 1, entry 1) [18]. Other nickel sources and ligands, as well as solvents did not give a better result (entries 2–7). Without nickel catalyst and ligand, or without the ligand only no desired product was detected (entries 8 and 9). When one equivalent of MgCl₂ was used, similar yield but lower β -selectivity was observed, indicating MgCl₂ can interfere β -selectivity, likely due to halide exchange within the aryl-Ni intermediates (entry 10) [14]. Keeping the temperature at 15 °C appeared to be crucial to
 Table 1
 Optimization for the formation of 2a

Entry ^{a)}	Variation from the standard method A	Yield ^{b)}
1	None	85% (1:12) ^{c)}
2	Ni(ClO ₄) ₂ •6H ₂ O instead of Ni(acac) ₂	32% (1:11)
3	L1 instead of tBu-Terpy	trace
4	L2 instead of <i>t</i> Bu-Terpy	N.D.
5	L3 instead of <i>t</i> Bu-Terpy	trace
6	DMAinstead of THF	trace
7	DMFinstead of THF	N.D.
8	w/o Ni(acac) ₂ , w/o tBu-Terpy	N.D.
9	Without <i>t</i> Bu-Terpy	N.D.
10	MgCl ₂ (100 mol%)	80% (1:3)
11	0 °C	N.D.
12	21 °C	74% (1:12)
13	25 °C	66% (1:12)

a) Method A as in entry 1; b) yield determined by ¹H NMR spectroscopy using 2,5-dimethylfuran as an internal reference, and ratio in parenthesis refers to α/β ratio; c) isolated yields.

high yields (entries 11-13).

To further probe the applicability of the present method, coupling of a range of substituted arvl iodides with Acprotected glucosyl bromide 1 was carried out using method A. As shown in Figure 2, compounds 2b-2e were obtained in good to excellent yields with high β -selectivities. Compound 2f bearing less electron deficient substituents was obtained in a good yield and high β -selectivity, which is the Ac-protected commercial drug empagliflozin for type-2 diabetes [6]. Use of 3-iodothiophene as coupling partner gave 2g in a moderate yield and excellent β selectivity. Aryl iodides decorated with *meta*-bomo furnished **2h** with good yield and selectivity, which is useful for further functionalization. For electronrich and -neutral arenes, method A also yielded moderate to good yields and high β -selectivities by employing 15 mol% MgCl₂, as exemplified by **2i–2m**. For the low-yielding reactions, we observed that the formation of glucal accounted for the mass balance for glucosyl bromides, whereas hydrodehalogenation by-products did for aryl halides. We reason that MgCl₂ is required to activate Zn and reduce Ni(II) to Ni(0), particularly in the cases of electron-rich aryl halides (Figure 2). We performed an experiment using $Ni(COD)_2$ as the precatalyst without addition of MgCl₂

Figure 2 Scope of the aryl iodides. Yield refers to as isolated yield, and ratio in parenthesis refers to α/β ratio (color online).

(Scheme S3, Supporting Information online), and similar results for 2j were obtained. Without MgCl₂, a control experiment showed that no reaction occurred for 2j using method A.

The utility of this work was further showcased by the synthesis of β -**2n** and β -**2o** (Figure 3), which served as key intermediates of Salmochelin derivatives (Fe³⁺-side-rophores) and the precursor of a commercial drug canagliflozin for type-2 diabetes, respectively (Figure 4) [4,6,19]. Saponification of the latter provided canagliflozin in 90% yield. Finally, a brief investigation of the scope of other glycosyl halides for the coupling with 4-iodoanisole and 4-iodobenzoate was explored. Arylation of benzyl-protected glucosyl chloride with 4-iodoanisole in the presence of 15 mol% MgCl₂ delivered **3** in 60% yield with a 1:5 of α/β ratio. Galactosyl bromide displayed similar selectivities to the glucosyl analogs (e.g., **4**); high β selectivities were also observed in 2-phthalimido glucosyl bromide (α/β =1:19) and 2,3,5-tri-*O*-aceto-D-ribofuranosyl chloride (e.g., **5** and **6**).

We also investigate the preparation of β -*C*-vinyl glycosides using the same coupling protocol. It was noted that vinyl halides are generally more prone to dimerization as compared to aryl counterparts [20]. Thus, coupling of Pivprotected glucosyl bromide 7 with *E*-8 under Ni(acac)₂/*t*Bu-Terpy/Zn/MgCl₂/THF conditions provided **9a** in an optimal 65% yield with an α/β ratio of 1:8 (Figure 4, method B). By contrast, the acetyl-protected glucosyl bromide **1** gave 78% yield with an α/β ratio of 1:3 (Table S2, Supporting Information online) [18]. The aryl moiety bearing 4-CO₂Me within the styrene resulted in an enhanced yield, whereas a MeO-group was slightly inferior without eroding the ste-

a) 100 mol% aryl iodide, 150 mol% 1 and 15 mol MgCl_2 were used; b) Standard method A was used.

Figure 3 Selective preparation of β -*C*-aryl-glycosides. Yield refers to as isolated yield, and ratio in parenthesis refers to α/β ratio (color online).

a) Conditions for Method B as in the reaction scheme in Figure 4;
b) The reaction was run at 25 °C using 1 equiv of vinyl bromide and 2 equiv of 1, and 15 mol% of MgCl₂.

Figure 4 Selective preparation of β -*C*-vinyl-glycosides. Yield refers to as isolated yield, and ratio in parenthesis refers to α/β ratio (color online).

reoselectivity, as evidenced by **9b** and **9c** (Figure 4). Method B was also effective for the construction of Piv-protected β -*C*-galactosides (e.g., **10a–10c**), but not for β -mannoside **11**. Only the α -anomer was isolated, suggesting that substratecontrolled stereochemistry dictates in this case. With slight modifications, method B was suited for alkyl-substituted vinyl and dienyl bromides furnishing β -selective preparation of **12a–12c** (Figure 4). In these cases, **1** was more effective than **7**, possibly due to enhanced reactivity of the former arising from less steric hindrance. A quick application of the vinyl product β -**12a** was conducted by hydrogenation to afford the reduction product **13**. It was noted that the preparation of *C*-alkyl glucosides with good control of α - and β -selectivities remains a challenge [7].

According to previously reported Ni-catalyzed reductive cyclization/coupling of alkyl halides [11,14], coupling of 14 and methyl 4-iodobenzoate using method A produced 15 in 64% yield (Reaction (4)). Thus, we proposed this glycoside forming protocol involves a radical mechanism, wherein an aryl-Ni^{II} intermediate may intercept a glucosyl radical generated from halide abstraction by a Ni^I intermediate [8,17].

To further understand the reaction mechanism, a tridentate Ni^{II} complex **16** was obtained by reaction of methyl 4-iodobenzoate with Ni⁰ in the presence of *t*Bu-Terpy [18]. ¹H NMR studies indicated it was paramagnetic and cationic in polar solvents (Scheme S2) [18,21,22]. No appreciable **2a** was detected for the reactions of **16** with **1** (Reaction (5)), regardless of the presence of MgCl₂. With Zn, **2a** was obtained in 55% yield with high β -selectivity. We reason that it is likely that complex **16** was reduced by Zn to *t*Bu-Terpy-Ni^I-Ar, to which oxidative addition of **1** leads to Ar-Ni^{III}alkyl prior to the reductive elimination giving **2a** (Scheme S1), similar to Vicic's proposal for Ni-catalyzed Negishi mechasim [23,24].

The origin of β selectivity in this *C*-glucoside forming approach is explained by a favourable β -attack of the Acprotected glucosyl radical to a Terpy-Ni(II)-Ar intermediate (e.g., **17**). It was known that Ac-protected glucosyl radical adopts a boat-like B_{2,5}-comfomer which is more stable than the chair-like one with a free energy (ΔG) difference by 0.57 kcal/mol (Reaction (6)) [10,25]. Thus, radical attack using the boat conformer is possible, and it favors β site due to the bulkiness of Terpy-Ni(II) intermediate (Reaction (6)). In contrast to our previous report, the use of labile pyridine and DMAP resulted in good α selectivities under similar reaction conditions [14]. In those cases, α -attack is favoured possibly due to reduced steric interactions between Ni-Py complex and the α -site of the glucosyl scaffold, in addition to the anomeric stabilization of $\sigma^*(\alpha$ -Ni–C) by p-lone electron pair of the oxygen atom [25].

In summary, we have described an efficient Ni-catalyzed cross-electrophile coupling method for stereoselective preparation of β -*C*-aryl/vinyl glucosides. A unique *t*Bu-Terpy ligand-controlled diastereoselectivity was observed. We envisage that this method is synthetically practical for accessing the relevant bioactive compounds containing β -glucosides and -galactosides by using readily available gly-cosyl and aryl/vinyl halides, and by avoiding the preparation of organometallic reagents.

Acknowledgements This work was supported by the National Natural Science Foundation of China (21871173, 21572140, 21372151).

Conflict of interest The authors declare that they have no conflict of interest.

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

- 1 For a recent review, see: Yang Y, Yu B. Chem Rev, 2017, 117: 12281–12356
- (a) Zeng J, Vedachalam S, Xiang S, Liu XW. Org Lett, 2011, 13: 42– 45; (b) Malmstrøm J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A. J Nat Prod, 2002, 65: 364–367
- 3 Han Z, Achilonu MC, Kendrekar PS, Joubert E, Ferreira D, Bonnet SL, van der Westhuizen JH. J Nat Prod, 2014, 77: 583–588
- 4 Fischbach MA, Lin H, Liu DR, Walsh CT. Proc Natl Acad Sci USA, 2005, 102: 571–576
- 5 (a) Compain P, Martin OR. *BioOrg Medicinal Chem*, 2001, 9: 3077–3092; (b) Hultin P. *Curr Top Med Chem*, 2005, 5: 1299–1331; (c) Zou W. *Curr Top Med Chem*, 2005, 5: 1363–1391; (d) Stambaský J, Hocek M, Kocovský P. *Chem Rev*, 2009, 109: 6729–6764; (e) Koester DC, Holkenbrink A, Werz DB. *Synthesis*, 2010, 19: 3217–3242; (f) Leclerc E, Pannecoucke X, Ethève-Quelquejeu M, Sollogoub M. *Chem Soc Rev*, 2013, 42: 4270–4283
- 6 (a) Sadurní A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R. *Chem Eur J*, 2018, 24: 2832–2836;
 (b) Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE. *Diabetes Vascular Dis Res*, 2015, 12: 90–100
- 7 Gong H, Sinisi R, Gagné MR. J Am Chem Soc, 2007, 129: 1908–1909
- 8 Gong H, Gagne MR. J Am Chem Soc, 2008, 130: 12177-12183
- 9 Lemaire S, Houpis IN, Xiao T, Li J, Digard E, Gozlan C, Liu R,

Gavryushin A, Diène C, Wang Y, Farina V, Knochel P. Org Lett, 2012, 14: 1480-1483

- 10 Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TKM, Nakamura M. J Am Chem Soc, 2017, 139: 10693–10701
- 11 Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew Chem Int Ed, 2012, 51: 11101–11104
- 12 Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O'Neill S, Rourke MJ, Liu P, Walczak MA. J Am Chem Soc, 2017, 139: 17908– 17922
- 13 Yi D, Zhu F, Walczak MA. Org Lett, 2018, 20: 1936–1940
- 14 Liu J, Gong H. Org Lett, 2018, 20: 7991-7995
- 15 (a) Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew Chem Int Ed, 2018, 57: 6610–6613; (b) Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew Chem Int Ed, 2018, 57: 6614–6618
- For representative examples for de novo synthesis of C-glycosides:
 (a) Balachari D, O'Doherty GA. *Org Lett*, 2000, 2: 4033–4036; (b) Balachari D, O'Doherty GA. *Org Lett*, 2000, 2: 863–866; (c) Ahmed MM, O'Doherty GA. *Tetrahedron Lett*, 2005, 46: 4151–4155
- 17 (a) Knappke CEI, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. *Chem Eur J*, 2014, 20: 6828–6842; (b) Everson DA, Weix DJ. *J Org Chem*, 2014, 79: 4793–4798; (c) Moragas T, Correa

A, Martin R. *Chem Eur J*, 2014, 20: 8242–8258; (d) Wang X, Dai Y, Gong H. *Top Curr Chem*, 2016, 374: 43; (e) Xiao J, Cong XW, Yang GZ, Wang YW, Peng Y. *Chem Commun*, 2018, 54: 2040–2043; (f) Xiao J, Cong XW, Yang GZ, Wang YW, Peng Y. *Org Lett*, 2018, 20: 1651–1654; (g) Luo L, Zhai XY, Wang YW, Peng Y, Gong H. *Chem Eur J*, 2019, 25: 989–992

- 18 See the Supplementary Information for details
- 19 Synthetic Strategies toward SGLT2 Inhibitors: Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA. Org Process Res Dev, 2018, 22: 467–488
- 20 Liu J, Ren Q, Zhang X, Gong H. Angew Chem Int Ed, 2016, 55: 15544–15548
- 21 Klein A, Kaiser A, Wielandt W, Belaj F, Wendel E, Bertagnolli H, Zalis S. Inorg Chem, 2008, 47: 11324–11333
- 22 Hamacher C, Hurkes N, Kaiser A, Klein A. Z Anorg Allg Chem, 2007, 633: 2711–2718
- 23 Schley ND, Fu GC. J Am Chem Soc, 2014, 136: 16588-16593
- 24 Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Brandon RJ, Konovalova T, Desrochers PJ, Pulay P, Vicic DA. J Am Chem Soc, 2006, 128: 13175–13183
- 25 Abe H, Shuto S, Matsuda A. J Am Chem Soc, 2001, 123: 11870– 11882