# A FURANOCOUMARIN GLUCOSIDE FROM STEMBARK OF SKIMMIA JAPONICA\*

JOHANNES REISCH and STEFAN H. ACHENBACH<sup>†</sup>

Institut für Pharmazeutische Chemie, Westfälische Wilhelms-Universität Münster, D-4400 Münster, Germany

(Received in revised form 27 April 1992)

Key Word Index-Skimmia japonica ssp. japonica; Rutaceae; coumarin glucosides; structural determination.

**Abstract**—From the stembark of *Skimmia japonica* the new furanocoumarin glucoside, 2,3,-dihydro-9-hydroxy-2-[1-(6-feruloyl)- $\beta$ -D-glucosyloxy-1-methylethyl]-7H-furo[3,2g] [1]-benzopyran-7-one has been isolated along with three known coumarin glucosides. They have been found in female and male plants of the species.

## INTRODUCTION

Skimmia japonica (Rutaceae) originates from East Asia and is cultivated for ornamental purposes in Europe [1]. Previous investigations [2] of the dioecious S. japonica ssp. japonica showed differences in the methylenechloride extracts from the stembark of female and male plants. In this report the isolation and characterization of a new furanocoumarin glucoside together with three known glucosides from the stembark of the female cultivar S. japonica ssp. japonica 'Oblata' is discussed.

## **RESULTS AND DISCUSSION**

The concentrated water-soluble portion of the ethanolic extract from the stembark was chromatographed on silica gel (CC). Two well-known coumarin glucosides, skimmin (1) earlier isolated from *S. japonica* [3] and scopolin (2) [4], were the main constituents obtained from the column.

Separation of a third fraction by prep. TLC (system i) afforded two furanocoumarin glucosides. One of them, compound 3, mp  $163-166^{\circ}$ , is the 6'-ester of the glucoside isorutarin [5] and sinapic acid which has been isolated from the seeds of *Apium graveolens* (Umbelliferae) [6]. This is the first report of the occurrence of such a kind of ester in Rutaceae.

The second glucoside of this fraction, compound 4, was obtained by crystallization from water-acetone as needles, mp 150-153°. Comparison of the spectral data with those of 3 confirmed that 4 is of a similar structure. The mass spectrum showed the [M]<sup>+</sup> peak at m/z 600 in the latter and m/z 630 in the former and a further peak m/z 262 in both corresponding to rutaretin (5) as a fragment ion. A singlet at  $\delta$ 3.89 in the <sup>1</sup>H NMR spectrum of 4 and three signals at  $\delta$ 6.83 (d, J = 8.17 Hz), 7.05 (dd, J = 1.96 and 8.17 Hz) and 7.27 (d. J = 1.96 Hz) are typical for transferulic acid, whereas *trans*-sinapic acid is the substituent in furanocourmarin glucoside 3. The <sup>1</sup>H NMR and <sup>13</sup>C NMR data (Table 1) of 4 were also compared with those taken from an authentic sample of ferulic acid. Acid hydrolysis of 4 followed by alkaline hydrolysis gave 5, ferulic acid and D-glucose. Rutaretin (5) and ferulic acid were identified by co-TLC with authentic samples. glucose by co-HPTLC. The structure of 4 was confirmed as 6'-O-trans-ferulolylisorutarin. By TLC (systems i and ii) the presence of all isolated compounds 1–4 in the male cultivar S. japonica ssp. japonica 'Rubella' was also established.



<sup>\*</sup>Part 152 in the series 'Natural Products Chemistry'. For Part 151 see Reisch, J., Voerste, A. A., Top, M., Dziemba, P. (1992) *Monatsh. Chem.* **123**, 473.

<sup>†</sup>Part of Ph.D. Dissertation, Münster 1991.

| С          | 1     | 2                  | 3      | 4     |  |
|------------|-------|--------------------|--------|-------|--|
| 2          | 160.2 | 160.4              | 161.4  | 161.0 |  |
| 3          | 113.1 | 113.2              | 112.7  | 112.4 |  |
| 4          | 144.1 | 144.1              | 145.8  | 145.4 |  |
| 4a         | 113.2 | 112.2              | 114.6  | 114.3 |  |
| 5          | 129.3 | 109.8              | 115.4  | 115.0 |  |
| 6          | 113.6 | 146.0              | 126.5ª | 126.5 |  |
| 7          | 160.1 | 149.9 <del>°</del> | 152.2  | 151.7 |  |
| 8          | 103.2 | 103.0              | 129.9  | 129.5 |  |
| 8a         | 155.0 | 148.9ª             | 144.3  | 143.8 |  |
| 9          |       | _                  | 31.2   | 30.9  |  |
| 10         |       |                    | 91.5   | 91.2  |  |
| Ме         |       |                    | 22.3   | 22.1  |  |
|            |       |                    | 24.1   | 23.9  |  |
| $C (Me)_2$ | —     |                    | 78.9   | 78.7  |  |
| OMe        |       | 56.0               | 56.9   | 56.4  |  |
| 1′         | 100.0 | 99.6               | 98.9   | 98.6  |  |
| 2′         | 73.1  | 73.0               | 75.0   | 74.8  |  |
| 3'         | 77.1  | 77.1               | 75.2   | 75.0  |  |
| 4′         | 69.6  | 69.6               | 71.8   | 71.6  |  |
| 5′         | 76.5  | 76.7               | 78.3   | 78.1  |  |
| 6'         | 60.6  | 60.6               | 64.4   | 64.2  |  |
| 1″         | _     |                    | 126.8ª | 127.5 |  |
| 2‴         |       |                    | 107.3  | 111.4 |  |
| 3″         |       | _                  | 149.4  | 150.2 |  |
| 4″         |       | _                  | 140.0  | 148.8 |  |
| 5″         | _     |                    | 149.4  | 116.0 |  |
| 6″         |       | _                  | 107.3  | 124.0 |  |
| 7"         |       |                    | 146.6  | 145.8 |  |
| 8″         | _     |                    | 116.3  | 115.8 |  |
| 9″         | _     |                    | 167.9  | 167.4 |  |

Table 1. <sup>13</sup>C NMR spectral data for compounds 1-4

1, 2 in DMSO- $d_6$ ; 3, 4 in acetone- $d_6$ ; TMS as internal standard.

<sup>a</sup>These values may be interchanged in the same column.

#### EXPERIMENTAL

Mps: uncorr. IR: KBr disc. <sup>1</sup>H NMR spectra were run at 200 MHz, <sup>13</sup>C NMR at 50 MHz using TMS as int. standard. MS were recorded at 70 eV. TLC: silica gel using the solvent systems: (i) EtOAc-MeOH-H<sub>2</sub>O (20:3:2), (ii) CH<sub>2</sub>Cl<sub>2</sub>-MeOH (9:1), (iii) CH<sub>2</sub>Cl<sub>2</sub>-MeOH (19:1), (iv) EtOAc.

Extraction and isolation. Air-dried stembark of Skimmia japonica ssp. japonica 'Oblata' Thunb. (110 g) was extracted with EtOH at room temp. for 3 weeks, evapd to dryness (11 g) and partitioned between  $CH_2Cl_2$  and  $H_2O$ . The concd  $H_2O$ -sol. extract (7.3 g) was chromatographed on silica gel. Elution with  $CH_2Cl_2$ -MeOH (9:1) afforded 298 mg of skimmin (1), 281 mg of scopolin (2) and a fr. which contained 2 compounds. This fr. was sepd by prep. TLC (silica gel 60  $F_{254}$ , system i); 29 mg of 3 and 10 mg of 4 were obtained.

Skimmin (1). Mp 224–226°, from  $H_2O-Me_2CO$ , hydrolysed with 0.5 M HCl for 1.5 hr under reflux, gave umbelliferone (mp 226–227°, lit. [7] 229–231° and D-glucose.

Scopolin (2). Mp  $217-219^{\circ}$  from EtOAc, was hydrolysed as compound 1. Scopoletin (mp  $202-203^{\circ}$ , lit. [8]  $205^{\circ}$ ) and D-glucose were obtained.

Compound 3. Mp 163–166° from H<sub>2</sub>O–Me<sub>2</sub>CO.  $[\alpha]_D^{20} + 59.0^{\circ}$ (MeOH; c 0.3). UV (MeOH)  $\lambda_{max}$  nm (log  $\varepsilon$ ) 330 (4.37), 264 (3.74), 244sh (4.08), 210 (4.56). IR  $\nu_{max}^{KBr}$  cm<sup>-1</sup>: 3400 (OH), 1705 (C=O), 1615, 1585, 1510, 1420, 820. <sup>1</sup>H NMR (acetone- $d_6$ ):  $\delta$ 1.36 and 1.37 (3H each, s, gem dimethyl); 3.13–3.55 (6H, m, H<sub>2</sub>-9 and 4 glucose protons); 3.87 (6H, s, 2 × OMe); 4.10–4.30 (2H, m, H<sub>2</sub>-6'); 4.71 (1H, d, J = 7.64 Hz, anomeric proton); 4.86 (1H, dd, J = 8.43 and 8.49 Hz, H-10); 6.10 (1H, d, J = 9.44 Hz, H-3); 6.39 (1H, d, J = 15.89 Hz, H-8″); 6.91 (1H, s, H-5); 6.96 (2H, s, H-2″ and H-6″); 7.67 (1H, d, J = 15.89 Hz, H-7″); 7.74 (1H, s, J = 9.44 Hz, H-4). EIMS m/z (rcl. int.): 630 [M]<sup>+</sup> (1), 368 [M – C<sub>14</sub>H<sub>14</sub>O<sub>5</sub>]<sup>+</sup> (14), 262 [C<sub>14</sub>H<sub>14</sub>O<sub>5</sub>]<sup>+</sup> (16), 224 [C<sub>11</sub>H<sub>12</sub>O<sub>5</sub>]<sup>+</sup> (29), 207 [224 – OH]<sup>+</sup> (100).

Compound 3 (15 mg) was hydrolysed with 1.5 M HCl for 1.5 hr under reflux. After extraction of the hydrolysate with EtOAc and sepn by prep. TLC (system iii), rutaretin (5) (4 mg) was obtained.

Rutaretin (5). Mp 191–193° from  $CH_2Cl_2$  (lit. [9] 192–193°). EIMS m/z (rel. int.): 262 [M]<sup>+</sup> (46), 229 (M-H<sub>2</sub>O-Me]<sup>+</sup> (15), 203 [M-C<sub>3</sub>H<sub>7</sub>O]<sup>+</sup> (100).

Compound 4. Mp 150–153° from  $H_2O-Me_2CO. [\alpha]_D^{20} + 37.9°$ (MeOH; c 0.33). UV (MeOH)  $\lambda_{max}$  nm (log  $\varepsilon$ ) 328 (4.26), 264 (3.62), 232sh (4.00), 210 (4.43). IR  $\nu_{max}^{RBr}$  cm<sup>-1</sup>: 3400 (OH), 1695 (C=O), 1620, 1580, 1500, 1420, 820. <sup>1</sup>H NMR (acetone- $d_{\varepsilon}$ );  $\delta$ 1.34 and 1.38 (3H each s, gem dimethyl); 3.13–3.56 (6H, m, H<sub>2</sub>-9 and 4 glucose protons); 3.89 (3H, s, OMe); 4.15–4.28 (2H, m, H<sub>2</sub>-6); 4.70 (1H, d, J = 7.68 Hz, anomeric proton); 4.87 (1H, dd, J = 8.40 Hz, H-10); 6.10 (1H, d, J = 9.51 Hz, H-3); 6.35 (1H, d, J = 1.592 Hz, H-8"); 6.83 (1H, d, J = 8.17, H-5"); 6.91 (1H, s, H-5); 7.05 (1H, dd, J = 1.96 and 8.17 Hz, H-6"); 7.27 (1H, d, J = 1.96 Hz, H-2"); 7.56 (1H, d, J = 1.592 Hz, H-7"); 7.74 (1H, d, J = 9.51 Hz, H-4). EIMS m/z (rel. int.): 600 [M]<sup>+</sup> (1), 262 [C<sub>14</sub>H<sub>14</sub>O<sub>3</sub>]<sup>+</sup> (16), 229 [262  $-H_2O-Me$ ]<sup>+</sup> (28), 204 [262-C<sub>3</sub>H<sub>7</sub>O+1]<sup>+</sup> (100); 203 [262  $-C_3H_7O$ ]<sup>+</sup> (98).

After acid hydrolysis of compound 4 (2 mg), rutaretin (5) was identified by co-TLC (systems iii and iv) from the EtOAc extract. The aq. residue was hydrolysed again for 1.5 hr with 2 M NaOH. After neutralization and extraction with EtOAc *trans*-ferulic acid was identified by co-TLC (systems iii and iv) and D-glucose by co-HPTLC (silica gel 50 000, MeCN-H<sub>2</sub>O, 17:3, developed twice, detection alkaline soln of KMnO<sub>4</sub>) from the H<sub>2</sub>O-sol. portion.

#### REFERENCES

- 1. Taylor, N. P. (1987) Kew Mag. 4, 168.
- 2. Reisch, J. and Achenbach, S. H. (1991) Pharmazie 46, 548.
- 3. Späth, E. and Neufeld, O. (1938) Rec. Trav. Chim. Pays-Bas 57, 535.
- Sibanda, S., Ndengu, B., Multari, G., Pompi, V. and Galeffi, C. (1989) Phytochemistry 28, 1550.
- 5. Varga, E., Szendrei, K., Novak, I. and Reisch, J. (1974) Acta Pharm. Hung. 44, 36; (1975) C. A. 82, 13996x.
- Ahluwalia, V. D., Boyd, D. R., Jain, A. K., Khanduri, C. H. and Sharma, N. D. (1988) *Phytochemistry* 27, 1181.
- Atkinson, E., Boyd, D. R. and Grundon, M. F. (1974) Phytochemistry 13, 853.
- Razdan, T. K., Qadri, B., Harkar, S. and Waight, E. S. (1987) *Phytochemistry* 26, 2063.
- Schneider, G., Müller, H. and Pfaender, P. (1967) Arch. Pharm. 300, 73.