CLEAVAGE REACTIONS OF THE AZIRIDINE RING

III. Reaction of N-Arylethylenimines with Three-Membered Heterocycles*

A. P. Sineokov, F. N. Gladysheva, V. S. Étlis, and V. S. Kutyreva

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 4, pp. 475-476, 1970

N-Arylethylenimines react with ethylene oxide in the presence of tetraethylammonium bromide with the formation of N-arylmorpholines. In a number of cases, N,N'-diarylpiperazines were isolated as by-products. Ethylene sulfide does not react with N-arylethylenimines.

It is known that three-membered heterocyclic compounds - ethylene oxide, ethylene sulfide, and N-substituted ethylenimines - are capable of dimerizing to form dioxane [2], dithiane, and N,N'-disubstituted piperazines [4, 5], respectively.

We assumed that in the presence of tetraethylammonium bromide (TEAB), which causes the opening of an oxide ring [6] and the dimerization of N-phenylethylenimine [1], the reaction of N-arylethylenimines with ethylene oxide (sulfide) would lead to the formation of N-arylmorpholines (triamorpholines).

In actual fact, when N-arylethylenimines were heated with ethylene oxide at 150° C the expected compounds were isolated in high yields. To confirm their structure, analogous substances were obtained by the dehydration of $bis(\beta-hy-droxyethyl)$ arylamines with concentrated sulfuric acid [7]. The constants of the compounds synthesized by the two methods and their IR spectra were identical.

The following scheme of the reaction is proposed:

In order to suppress the possible dimerization of the ethylenimines, an excess of ethylene oxide was used. However, in the case of N-o-tolyl- and N-o-methoxyphenylethylenimines the corresponding piperazines were obtained with a yield of about 30%. It might be assumed that the mospholines are obtained through a stage of the formation of piperazines with their subsequent reaction with ethylene oxide. However, N,N'-diphenylpiperazine does not react with ethylene oxide even at 200°C.

The reaction of N-phenylethylenimine with ethylene sulfide in the presence of TEAB did not lead to the expected thiamorpholine because of the polymerization of the ethylene sulfide.

EXPERIMENTAL

The N-arylethylenimines were obtained by the dehydrochlorination of N-(β -chloroethyl)arylamine hydrochlorides by analogy with the dehydrobromination of their hydrobromides [8]. The β -chloroethylamine hydrochlorides (Table 1) were synthesized in a similar manner to β -chloroethylaniline hydrochloride [9] by treating the corresponding β -hydroxy-ethylarylamines with phosphorus oxychloride [10].

N-o-Methoxyphenylethylenimine: Bp 77-80°C (5 mm); $n_{\rm D}^{20}$ 1.5625. Found %: C 72.20; 72.33; H 7.36, 7.37; N 9.59, 9.63; mol. wt. 150; 148. $C_9H_{11}NO$. Calculated %: C 72.48; H 7.31; N 9.39; mol. wt. 149.

N-p-Methoxyphenylethylenimine: Bp 88-90°C (4 mm); n_D^{20} 1.5540. Found %: C 72.40, 72.57; H 7.41, 7.35; N 9.37, 9.43; mol. wt. 147; 148. $C_9H_{11}NO$. Calculated %: C 72.48; H 7.37; N 9.39; mol. wt. 149.

^{*}For part II, see [1].

Table 1. RC₆H₄NHCH₂CH₂Cl·HCl

R			Equiv.			
	Mp, °C	Empirical formula	found:	calculated		
H o-CH ₃ p-CH ₃ o-CH ₃ O p-CH ₃ O	154—155° 166—168 161—163 163—164 150—151	C ₈ H ₁₀ CIN · HC ¹ C ₉ H ₁₂ CIN · HC ¹ C ₉ H ₁₂ CIN · HC ¹ C ₉ H ₁₂ CINO · HC ¹ C ₉ H ₁₂ CINO · HC ¹	193,5; 183 205; 206 204; 205 221; 220 220; 219	182 206 206 221 221		

Table 2. N-arylmorpholines

	Bp, °C (pressure, mm)	Mp,°C	Empirical formula	Found			Calculated				100	
Aryl				C, %	H, %	z,	M	°,	Н, %	, %	Mol. wt.	Yield,
C ₆ H ₅	9698(2)	53[7]	C ₁₀ H ₁₃ NO	73,45 73,53		8,70 8,58		73,62	7,97	8,58	163	94
o-CH ₃ C ₆ H ₄	102—104(4) ^a	_	C ₁₁ H ₁₅ NO	74,47 74,52		7,55 7,20		74,50	8,47	7,89	177	65
p-CH ₃ C ₆ H ₄	108—110(4)	42	C ₁₁ H ₁₅ NO	74,25 74,37				74,50	8,47	7,89	177	85
o-CH ₃ OC ₆ H ₄	114116(2)b		C ₁₁ H ₁₅ NO ₂	68,30 68,59				68,40	7,77	7,25	193	70
p-CH ₃ OC ₆ H ₄	125—126(2)	67	C ₁₁ H ₁₅ NO ₂	68,35 68,41				68,40	7,77	7,25	193	90

a n_{D}^{20} 1.5435. b n_{D}^{20} 1.5560.

Reaction of N-arylethylenimines with ethylene oxide. A mixture of 0.02 mole of a N-arylethylenimine, 0.08 mole of ethylene oxide, and 0.01 g of TEAB was heated in a tube at 140-150°C for 40-50 hr. After the elimination of the excess of ethylene oxide, the reaction products were fractionated in vacuum. The constants of the N-arylmorpholines are given in Table 2.

In the cases of N-o-tolylethylenimine and N-o-methoxyphenylethylenimine, N,N'-ditolyl- and N,N'-dimethoxy-phenylpiperazines were isolated as by-products with yields of 25-30%.

N,N'-Di-o-tolylpiperazine: mp 170-171°C (from acetone). Found %: C 81.06, 81.37; H 8.29, 8.29; N 10.20, 10.39. $C_{18}H_{22}N_2$. Calculated %: C 81.20; H 8.27; N 10.52.

N,N'-Di-o-methoxyphenylpiperazine: mp 173-174°C (from acetone). Found %: C 73.04, 73.00; H 7.55, 7.40; N 9.75, 9.83. $C_{18}H_{22}N_2O_2$. Calculated %: C 72.48; H 7.39; N 9.39.

REFERENCES

- 1. A. P. Sineokov, F. N. Gladysheva, and V. S. Étlis, KhGS [Chemistry of Heterocyclic Compounds], 4, 567, 1968.
- 2. Heterocyclic Compounds [Russian translation], IL, Moscow, 6, 6, 1960.
- 3. Yu. K. Yur'ev and L. S. German, ZhOKh, 25, 2527, 1955.
- 4. H. W. Heine, W. C. Kenyon, and E. H. Johnson, J. Am. Chem. Soc., 83, 2570, 1961.
- 5. C. R. Dick, J. Org. Chem. 32, 72, 1967.
- 6. G. P. Speranza and W. J. Peppel, J. Org. Chem., 23, 1922, 1958.
- 7. L. Knorr, Ber., 30, 918, 1897.
- 8. H. W. Heine, B. Kapur, J. Bove, R. Greiner, K. Klinger, and C. Mitch, J. Am. Chem. Soc., 76, 2503, 1954.
- 9. R. S. Tipson, J. Org. Chem., 27, 1449, 1962.
- 10. Yu. K. Yur'ev, N. Yu. Novitskii, and L. G. Liberov, Izv. AN SSSR, OKhN, 317, 1951.

23 December 1968