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Abstract—A general approach to the synthesis of 5,7-disubstituted indoles has been developed based upon a highly selective
lithium–bromine exchange reaction at the 7-position when 1-alkyl-5,7-dibromoindoles were treated with t-BuLi in ether. The
resulting 5-bromo-7-lithiated indoles could react with various electrophiles to afford 5-bromo-7-substituted indoles (6) upon
work-up. Without isolation of 6, the intermediates thus obtained could be exposed to a second lithium–bromine exchange reaction
in a one-pot procedure and further reacted with various electrophiles to afford 5,7-disubstituted indoles (1). © 2003 Published by
Elsevier Science Ltd.

In a recent medicinal chemistry study, we needed a
general approach to the synthesis of indoles bearing
various functionalized carbon substituents at the 5- and
7-positions with an alkyl substituent on nitrogen (1).1

Although numerous methods are available for indole
preparation,1,2 the synthesis of this type of indole still
remains a great challenge. To date, a general but indi-
rect approach to indoles with substituent(s) on its ben-
zenoid portion involves the annulation of a pyrrole
portion with a suitably functionalized benzene as start-
ing material.3 There are obvious disadvantages like
lengthy synthesis, low compatibility to labile functional
groups, and difficulty in synthesis of complicated start-
ing materials. A better approach to serve our purpose is
to directly introduce the desired substituents to indole’s
5- and 7-positions. Due to indole’s distinct electron
density distribution, introduction of substituents on its
benzenoid portion by reaction with an activating elec-
trophile, i.e. Friedel–Crafts reaction, usually suffers
from problems with regioselectivity.4–6 Our strategy to
solve this problem is illustrated in Scheme 1. We used
the easily prepared 5,7-dibromoindoles 27 as scaffold, in
which the bromine substituents would act as activating
and directing groups if a selective lithium–bromine
exchange could be achieved.8–11

The 5,7-dibromoindoles (2) used in this study are pre-
sented in Table 1. To study the selectivity of lithium–
bromine exchange, 2b was used as substrate to screen
the alkyllithium and solvent. 2b was treated either with
1.1 equiv. of n-BuLi or with 2.2 equiv. of t-BuLi either
in THF or in ether at −78°C for 10 min, and was then
quenched by water. The composition of the crude
product was determined by 1H NMR. We found that
the exchange could be achieved selectively at 7-bromine
and t-BuLi in ether gave the best results (Table 1, entry
1).12 An attempt with a non-coordinating solvent tolu-
ene with t-BuLi resulted in no reaction (Table 1, entry
2). Optimized conditions were established by reducing
the amount of t-BuLi from 2.2 equiv. to 2.1 equiv. This
afforded 4b and 5b as a mixture of ratio 94:6 (Table 1,
entry 3). Satisfied with the conditions, we applied them
to indoles 2c, 2f, 2h, and 2k (entries 3–7). The results
showed that the selective lithium–bromine exchange
was a common reaction for indoles with various sub-
stituents at their 1-, 2-, 3-positions. No influence of
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Table 1. The selectivity of lithium–bromine exchange of 5,7-dibromoindoles

RLi (equiv.)Entry SolventIndole 2 Products

2 3 4 5

1 2b t-BuLi (2.2) Et2O – – 88 12
t-BuLi (2.2) PhCH3 100 –2 –2b –
t-BuLi (2.1) Et2O –2b –3 94 6

2c4 t-BuLi (2.1) Et2O – – 88 12
t-BuLi (2.1) Et2O –5 –2f 94 6
t-BuLi (2.1) Et2O –2h –6 92 8

2k7 t-BuLi (2.1) Et2O – – 90 10
t-BuLi (2.1)8 Et2O2a – 40 60 –
t-BuLi (2.1) Et2O –2d –9 78 22

2d10 t-BuLi (1.8) Et2O – – 92 8
t-BuLi (1.8) Et2O – – 8911 112i

steric hindrance of the 1-substituent on selectivity was
observed, as shown by the results from indole 2c (Table
1, entry 4).

To extend our study to the synthesis of indoles without
a substituent at 1-position, we applied the best condi-
tions to indole 2a after treatment with 1 equiv. of base
(EtMgCl, MeLi, or KH). Only the use of KH gave a
clean reaction to afford a 2:3 ratio of 3a and 4a, while
the other cases afforded complicated mixtures of prod-
ucts.13 Hence, indole 2d bearing a removable alkyl
substituent SEM (2-(trimethylsilyl)ethoxymethyl)14 was
examined, and more bis-exchange product 5d formed
(Table 1, entry 9). But satisfactory results could be
obtained with both indoles 2d and 2i when 1.8 equiv. of
t-BuLi was used in ether (Table 1, entries 10–11).

Having the selectivity of the exchange reaction deter-
mined and the reaction conditions optimized, we set out
to examine the reaction of the resulting 7-lithiated
indoles with various electrophiles (see Table 2). We first
treated the lithiated intermediates from indoles 2b and
2d with various electrophiles like aromatic and aliphatic
aldehydes, acetone, DMF, and CO2. All yielded the
corresponding products in good to excellent yield with-
out modifying reaction conditions (Table 2, entries 1–5
and 10–14). The reaction of the lithiated species from
indoles 2c, 2f, 2h, 2k, and 2i with benzaldehyde as
electrophile also gave the corresponding alcohols in
good yields (Table 2, entries 6–9 and 15).

Apparently, various reactions15 could be used to replace
the 5-bromo group of indoles 6 with other substituents.
Among them, another sequence of lithium–bromine
exchange followed by reaction with electrophiles in
one-pot seemed convenient and promising.16 The idea
was tested by using indole 2b. After the first lithium–
bromine exchange and reaction with benzaldehyde, the
reaction mixture was treated with t-BuLi again and
further reacted with CO2 to afford the corresponding
5,7-disubstituted indole 1a after esterification of the
acid in 86% yield (Table 3, entry 1).17 Then we applied
similar reaction conditions to various combinations of
electrophiles to afford valuable products 1b–e in good
yields (Table 3, entries 2–5). Using the same method,
we also examined indole 2d, which afforded the corre-
sponding indoles 1f–j in good yields (Table 3, entries
6–10). Examinations of other indoles 2f, 2h, 2k, and 2i
with an electrophile combination of PhCHO-CO2 were
further performed and afforded products in good yields
(Table 3, entries 11–15).

In summary, we have developed a general approach to
the synthesis of 5,7-disubstituted indoles based upon a
highly selective lithium–bromine exchange reaction at
the 7-position when 1-alkyl-5,7-dibromoindoles were
treated with t-BuLi in ether. The resulting 5-bromo-7-
lithiated indoles could react with various electrophiles
to afford 5-bromo-7-substituted indoles (6) upon work-
up. Without isolation of 6, the intermediates thus
obtained could be exposed to a second lithium–bromine
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Table 2. The synthesis of 5-bromo-7-substituted indoles

E+ ProductaEntry EIndole 2 Isolated yield

1 2b PhCHO 6a PhCH(OH) 88
CH3CHO 6b2b CH3CH(OH)2 65

2b3 MeC(�O)Me 6c (CH3)2C(OH) 75
4 2b DMF 6d HC(�O) 78

CO2 6e2b MeOC(�O)5 79
2c6 PhCHO 6f PhCH(OH) 49

PhCHO 6g7 PhCH(OH)2f 82
PhCHO 6h2h PhCH(OH)8 67

2k9 PhCHO 6i PhCH(OH) 48
PhCHO 6j PhCH(OH)10 832d
CH3CHO 6k2d CH3CH(OH)11 71
MeC(�O)Me 6l12 (CH3)2C(OH)2d 74
DMF 6m2d HC(�O)13 79

14 2d CO2 6n MeOC(�O) 76
PhCHO 6o2i PhCH(OH)15 74

a The yielded carboxylic acid was treated with CH2N2, and methyl ester was isolated.

exchange reaction in a one-pot procedure and further
reacted with various electrophiles to afford 5,7-disubsti-
tuted indoles (1).
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