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A general model for short-term interest
rates

CHING-FA N CHUNG* and MAO-WEI HUNG

The Institute of Economics, Academia Sinica, Taipei, Taiwan

A general one-factor model for short-term interest rates is proposed. Besides the long
memory fractionally integrated mean process, the model also consists of a power
function of the interest rate as well as the GARCH e� ect in the conditional variance.
The estimation results show that, while there is no evidence for fractional integration
in the mean beyond the well-known martingale property, both the power function of
the interest rate and the GARCH e� ect (but not the ARCH e� ect) are highly sig-
ni® cant in the formation of the conditional variance. Test results also con® rm a
structure change in October 1979 due to the shift in the Federal Reserve monetary
policy.

I. INTRODUCTION

The behaviour of the short-term interest rate has been the
focus of extensive studies in economics and ® nance. Many
researchers have investigated the relationship between
macroeconomic variables and the term structure of interest
rates. For instance, Estrella and Hardouvelis (1991) ex-
amine the relationship between output and the term struc-
ture of interest rates. In ® nance, pricing interest rate
options and designing hedging strategies all depend on
the dynamic behaviour of the term structure of interest
rate. A great number of models have been suggested in
the literature to explain such dynamics. See, for example,
Brennan and Schwartz (1977, 1979, 1980), Vasicek (1977),
and Cox et al. (1981, 1985).

In a recent paper Chan et al. (1992) propose a continu-
ous-time model for the short-term interest rate that nests
most of the previous di� usion models. In their model both
mean and conditional variance of the interest rate are func-
tions of the level of interest rate. Their main empirical
result is that incorporating a power function of interest
rate into the conditional variance substantially improves
the ® t of the model.

More recently, along a di� erent line of research Backus
and Zin (1993) challenges the well-known belief that the
short-term interest rate process is a martingale, suggested

by, for example, Mankiw and Miron (1986) and Mishkin
(1992). Backus and Zin demonstrate theoretically that long
memory may exist in the short-term interest rates and ® nd
some empirical support for their argument. Such long
memory in interest rates can have profound implications
on asset pricing and thus deserves further investigation.

In this paper, we propose a generalized one-factor model
for the short-term interest rate process. In the continuous-
time version of the model we propose Fractional Brownian
Motion, instead of the standard Brownian Motion, for the
innovations to capture the potential long memory in the
mean of the short-term interest rate. Besides this long
memory mean process, our model also includes the
GARCH e� ect and a power function of the interest rate
in the conditional variance. We believe the GARCH e� ect
is a natural extension of Chan et al.’ s (1992) model of the
conditional variance. With a long memory mean as well as
the power function of the interest rate and the newly added
GARCH e� ect in the conditional variance, our framework
permits much greater ¯ exibility than all previous models.

Our empirical results show that, in addition to the power
function of the interest rate, the GARCH e� ect (but not
ARCH e� ect) is signi® cant in determining the conditional
variance of the short-term interest rate. We also ® nd that
there is no empirical evidence for the long memory in the
mean beyond the well-known martingale property. It is
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suggested that the long memory detected by Backus and
Zin (1993) may result from an overly simpli® ed constant
conditional variance in their model.

Although it is widely believed that a structure break in
the interest rate process occurs around October 1979 due to
changes in Federal Reserve policy, Chan et al. (1992) were
not able to ® nd such a structure break in their empirical
investigation. They attribute their results to the more ¯ ex-
ible treatment of the conditional variance. However, being
equipped with an even more general model, we obtain evi-
dence contrary to Chan et al.’ s ® nding of no structure
break. Instead, our estimation con® rms the earlier result
that a structure break in the short-term interest rates did
exist in October 1979. It seems that the model of Chan et
al., although more ¯ exible than its predecessors, may still
su� er from misspeci® cation bias due to the omission of the
GARCH e� ect. In terms of the testing of structural breaks,
the incorporation of the additional GARCH e� ect appears
to be critically important.

The remainder of the paper is organized as follows. The
proposed one-factor model for short-term interest rate is
described in Section II. The estimation method and the
estimation results are presented in Section III and Section
IV, respectively. The testing results for the structure break
are given in Section V. Section VI discusses the estimation
and testing results.

II . THE MODEL

Chan et al. (1992) combine several well-known continuous-
time models for the riskless interest rate and propose the
following speci® cation:

drt ˆ … ¬ ‡ ­ rt† dt ‡ ¼rµ=2
t dW t … 1†

where rt is the spot rate at time t and W t is the standard
Brownian motion. The key feature of their model is that
the volatility of interest rate changes depends on a power
function of the level of the interest rate. The discrete-time
approximation to Equation 1 is

rt‡ 1 ¡ rt ˆ ¬ ‡ ­ rt ‡ ¼rµ=2
t "t‡ 1 … 2†

where E… "t‡ 1† ˆ 0 and E… "
2
t‡ 1† ˆ 1. Using the generalized

method of moments (GMM) estimation, Chan et al. (1992)
® nd that the term rµ=2

t plays a very important role in the
formation of volatility. More speci® cally, they demonstrate
that allowing µ to be a free parameter constitutes a signi® -

cant improvement over those models with µ being ® xed at a
given value such as 0 (Vasicek, 1977), 1 (Cox et al., 1985),
or 2 (Brennan and Schwartz, 1977). In view of this inter-
esting result it is natural to ask the following question:
how is such a model of volatility related to the popular
GARCH (generalized autoregressive conditionally hetero-
scedastic) speci® cation? It is particularly interesting to
know whether rµ=2

t is alternative or complementary to the
GARCH e� ects. An obvious way to examine this issue is
to consider a model which includes both rµ=2

t and the
GARCH e� ects.

Once the GARCH e� ects are incorporated into the vola-
tility process, the maximum likelihood estimation (MLE)
seems to be more straightforward than the GMM pro-
cedure. So in this paper we employ the approximate
MLE which is standard in the GARCH literature. We
note one prerequisite for the MLE is the distributional
assumption. Under an appropriate distributional assump-
tion the MLE will be more e� cient than its GMM counter-
part. The price we pay for such e� ciency gain is of course
the potential biases in MLE when the assumed distribution
is not supported by the data. However, recent literature
(e.g. Bollersley and Wooldridge, 1992) indicates that the
MLE under the normality assumption may still be robust
to certain distributional misspeci® cations.

In this paper we also investigate the e� ects of the large
kurtosis of the interest rate distribution through the t-dis-
tribution with its degree of freedom being treated as a free
parameter. A small estimate of the degree of freedom
implies a kurtosis that may be larger than the one from
the normal distribution. Procedures based on t-distribu-
tions are common in the GARCH literature (Bollerslev,
1986, 1987).

In addition to the distributional assumption, an even
more important condition for using MLE is that the data
must be stationary. In this regard, we note it is widely
believed that the short-term interest rate, especially before
October 1979, was a martingale. See for example, Mankiw
and Miron (1986) and Mishkin (1992). As a result, apply-
ing the OLS estimation (which is MLE under the normality
assumption and the assumption that µ ˆ 0) to Equation 2
where the dependent variable rt‡ 1 ¡ rt is martingale di� er-
ence while the independent variable rt is non-stationary, we
will inevitably get a small estimate of the ­ coe� cient.1

These previous empirical results indicate that the usual
stochastic di� erential Equation 1 may not be a suitable
model for the short-term interest rate.2

112 C.-F. Chung and M.-W . Hung

1 For example, using Mishkin’s (1990, 1992) monthly data from February 1964 to October 1979 (see Section IV), we obtain the following
OLS estiamtes (t-statistics in parentheses). On one-month interest rate, we have ¬̂ ˆ 0:2428 … 1:8722† , ­̂ ˆ ¡ 0:0399 … ¡ 1:7098† ,
¼̂

2 ˆ 0:502, and R2 ˆ 0:016. On two-month rate, we have ¬̂ ˆ 0:2212 … 1:7717† , ­̂ ˆ ¡ 0:0347 … ¡ 1:5900† , ¼̂
2 ˆ 0:473, and R2 ˆ 0:014.

On three-month rate, we have ¬̂ ˆ 0:2227 … 1:7513† , ­̂ ˆ ¡ 0:0339 … ¡ 1:5634† , ¼̂
2 ˆ 0:473, and R2 ˆ 0:013. None of the ­ estimates is

signi® cant and R2 are all small.
2 Given the stochastic di� erential Equation 1, it is the di� erence rt ¡

„ t
0… ¬ ‡ ­ rs† ds, instead of the interest rate rt itself , that is a

martingale. See é ksendal (1992).
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One way to modify model in Equation 1 is to replace the
standard Brownian motion W t by the increasingly more
popular fractional Brownian motion so that more ¯ exible
non-integer orders of integration may be considered. The
main di� erence between the standard Brownian motion
and the fractional version is that the latter permits persis-
tent autocorrelations (long memory). We thus propose the
following two-equation continuous-time model for the
short-term interest rate rt:

drt ˆ … ¬ ‡ ­ rt† dt ‡ ¼tdW d
t … 3†

d¼
2
t ˆ … ®rµ

t ¡ ½¼
2
t † dt ‡

���
2

p
¯¼

2
t dW t … 4†

where W t is a standard Brownian motion with a unit vari-
ance and W d

t is a fractional Brownian motion that is inde-
pendent of W t and is de® ned by3

W d
t … t† ˆ

1
¡… d ‡ 1†

… t

0
… t ¡ x† ddW 0

t … x†

Here, d is an arbitrary real number, W 0
t is an ordinary

Brownian motion which has a unit variance and is inde-
pendent of W t, and ¡… † is the gamma function.

To specify the discrete-time counterparts of Equation 3,
we note that Avram and Taqqu (1987, Theorem 2) have
shown that if the stochastic process fZtg follows a fraction-
ally integrated process

… 1 ¡ L † dZt ˆ " t t ˆ 1; . . . ; T … 5†

for d < 0:5, where L is the usual lag operator and "t are
independently and identically distributed (i.i.d.) with ® nite
second moments, then

1
!T

X‰TsŠ

tˆ 1
Zt !

d
W d

s as T ! 1

where !
d

denotes convergence in distribution, !
2
T Var

…
PT

tˆ 1 Zt† and ‰xŠ is the largest integer that is smaller
than or equal to x. This is a functional central limit the-
orem for the fractionally integrated process (Equation 5).4
It helps justify the following discrete-time approximation
to Equation 3:

rt‡ 1 ¡ rt ˆ ¬ ‡ ­ rt ‡ ¼ t‡ 1… 1 ¡ L † ¡ d
" t‡ 1 … 6†

where "t are assumed to be i.i.d. with E… "t† ˆ 0 and
E… "

2
t † ˆ 1. Note that we also rely on the standard func-

tional central limit theorem to justify the discrete-time
model in Equation 2 as an approximation to the continu-
ous-time model (Equation 1).

Simple algebra yields an alternative expression for
Equation 6:

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L † d … rt‡ 1 ¡ ¬ † ˆ ¼t‡ 1"t‡ 1 … 7†

where ¬ ˆ ¬=­ . We note this model reduces to Equation 2
if d ˆ 0. Since as mentioned earlier there is plenty of
empirical evidence for the martingale property of the
short-term interest rate, we believe it is the ® rst-di� erence

rt‡ 1 ˆ … 1 ¡ L † rt‡ 1 ˆ rt‡ 1 ¡ rt, instead of the level rt, that
is stationary. In terms of rt‡ 1 the Equation 7 becomes

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L † d¡ 1 rt‡ 1 ˆ ¼ t‡ 1" t‡ 1 … 8†

where the ¬ term vanishes. It should be pointed out that
the fractionally integrated model is particularly useful here
since not only does it allow for a more ¯ exible order of
integration so that both orders d and d ¡ 1 are equally
natural, it also nests the unit root (or the martingale)
case with d ˆ 1. Hence, with Equation 8 we are able to
test the signi® cance of unit root against the fractional alter-
natives.

The fractionally integrated process (Equation 5) was ® rst
introduced by Granger and Joyeux (1980), Granger (1980)
and Hosking (1981). In contrast to the unit root process
which exhibits perfect persistence with the impulse
responses approaching 1, the fractionally integrated pro-
cess with d < 1 is mean reverting and its impulse responses
converge to 0 at a slow hyperbolic rate. We note that the
impulse responses of the conventional ARMA model con-
verge at fast exponential rates. While the ARMA model is
said to have short memory, the fractionally integrated pro-
cess has long memory. See Chung (1995) for a more com-
plete analysis of the impulse responses of various time
series models and Baillie (1996) for a survey of the applica-
tions of the long memory process in ® nance and economics.
The speci® cations Equations 7 and 8 belong to the class of
fractionally integrated autoregressive moving-average
models, or the ARFIMA models, and can be denoted as
ARFIMA(1; d; 0† and ARFIMA… 1; d ¡ 1; 0† , respectively.
Finally, we note Backus and Zin (1993) also propose the
ARFIMA models for the interest rates to explain certain
properties of the term structure of interest rates. By ® tting
a number of ARFIMA models, Backkus and Zin suggest
that fractional integration, although modest, exists in the
interest rates.

Let’s turn to the conditional variance process in Equation
4. To implement it empirically, we simply note Bollerslev
et al. (1994) have shown its discrete-time approximation is

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t ‡ ¯"

2
t … 9†

General model for short-term interest rates 113

3 The basic properties of the fractional Brownian motion W d
t are as follows: (1) E… W d

t † ˆ 0. (2) Both W d
t and W d

¬t=¬
d‡ 0:5 have the same

® nite-dimensional distributions for any ¬ > 0. (3) If d 2 … ¡ 0:5; 0:5† , then W d
t has stationary increments and EjW d

t ¡ W d
s j

2
ˆ

¼
2

jt ¡ sj
2d‡ 1. The standard Brownian motion is a special case of the fractional Brownian motion with d ˆ 0. See Mandelbrot and

Van Ness (1968) and Jonas (1983) for an overview of the fractional Brownian motion.
4 A slightly more restricted version can also be found in Davydov (1970).
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where ¶ ˆ 1 ¡ ½ ¡ ¯ . That is, the conditional variance ¼
2
t

depends on a power function of rt and follows a
GARCH(1,1) process. Thus the empirical model we esti-
mate consists of Equations 8 and 9. To guarantee that the
model is stationary and the conditional variances are
positive, we impose the following restrictions on the
parameters: d ¡ 1 < 0:5, j ­ ‡ 1j < 1, 0 ® , 0 ¶ < 1,
and 0 ¯ < 1. Note that the model (2) of Chan et al. is a
special case of Equations 7 and 9 with d ˆ 0 and ¶ ˆ ¯ ˆ 0,
while Equation 7 is an alternative to Equation 8.

III. THE ESTIMA TION METHOD

Given the proposed model Equations 8 and 9, the
assumption that the innovations "t; t ˆ 1; . . . ; T , are i.i.d.
standard normal random variables, then the approximate
maximum likelihood estimation maximizes the following
function:

L … ¬ ; ­ ; d; ®; µ; ¶; ¯ † ˆ ¡
T ¡ 1

2
log 2º

¡ 1
2

XT ¡ 1

tˆ 1

log ¼
2
t‡ 1 ¡ 1

2

XT ¡ 1

tˆ 1

"
2
t‡ 1 … 10†

Apart from the Jacobian of the transformation from rt‡ 1 to
"t‡ 1 which is close to one and asymptotically negligible,
Equation 10 is the same as the true log-likelihood function.
If the initial observations r0; r¡ 1; r¡ 2; . . . are assumed to be
zero or, equivalently, "0 ˆ "¡ 1 ˆ "¡ 2 ˆ 0, then maximizing
Equation 10 is asymptotically equivalent to the MLE. As
Bollerslev (1986) suggests, it is also straightforward to write
down the approximate log-likelihood function when the
innovations "; t ˆ 1; . . . ; T , are assumed to have the stan-
dardized t-distribution with the degree of freedom being
treated as a free parameter. The asymptotic theory for
the approximate MLE in the ARFIMA models is consid-
ered by Li and McLeod (1986) and Chung and Baillie
(1993). The approximate MLE has been applied to in¯ a-
tion rate data by Baillie et al. (1996).

Given the model (Equation 8) for the ® rst-di� erenced
process rt‡ 1, we compute "t‡ 1 in the log-likelihood func-
tion as follows:

"
2
t‡ 1 ˆ

1
¼2

t‡ 1

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L † d¡ 1 rt‡ 1

ˆ
1

¼2
t‡ 1

‰1 ¡ … ­ ‡ 1† L Š
Xt¡ 1

jˆ 0

ºjL
j rt‡ 1

with º0 ˆ 1 and ºj ¡… j ¡ d ‡ 1† =‰¡… 1 ¡ d† ¡… j ‡ 1† Š,
while ¼

2
t‡ 1 are computed recursively from Equation 9.

Here we note the parameter ¬ is not involved.5

IV. THE ESTIMATION R ESULTS

We use Mishkin’s (1990, 1992) monthly data on one-
month, two-month, and three-month rates from February
1964 to December 1986, which are a well-known data set
and largely overlap with those used by Chan et al. Hence,
the ® ndings reported in this paper can be readily compared
with those earlier results.

We ® rst ® t the level data to model Equations 7 and 9 and
® nd that, unsurprisingly, the fractional di� erencing par-
ameter d is uniformly greater than 0.5 which renders the
model non-stationary. We thus switch to the model
Equations 8 and 9 for the ® rst-di� erenced data. The esti-
mation is conducted under both normal and t-distribu-
tions. In the latter case there is an additional parameter,
the degree of freedom, that characterizes the kurtosis. The
estimation results are presented in Table 1.

The estimates of both d ¡ 1 and ­ ‡ 1 are quite small
and statistically insigni® cant. These ® ndings strongly sug-
gest that the short-term interest rates are martingales and
thus verify what Mankiw and Miron (1986) and Mishkin
(1992) have suggested. As a result, the best predictors of all
the future short-term interest rates, conditional on all avail-
able information, are the current level: Et… rt‡ j † ˆ rt, for all
j ˆ 1; 2; . . . In contrast to such relatively simple dynamics
in the level of the interest rate, the formation of volatility
appears to be much more complex. While the estimates of
the ARCH parameter ¯ are small, almost all the estimates
of the GARCH parameter ¶ and the power parameter µ

are highly signi® cant. These results seem to imply that the
GARCH e� ect, as opposed to the ARCH e� ect, is com-
plementary to the term rµ

t . that is, the GARCH e� ect and
rµ
t may represent di� erent aspects of volatility formation,

while the ARCH e� ect may be o� set by the rµ
t term.6

114 C.-F. Chung and M.-W . Hung

5 If the estimation were based on the level data as in Equation 7, then the innovations "t‡ 1 would be

"
2
t‡ 1 ˆ

1
¼2

t‡ 1

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L †
d

… rt‡ 1 ¡ ¬ † ˆ
1

¼2
t‡ 1

‰1 ¡ … ­ ‡ 1† L Š
Xt¡ 1

jˆ 0

~º jL
j… rt‡ 1 ¡ ¬ †

with ~º0 ˆ 1 and ~º j ¡… j ¡ d† =‰¡ … ¡ d† ¡ … j ‡ 1† Š:
6 Like the majority of the previous studies of GARCH models, our analysis concentrates on the GARCH(1, 1) model. We do try to ® t
other GARCH speci® cations of higher orders and then use the standard model selection criteria such as AIC and SIC to pick the best
one. It is found that none of those GARCH models of higher orders survives this screening process.
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As to the degree of freedom of the t-distribution, we ® nd
its estimates range from 3.44 to 5.50 so that the corre-
sponding kurtosis is larger than that of the normal distri-
bution. One of the most striking results in Table 1 is that
under the t-distribution assumption we obtain very similar
estimation results for all three types of rates. We note the
two most important parameters µ and ¶ have similar esti-
mates around 3 and 0.6, respectively. For the one-month
and three-month rates, the parameter estimates are also
quite similar under the normality assumption. However,
in the case of the two-month rate the di� erent distribu-
tional assumptions appear to have a stronger e� ect on
the estimates, especially those of the ARCH and
GARCH parameters. Because obviously all three interest
rate distributions have larger kurtosis, the estimation
results based on the t-distribution seem to be more
reliable.7

Following the estimation results in Table 1, especially
those from the t-distribution, we consider a reduced speci-
® cation where the values of the three insigni® cant par-
ameters are restricted as follows: d ¡ 1 ˆ ­ ‡ 1 ˆ ¯ ˆ 0.
The restricted model consists of two equations:

rt‡ 1 ˆ ¼t‡ 1"t‡ 1 … 11†

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t … 12†

This is a preferred martingale model in which volatility
contains the GARCH e� ect and the power term rµ

t . The
estimation results are presented in Table 2. There we ® nd a
highly signi® cant e� ect of a power function of the interest
rate and a moderate GARCH e� ect.

The main conclusion we draw from Tables 1 and 2 is that
the level of the short-term interest rate follows a simple
martingale process while volatility is determined by a
more sophisticated dynamic mechanism.

We now show how misspeci® cation in volatility might
a� ect the estimation of the d ¡ 1 and ­ ‡ 1 parameters. In
Table 3 we report the estimation results for a model where
the GARCH e� ect is suppressed, while in Table 4 we
further constrain the value of µ to be 1 so that we e� ec-
tively have an Ornstein± Uhlenbeck model. These increas-
ingly simpli® ed speci® cations for volatility seem to move
the estimates of d ¡ 1 and ­ ‡ 1 away from zero. In par-
ticular we ® nd the estimate of d ¡ 1 for the one-month rate
becomes a signi® cant negative value. That is, if the volati-

General model for short-term interest rates 115

Table 1. Maximum likelihood estimates

d ¡ 1 ­ ‡ 1 ® µ ¶ ¯ d.f.

One-month interest rate
Normal distribution ¡ 0:0816 0.0612 0.7290 2.9775 0.3719 0.0787

(¡ 0:9059† (0.5193) (3.6299) (16.1586) (2.2552) (1.2734)
t-distribution ¡ 0:0912 0.0875 0.5759 3.1278 0.5449 0.0635 5.5013

(¡ 1:0352† (0.7573) (2.3993) (10.1021) (2.9982) (0.7661) (2.2467)
Two-month interest rate
Normal distribution ¡ 0:1134 0.2074 0.7696 2.7897 0.0000 0.1121

(¡ 2:2093† (1.5955) (3.7134) (15.0875) (0.0000) (1.9846)
t-distribution 0:0114 0.0989 0.2931 0.9242 0.5651 0.1746 4.0439

(0.1338) (0.8750) (2.3012) (6.8739) (4.2070) (1.6276) (2.5870)
Three-month interest rate
Normal distribution 0:0267 0.0602 0.2473 3.2628 0.5392 0.2060

(0.3219) (0.4415) (4.1310) (10.9247) (6.1178) (3.5113)
t-distribution 0:0383 0.1179 0.2615 3.1514 0.6120 0.1834 3.4458

(0.4386) (1.0606) (2.1384) (6.7683) (5.0113) (1.6665) (2.8764)

Notes: This table presents the approximate MLE of the model Equations 8 and 9:

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L †
d¡ 1 rt‡ 1 ˆ ¼t‡ 1"t‡ 1

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t ‡ ¯"

2
t

under the normal and t-distributional assumptions. The estimation is based on 275 monthly data on three types of short-term interest
rates from February 1964 to December 1986. Numbers in parentheses are t-statistics. The value of rt in the ®rµ

t term is divided by 10 to
stabilize the iterative estimation. As a result, the ® estimates are magni® ed by the factor of 10µ .

7 Even though theoretically the estimation under the normality assumption is more robust to the distributional assumptions, the par-
ameter estimates for the two-month rate under the normality assumption appear quite di� erent from the rest of Table 1. These aberrant
results may indicate problems with the normality assumption.
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Table 2. Maximum likelihood estiamtes

® µ ¶ d.f.

One-month interest rate
Normal distribution 0.7522 3.1141 0.4724

(4.2964) (19.9312) (3.7374)
t-distribution 0.5979 3.2324 0.6112 5.7232

(2.7092) (12.0498) (4.6698) (2.3281)
Two-month interest rate
Normal distribution 0.7101 2.8268 0.2229

(4.7010) (17.2830) (1.3515)
t-distribution 0.7125 2.8185 0.2826 4.3351

(2.2687) (10.4621) (1.0383) (2.4575)
Three-month interest rate
Normal distribution 0.5746 2.8168 0.3106

(4.4239) (18.7928) (1.9860)
t-distribution 0.5466 2.9432 0.4972 3.3082

(1.9486) (9.6628) (2.3945) (3.2029)

Notes: This table presents the approximate MLE of the model Equations 11 and 12:
rt‡ 1 ˆ ¼t‡ 1"t‡ 1

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t

under the normal and t-distributional assumptions. The estimation is based on 275 monthly data on three types of short-term interest
rates from February 1964 to December 1986. Numbers in parentheses are t-statistics. The value of rt in the ®rµ

t term is divided by 10 to
stabilize the iterative estimation. As a result, the ® estimates are magni® ed by the factor of 10µ .

Table 3. Maximum likelihood estimates

d ¡ 1 ­ ‡ 1 ® µ d.f.

One-month interest rate
Normal distribution ¡ 0:1500 0.1569 1.4044 3.0046

(¡ 1:7786) (1.6416) (8.8818) (18.4650)
t-distribution ¡ 0:1681 0.1718 1.4688 3.0508 6.5717

(¡ 2:0320) (1.8057) (4.9357) (12.2612) (1.9495)
Two-month interest rate
Normal distribution ¡ 0:0885 0.1532 0.9023 2.7830

(¡ 1:1682) (1.9889) (10.2997) (17.7075)
t-distribution ¡ 0:0854 0.1944 0.9652 2.7718 4.3448

(¡ 1:0972) (2.0817) (3.9445) (10.3324) (2.6582)
Three-month interest rate
Normal distribution ¡ 0:0824 0.1510 0.8243 2.7566

(¡ 1:1492) (2.1316) (10.7931) (19.3166)
t-distribution ¡ 0:0719 0.2192 0.9753 2.8541 3.5367

(¡ 0:9167) (2.4173) (3.1869) (10.2758) (3.4541)

This table presents the approximate MLE of the following models:

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L †
d¡ 1 rt‡ 1 ˆ

���
®

p
rµ=2
t "t‡ 1

under the normal and t-distributional assumptions. The estimation is based on 275 monthly data on three types of short-term interest
rates from February 1964 to December 1986. Numbers in parentheses are t-statistics. The value of rt in the ®rµ

t term is divided by 10 to
stabilize the iterative estimation. As a result, the ® estimates are magni® ed by the factor of 10µ .
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lity of this short-term interest rate is not properly speci® ed,
then its level can turn into a mean-reverting fractionally
integrated process which is quite di� erent from a martin-
gale. Other than this long memory result, the signi® cant
­ ‡ 1 estimates also indicate a form of short-run dynamics
in the interest rate level which contradicts the martingale
property. So from Tables 3 and 4 we conclude that the ® rst
and the second conditional moments of the short-term
interest rates cannot be separately estimated. If the volati-
lity process is misspeci® ed, then the estimation of the ® rst
moments can also be spurious. We note our estimation
results from Tables 1± 4 not only refute Backus and Zin’s
(1993) theoretical proposition of the fractional integration
in the interest rate but also explain why empirical support
for their theory could have been f̀ound’ when an overly
simpli® ed constant conditional variance is assumed.

The model speci® ed in Table 3 is similar to the model (2)
of Chan et al., but with a more ¯ exible order of integration.

We note that, by restricting the order of integration and
applying the GMM estimation to the one-month rate,
Chan et al. obtained a signi® cant estimate 2.9998 for µ

and an insigni® cant but large estimate 0.4079 for ­ ‡ 1.
These results are more or less compatible with our esti-
mates on the one-month rate in Table 3.8 Here, we should
note the methodological di� erence between the GMM
estimation and the MLE. The GMM estimation procedure
does not require distributional assumption so it is robust
to the distributional assumptions.9 Also, whether data are
stationary or not does not seem to matter in the GMM
estimation so that Chan et al. do not consider the unit
root problem in the interest rate data. In contrast, the
MLE procedure requires us to make a great deal of
e� ort to take each of these issues explicitly into con-
sideration. Because of this, we believe the resulting MLE
should achieve greater e� ciency than the GMM method
does, provided that the distributional assumptions, the t-

General model for short-term interest rates 117

Table 4. Maximum likelihood estimates

d ¡ 1 ­ ‡ 1 ® d.f.

One-month interest rate
Normal distribution ¡ 0:1826 0.1729 0.7398

(¡ 0:5961) (2.0796) (20.0671)
t-distribution ¡ 0:1551 0.1499 0.9996 2.7846

(¡ 2:2185) (1.8816) (1.9496) (4.1882)
Two-month interest rate
Normal distribution ¡ 0:1411 0.2186 0.5411

(¡ 2:0028) (3.0314) (19.3219)
t-distribution ¡ 0:0492 0.1601 0.7936 2.6475

(¡ 0:6756) (1.8573) (1.6349) (4.3363)
Three-month interest rate
Normal distribution ¡ 0:1377 0.2286 0.5111

(¡ 1:8376) (3.2065) (19.0018)
t-distribution ¡ 0:0459 0.2029 0.7507 2.6066

(¡ 0:6006) (2.3415) (1.6443) (4.6905)

Notes: This table presents the approximate MLE of the following model:

‰1 ¡ … ­ ‡ 1† L Š… 1 ¡ L †
d¡ 1 rt‡ 1 ˆ

���
®

p
"t‡ 1

under the normal and t-distributional assumptions. The estimation is based on 275 monthly data on three types of short-term interest
rates from February 1964 to December 1986. Numbers in parentheses are t-statistics. The value of rt in the ®rµ

t term is divided by 10 to
stabilize the iterative estimation. As a result, the ® estimates are magni® ed by the factor of 10µ .

It should be noted that the t-distributions are not consistent with the well-known theory by Cox et al. (1985): the short-term interest
rates which follow the present model should have non-central À

2 distributions. While the normal distribution results can be considered
large-sample approximations to the case of the non-central À

2 distributions, the testing results for the t-distribution cases reported here
are simply for the reference purpose only.

8 We have tried to estimate the model of Chan et al. using the approximate MLE. That is, we estimate the model Equation 7 with d ˆ 0
and no GARCH e� ects. The parameter estimates (t-statistics) for µ and ­ ‡ 1 are 1.0072 (66.4082) and 2.9987 (18.5858), respectively,
under the normality assumption. The estimation results under the t-distribution are almost identical. Here, we note that the estimate of
­ ‡ 1 is larger than but insigni® cantly di� erent from 1. So the estimated model essentially contains a unit root, which is not inconsistent
with the martingale result we reported earlier.
9Chan et al. claim the GMM estimation is also robust to the GARCH e� ects without explanation. We will provide some evidence about
how the GARCH e� ect might bias the GMM estimation and the ensuing hypothesis testing.
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distribution in particular, are not too far away from the
truth.

V. STR UCTUR AL CHANGES IN OCTOBER
1979

It is widely believed that the short-term interest rate experi-
ences a structural change in October 1979 due to the shift
in Federal Reserve monetary regimes. See, for example,
Huizinga and Mishkin (1984) and Clarida and Friedman
(1984). However, Chan et al. (1992) report that they could
not ® nd evidence for such a structural change based on
their GMM estimation of model (2). They interpret their
results as follows: ` . . . [their] interest rate models may be
rich enough to capture the change in interest rate behav-
iour evident in the post-1979 period. These results also
raise the possibility that previous tests for structural breaks
may be misspeci® ed because of their failure to model the
conditional heteroscedasticity in interest rate changes cor-
rectly’ (p. 1222). We also examine this issue by estimating
model Equations 11 and 12 separately with data before and
after October 1979. The estimation results are presented in
Tables 5 and 6. It is surprising to see that the estimates of
both µ and ¶ for each of the two sub-periods are much
larger than those from the whole period in Table 2. We also
note the t-statistics for the µ estimates are smaller,
obviously due to smaller sample sizes in each sub-period.

In Table 7 we present the log-likelihood values. In the
column under the title `without structural break’ are the
ones corresponding to the estimates for the entire sample
that were reported in Table 2. Those in the next column
under the title `with structural break’ are the sums of two
log-likelihood values obtained from the two sub-period
estimations. The entries in the last column are two times
the di� erences between the previous two columns and are
the likelihood ratio test statistics for testing the hypothesis
of no structural break. The degree of freedom of the À

2 test
is 3 for the normal distribution cases. The critical values at
the 95% level and the 99% level are 7.82 and 9.35, respect-
ively. The degree of freedom is 4 for the t-distribution cases
and the critical values at the 95% level and the 99% level
are 9.49 and 11.14, respectively. From Table 7 we conclude
that the hypothesis of no structural break is strongly
rejected for the two-month and three-month rates, while
it is marginally rejected for the one-month rate.
Conseqently, our estimation results appear to be in con¯ ict
with the conclusion of Chan et al. on one-month rate but
consistent with many earlier results obtained by other
researchers. Since our model Equations 11 and 12 di� er
from the model of Chan et al. mainly in the additional
GARCH e� ect, we may argue that their ® nding of no
structural break is due to their insu� cient consideration
of conditional heteroscedasticity, which, ironically, was
precisely the same criticism they made on previous works
in the literature.
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Table 5. The ML E for the ® rst subsample from February 1964 to October 1979

® µ ¶ d.f.

One-month interest rate
Normal distribution 0.3586 3.3630 0.7845

(3.6063) (9.0404) (11.5879)
t-distribution 0.4267 3.5470 0.7876 4.9627

(1.9547) (5.8980) (9.2487) (1.9221)
Two-month interest rate
Normal distribution 0.2724 3.7624 0.8334

(4.3126) (8.2375) (18.8842)
t-distribution 1.6443 3.0277 0.9203 2.0450

(0.3634) (3.4780) (20.2536) (16.2446)
Three-month interest rate
Normal distribution 0.2542 4.3650 0.8697

(4.7966) (7.4079) (32.8638)
t-distribution 6.3153 3.9679 0.9355 2.0136

(0.3720) (4.9215) (29.0881) (55.2955)

Notes: This table presents the approximate MLE of the model Equations 11 and 12:
rt‡ 1 ˆ ¼t‡ 1"t‡ 1

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t

under the normal and t-distributional assumptions. The estimation is based on 187 monthly data on three types of short-term interest
rates from February 1964 to December 1986. Numbers in parentheses are t-statistics. The value of rt in the ®rµ

t term is divided by 10 to
stabilize the iterative estimation. As a result, the ® estimates are magni® ed by the factor of 10µ .
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Table 6. The ML E for the second subsample from November 1979 to December 1986

® µ ¶ d.f.

One-month interest rate
Normal distribution 0.5108 4.4869 0.6091

(2.7863) (8.4381) (4.9833)
t-distribution 0.4618 4.4393 0.6411 12.1273

(2.1782) (6.9563) (4.1517) (0.4841)
Two-month interest rate
Normal distribution 0.3997 4.9023 0.4075

(2.1521) (9.6723) (1.6779)
t-distribution 0.3487 4.9771 0.4730 14.3891

(1.9832) (7.9035) (2.1024) (0.4201)
Three-month interest rate
Normal distribution 0.2075 4.9738 0.6176

(2.0683) (9.4855) (3.8909)
t-distribution 0.1506 5.2170 0.7043 8.3116

(1.6297) (6.6641) (4.5802) (0.7436)

Notes: This table presents the approximate MLE of the model Equations 11 and 12:
rt‡ 1 ˆ ¼t‡ 1"t‡ 1

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t

under the normal and t-distributional assumptions. The estimation is based on 88 monthly data on three types of short-term interest rates
from November 1979 to December 1986. Numbers in parentheses are t-statistics. The value of rt in the ®rµ

t term is divided by 10 to
stabilize the iterative estimation. As a result, the ® estimates are magni® ed by the factor of 10µ .

Table 7. L og-likelihood values

Without structural break With structural break Likelihood-ratio test statistics

One-month interest rate
Normal distribution ¡ 231:5513 ¡ 225:2441 12.6144*
t-distribution ¡ 226:7645 ¡ 221:2635 11.0020{

Two-month interest rate
Normal distribution ¡ 202:2414 ¡ 189:4505 25.5818*
t-distribution ¡ 195:2152 ¡ 183:3483 23.7338*

Three-month interest rate
Normal distribution ¡ 200:8301 ¡ 186:7173 28.2256*
t-distribution ¡ 188:8084 ¡ 173:8307 29.9554*

Notes: This table present the log-likelihood values under the normal and t-distributional assumptions. The second column gives the log-
likelihood values based on 275 monthly data on three types of short-term interest rates from February 1964 to December 1986. (The
corresponding parameter estimates are in Table 2.) The entries in the third column are the sums of two log-likelihood values of the two
subsample estimations: one from February 1964 to October 1979 and the other from November 1979 to December 1986. (The corre-
sponding parameter estimates are in Tables 5 and 6, respectively.) So the log-likelihood values in the third column are from estimations
that allow for structural break. The models under consideration are Equations 11 and 12:

rt‡ 1 ˆ ¼t‡ 1"t‡ 1

¼
2
t‡ 1 ˆ ®rµ

t ‡ ¶¼
2
t

The fourth column gives the likelihood-ratio test statistics. The degree of freedom of the À
2 test is 3 for the normal distribution cases. The

critical values at the 95% level and the 99% level are 7.82 and 9.35, respectively. The degree of freedom is 4 for the t-distribution cases
and the critical values at the 95% level and the 99% level are 9.49 and 11.14, respectively. The test statistics with * are signi® cant at 99%
level. The one with { is insigni® cant at 99% level but signi® cant at 95% level.
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To rea� rm that the di� erent testing results Chan et al.
get is caused by the omission of the statistically signi® cant
GARCH term in their model of volatility, we conduct
further testing based on the model of Chan et al. for the
® rst-di� erenced data:

‰1 ¡ … ­ ‡ 1† L Š rt‡ 1 ˆ
���
®

p
rµ=2
t "t‡ 1 … 13†

The testing procedure is the same as that given in Table 7
and the results are shown in Table 8. Unsurprisingly, for
the one-month rate the hypothesis of no structural break
cannot be rejected at 95% level, just like what Chan et al.
have reported. This result clearly suggests the inference of
no structural break does have something to do with the
omission of the GARCH term in their speci® cation of vola-
tility, even though they have correctly included the rµ

t term.
Incidentally, from Table 8 we also note, contrary to the
case of the one-month rate, that the structural changes
are again present in the two-month and three-month
rates, just like the earlier result in Table 7 based on
model Equations 11 and 12.

VI. DISCUSSION

The main conclusion drawn from the estimates of our pre-
ferred model Equations 11 and 12 in Tables 2, 5 and 6 is as
follows. Over the entire sampled period from February
1964 to December 1986, the power function of the interest
rate is highly signi® cant in the determination of the con-
ditional variances of all three types of short-term interest

rates. A signi® cant GARCH e� ect is also present, but it is
less apparent in the two-month rate than the others. In the
absence of the GARCH e� ect as in the model of Chan et
al., the unambiguously signi® cant estimate of µ such as
2.9998 indicates striking sensitivity of the interest rate vola-
tility with respect to the level changes in the interest rate.
However, the presence of the positive GARCH e� ect in our
model lessens the in¯ uence of the µ estimate on the e� ect of
the level changes in the interest rate. The implication of an
additional GARCH e� ect is that a change in the interest
rate volatility in the next period results not only from the
change in the current level of the interest rate but also from
the persistence in volatility itself. Consequently, the e� ects
of the level changes in the interest rate on its volatility is
not ® xed at the value of the µ estimate, but may in fact
¯ uctuate around some values below the µ estimates ranging
from 2.8 to 3.2. Obviously, it is this extra ¯ exibility that
makes the detection of the structural breaks possible. From
Tables 5 and 6, we notice for all three types of interest rates
the µ estimates from the ® rst subsample and the ¶ estimates
from the second subsample are consistently lower than
their respective counterparts from the other subsamples.
It appears that after 1979 the interest rate volatility
becomes more sensitive to the level of the interest rate
and less persistent.

Also note that the estimates in Tables 5 and 6 di� er from
those in Table 2 in a systematic way: the subsample esti-
mates of µ are higher while the subsample estimates of ¶

are lower in comparison with those of the whole sample. In
other words, the estimates of the µ and ¶ parameters from
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Table 8. L og-likelihood values

Without structural break With structural break Likelihood-ratio test statistics

One-month interest rate
Normal distribution ¡ 233:6993 ¡ 231:0451 5.3084{
t-distribution ¡ 230:6871 ¡ 228:2474 4.8794{

Two-month interest rate
Normal distribution ¡ 202:6113 ¡ 192:6287 19.9652*
t-distribution ¡ 194:1166 ¡ 185:9173 16.3986*

Three-month interest rate
Normal distribution ¡ 201:7283 ¡ 192:8603 17.7360*
t-distribution ¡ 186:6077 ¡ 180:8673 11.4808*

Notes: This table presents the log-likelihood values under the normal and t-distributional assumptions. The second column gives the log-
likelihood values based on 275 monthly data on three types of short-term interest rates from February 1964 to December 1986. The
entries in the third column are the sums of two log-likelihood values of the two subsample estimations: one from February 1964 to
October 1979 and the other from November 1979 to December 1986. So the log-likelihood values in the third column are from
estimations that allow for structural break. The model under consideration is Equation 13:

‰1 ¡ … ­ ‡ 1† L Š rt‡ 1 ˆ
���
®

p
rµ=2
t "t‡ 1

which is essentially the same as Cehn et al.’ s model based on the ® rst-di� erenced data. The fourth column gives the likelihood-ratio test
statistics. The degree of freedom of the À

2 test is 3 for the normal distribution cases. The critical values at the 95% level and the 99% level
are 7.82 and 9.35, respectively. The degree of freedom is 4 for the t-distribution cases and the critical values at the 95% level and the 99%
level are 9.49 and 11.14, respectively. The test statistics with * are signi® cant at 99% level. The one with { is insigni® cant at 99% level but
signi® cant at 95% level.
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the whole sample are not averages of those from the two
subsamples. The reason for this somewhat counter-intui-
tive result may lie in the possible e� ect cancellation
between the µ and ¶ estimates when the whole sample
period is considered. It should also be pointed out that
such e� ect cancellation may result in less ¯ uctuating esti-
mates of the e� ect of the level changes in the interest rate.
That is, estimations based on the longer sampled period
produce smoother e� ects of the level of interest rate on
volatility than those in the subsamples.

As a concluding remark, we believe our ® ndings in this
paper are substantive contributions to the literature of the
interest rate modelling and our results can be useful in the
valuation of interest rate contingent claim and optimal
hedging strategies. We note, in particular, valuation of
itnerest rate contingent claim is very sensitive to the vola-
tility of the interest rates, while ¯ exible modelling of the
volatility is the centrepiece of our analysis. An interesting
future research subject concerns how the valuation of inter-
est rate contingent claim can take into account both the
power function of interest rate and the GARCH e� ect.

ACKNOWLEDGEMENTS
We are very grateful to a referee for his valuable sugges-
tions.

REFERENCES
Avram, F. and Taqqu, M. S. (1987) Noncentral limit theorems

and Appell polynomials, Annals of Probability, 15, 767± 75.
Backus, D. K. and Zin, S. E. (1993) Long-memory in¯ ation

uncertainty: evidence from the term structure of interest
rates, Journal of Money, Credit, and Banking, 25, 681± 700.

Baillie, R. T. (1996) Long memory processes and fractional inte-
gration in econometrics, Journal of Econometrics, 73, 6± 59.

Baillie, R. T., Chung, C.-F. and Tieslau, M. (1996) Analyzing
in¯ ation by the fractionally integrated ARFIMA-GARCH
model, Journal of Applied Econometrics, 11, 23± 40.

Bollerslev, T. (1986) Generalized autoregressive conditional het-
eroskedasticity, Journal of Econometrics, 31, 307± 327.

Bollerslev, T. (1987) A conditionally heteroskedastic time series
model for speculative prices and rates of return, The Review
of Economics and Statistics, 69, 542± 7.

Bollerslev, T., Engle, R. F. and Nelson D. B. (1994) ARCH mod-
els, in Handbook of Econometrics, Vol. 4, Chapter 49, (Eds)
R. F. Engle and D. L. McFadden, North-Holland,
Amsterdam.

Bollerslev, T. and Wooldridge, J. M. (1992) Quasi-maximum like-
lihood estimation and inference in dynamic models with
time-varying covariances, Econometric Reviews, 11, 143± 72.

Brennan, M. and Schwartz, E. (1977) Savings bonds, retractable
bonds, and callable bonds, Journal of Financial Economics, 3,
231± 62.

Brennan, M. and Schwartz, E. (1979) A continuous time
approach to the pricing of bonds, Journal of Banking and
Finance, 3, 133± 55.

Brennan, M. and Schwartz, E. (1980) Analyzing convertible
bonds, Journal of Financial and Quantitative Analysis, 15,
907± 29.

Chan, K., Karolyi, A., Longsta� , F. and Sanders, A. (1992) An
empirical comparison of alternative models of the short-term
interest rate, Journal of Finance, 47, 1209± 27.

Chung, C.-F. (1995) Calculating and analyzing impulse responses
and their asymptotic distributions for the ARFIMA and
VARMA models, Econometrics and Economic Theory
Paper No. 9402, Michigan State University.

Chung, C.-F. and Baillie, R. T. (1993) Small sample bias in con-
ditional sum of squares estimators of fractionally integrated
ARMA models, Empirical Economics, 18, 791± 806.

Clarida, R. H. and Friedman, B. M. (1984) The behavior of U.S.
short term interest rates since October 1979, Journal of
Finance, 39, 671± 84.

Cox, J. C., Ingersoll, J. E., Jr. and Ross, S. A. (1981) A re-ex-
amination of traditional hypotheses about the term structure
of interest rates, Journal of Finance, 36, 769± 99.

Cox, J. C., Ingersoll, J. E., Jr. and Ross, S. A. (1985) A theory of
the term structure of interest rates, Econometrica, 53, 385±
407.

Davydov, Y. A. (1970) The invariance principle for stationary
processes, Theory of Probability and Its Applications, 15,
487± 9.

Granger, C. W. J. (1980) Long memory relationships and the
aggregation of dynamic models, Journal of Econometrics,
14, 227± 38.

Granger, C. W. J. and Joyeux, R. (1980) An introduction to long
memory time series models and fractional di� erencing,
Journal of Time Series Analysis, 1, 15± 39.

Hosking, J. R. M. (1981) Fractional di� erencing, Biometrika, 68,
165± 76.

Huizinga, J. and Mishkin, F. (1984) In¯ ation and real interest
rates on assets with di� erent risk characteristics, Journal of
Finance, 39, 699± 712.

Jonas, A. B. (1983) Persistent memory random processes, PhD
Dissertation, Harvard University.

Li, W. K. and McLeod, A. I. (1986) Fractional time series mod-
eling, Biometrika, 73, 217± 21.

Mandelbrot, B. and Van Ness, J. W. (1968) Fractional Brownian
motions, fractional noises and applications, SIAM Review,
10, 422± 37.

Mankiw, N. G. and Miron, J. A. (1986) The changing behavior of
the term structure of interest rates, Quarterly Journal of
Economics, 101, 211± 28.

Mishkin, F. S. (1990) What does the term structure tell us about
future in¯ ation? Journal of Monetary Economics, 25, 77± 95.

Mishkin, F. S. (1992) Is the Fisher e� ect for real? A reexamina-
tion of the relationship between in¯ ation and interest rates,
Journal of Monetary Economics, 30, 195± 215.

é ksendal, B. (1992) Stochastic Di� erential Equations, third edi-
tion (New York: Springer-Verlag).

Vasicek, O. (1977) An equilibrium characterization of the term
structure, Journal of Financial Economics, 5, 177± 88.

General model for short-term interest rates 121
D

ow
nl

oa
de

d 
by

 [
B

os
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

51
 0

4 
A

ug
us

t 2
01

7 


