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ABSTRACT: The Rh(III)-catalyzed regioselective C−H amidation of N-methoxy-1H-indole-1-

carboxamides by 1,4,2-dioxazol-5-ones was studied. N-methoxy amide, the directing group (DG) 

of interest, undergoes four different transformations through DG-retained, -coupled, -eliminated, 

or -migrated processes under moderately varied reaction conditions. Solvents, additives and 

temperature play important roles in these selective transformations: A trace addition of water 
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favors the functional group (FG)-assisted DG elimination; Extra addition of K2S2O8 greatly 

enhances the formation of DG-coupled product; High temperature and proper FG together can 

shift the position of DG through intermolecular Friedel-Crafts-like acylation. The catalytic 

mechanisms underlying these reactions were further investigated through DFT calculations and 

experimental studies including the characterization of amido-inserted rhodacycle. An overall 

catalytic pathway was proposed to illustrate the reactions involved in the regioselective 

amidation of N-methoxy-1H-indole-1-carboxamide.

KEYWORDS: C−H activation, directing group, regioselective amidation, Friedel-Crafts-like 

acylation, DFT

INTRODUCTION

In the past few decades, transition-metal-catalyzed C−H bond activation, often incorporated in 

the organic manipulation of N-heterocyles,1 has attracted wide attention from organic chemists, 

for being a highly efficient, atom-economical and environmentally benign synthetic tool.2 

Among the many forms of this methodology, directed C−H functionalization, first discovered in 

1963, has recently reemerged as a reliable approach for achieving a diverse collection of carbon–

carbon (C−C) and carbon–heteroatom (C−X) functionalization reactions.3 This strategy 

introduces a directing group (DG) into a hydrocarbon substrate, and activates C−H bond through 

organometallic intermediates which ultimately convert the C−H bond to a functional group (FG). 

Various novel coordinating DGs have been designed and successfully installed onto the 

substrates of interest, where they promote the subsequent one-pot catalytic selective C−H 

functionalization through one of the three main pathways (Scheme 1a): (i) the majority of 
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installed DGs remain intact at the incorporated position;4 (ii) some DGs further react with the 

inserted FG to form a cyclized product immediately following C−H activation;5 and (iii) the rest 

DGs are readily eliminated in situ to produce desired products, which usually requires multiple 

chemical transformations and is not always achievable.6 Taken together, these schemes infer 

unlimited synthetic capacity of DGs in catalytic site-selective preparation of structurally 

diversified products.

However, identifying DG and FG that are compatible with a target substrate is always 

challenging, as is determining the reaction conditions to robustly control the regioselectivity of 

C−H functionalization. In 2008, Yu’s team reported the highly selective construction of C−C and 

C−N bonds through the directed activation of C−H bond using N-methoxy amides.7 N-methoxy 

amide is a carbonyl-related DG consisting of a chelating amide and a methoxy group as nitrogen-

protecting motif used in regioselective C−H functionalization.8 This agent is particularly useful 

as a synthon, since N-methoxy amide can be readily converted to a number of synthetically 

versatile groups, including esters, amides and alkanes. Over the past ten years, N-methoxy amide 

has shown increasingly high success in forming C−C and C−X bonds via processes catalyzed by 

various transition-metals, such as rhodium, copper, palladium and ruthenium.9‒11 Different 

products with attractive structural features have been achieved through highly efficient one-pot 

regioselective reactions. In most cases, N-methoxy amide either remains on the products9 or is 

further coupled with an adjacent FG to afford extra heterocycle.10 A partial cleavage of the 

methoxy protecting group was also observed in some experiments.11 However, complete 

detachment of N-methoxy amide from substrate following C−H functionalization has not yet 

been reported.
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Inspired by the feasibility of using N-methoxy amide as an intramolecular DG, we investigated 

the directed regioselective amidation of N-methoxy amide-substituted indole 1 by the amidating 

reagent 1,4,2-dioxazol-5-one 212 (Scheme 1b). This model study showed the versatile 

transformations of N-methoxy amide group under varied reaction conditions, including 

temperature, solvent and additive, whereby structurally attractive and diverse functionalized 

indoles 3, 4, 5 and 6 were achieved through Rh(III)-catalyzed C−H bond activation. In addition 

to incorporating FG at C2 to yield 3, N-methoxy amide DG also acted as a coupling partner to 

give product 4 in tetrahydrofuran (THF) solvent at low temperature. Notably, the presence of a 

small amount of water led to the formation of DG-free product 5, which demonstrates the first 

example of in situ elimination of N-methoxy amide. Moreover, product 6 was obtained after DG 

was shifted from N1 to C3 at high reaction temperature. Further experimental and computational 

studies were carried out to elucidate the underlying reaction mechanisms and reveal the cause of 

product diversity.

Scheme 1. Versatile DG Behavior in Transition-Metal Catalyzed C-H Bond Activation
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RESULTS AND DISCUSSION

Reaction Conditions Optimization. N-methoxy-1H-indole-1-carboxamide (1a) and 1,4,2-

dioxazol-5-one (2a) were selected as starting materials to model the metal-mediated indole 

amidation. We began our optimization study by screening a wide range of reaction parameters, 

including catalysts, ligands, salt additives, solvents and temperatures (see Table S1‒S4 in 

Supporting Information for detailed reaction condition screening). The simple mixture of 

commercially available complexes [Cp*RhCl2]2 and Zn(OTf)2 was used as the catalytic system, 

and solvent 1,2-dichloroethane (DCE) was applied initially. The reaction at room temperature 

formed a new C−N bond to give products 3a, 4a, 5a and 6a, in the yields of 52%, 9%, 17% and 

7%, respectively (Table 1, entry 1). Replacing DCE with untreated THF (≤ 0.05% water) slightly 

improved the yield of 3a and 5a (Table 1, entry 2). And substituting CsOAc with NaOAc 

elevated the yield of 3a to 88% (Table 1, entry 3), presumably due to the alkalinity difference 

between the two bases. Notably, raising the reaction temperature to 60 °C drastically decreased 

the yield of 3a to less than 5% whereas the turnover of product 5a was dramatically increased, 

and the yield of 4a was also slightly improved (Table 1, entry 4). We next attempted the chemo-

selective study of 4a and 5a. As shown in Table 1 (entries 5‒7), a more balanced mixture of 

products 4a and 5a was obtained when anhydrous THF was employed as solvent, and replacing 

additive CsOAc with NaOAc/K2S2O8 boosted the yield of 4a from 24% to 78%, suggesting 

K2S2O8 could promote the cyclization reaction. Since KHSO4 has also been reported to assist 

similar cyclizations,13 we attempted the reaction once more using NaOAc/KHSO4 as the additive, 

and found the yield of 4a was further increased to 81% (entry 8). Also of note, using untreated 

THF as solvent yielded slightly more 5a than using anhydrous THF (Table 1, entries 4 and 5), 

indicating that the presence of water favors the production of 5a. This result prompted us to add 
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10% water (v/v) into THF and as expected, the new solvent mixture gave distinct product 5a in 

an excellent yield of 85% (Table 1, entry 9). However, same additional water into THF in entry 3 

(Table 1) resulted in the slightly decreased yield of 3a (Table S1, entry 10). To further explore 

the effect of temperature, we steadily raised it while keeping the rest conditions intact. 

Interestingly, the yield of product 6a continuously increased until reaching 62% at 130 °C, 

whereas 3a, 4a and 5a gradually diminished (Table 1, entries 10‒12). The experimental 

outcomes also showed that the presence of CsOAc or NaOAc as an additive is crucial for the 

success of these transformations wherein Cp*Rh(OAc)2, rather than [Cp*RhCl2]2, most likely 

acts as the active catalyst, as evidenced by the density functional theory (DFT) calculations 

(Figure S9, S10). Meanwhile, Zn(OTf)2 was found to slightly increase the yield of 3a, 5a and 6a 

(Table S1, S3 and S4) which might be ascribed to its promotion of the transformation 

[Cp*RhCl2]2 to Cp*Rh(OAc)2 in the presence of CsOAc or NaOAc. We also screened the 

efficiency of various complexes containing the basic amide moiety (see Supporting Information 

for details). The results showed that N-methoxy amide outcompeted the rest of candidates in 

directing Rh(III)-catalyzed C−H amidation and promoting the subsequent transformations.
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Table 1. Optimization of Reaction Conditions 
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yield (%)a

entry solvent additive T (°C)
3a 4a 5a 6a

1 DCE CsOAc r.t. 52 9 17 7

2 untreated THF CsOAc r.t. 68 <5 21 <5

3 untreated THF NaOAc r.t. 88 <5 <5 <5

4 untreated THF CsOAc 60 <5 10 75 <5

5 anhydrous THF CsOAc 60 <5 24 49 <5

6 anhydrous THF NaOAc 60 <5 34 44 <5

7 b anhydrous THF NaOAc
K2S2O8

60 <5 78 <5 <5

8 b anhydrous THF NaOAc
KHSO4

60 <5 81 <5 <5

9 THF/H2O (10:1) CsOAc 60 <5 <5 85 <5

10 DCE CsOAc 60 <5 12 51 24

11 DCE CsOAc 95 <5 <5 25 48

12 DCE CsOAc 130 <5 <5 <5 62

The reaction was conducted with 1a (0.2 mmol), 2a (0.24 mmol), [Cp*RhCl2]2 (5 mol%), Zn(OTf)2 (30 mol%), additive (0.2 
mmol), solvent (2 mL), yield of isolated products.a Isolated yield; b Zn(OTf)2 was not used.

Substrate Scope. With the optimized reaction conditions in hand, we sought to evaluate the 

substrate scope of these processes, starting with the formation of DG-retained product 3 using 

the same catalytic system as shown in Table 1 (entry 3). The results showed that the mono-

substituted 3-phenyl dioxazolones were well tolerated in the reaction with 1a, affording 3a3g, 

3j and 3k in good to excellent isolated yields ranging from 72% to 92% (Scheme 2). The 

dioxazolones containing electron-withdrawing group at para-position of the phenyl ring, such as 
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8

fluorine, chlorine and trifluoromethyl group, gave higher yield of products (3d, 3e and 3g) than 

those with electron-donating group. This trend was further verified by the high yield of 3m 

(83%) derived from dioxazolones containing 3, 4-chloro group on the phenyl ring. However, 

para-methyl ester or cyano substituents on phenyl ring prevented dioxazolones from producing 

desired product (3h and 3i). Meanwhile, more sterically hindered diphenyl-substituted 

dioxazolone resulted in much lower yield (3l, 56%). In addition, we found alkyl-substituted 

dioxazolone also compatible to react with 1a to afford 3n in moderate yield. Similarly tolerated 

was the dioxazolone bearing styryl substituent as a conjugated side chain (3o). Moreover, 

dioxazolones with thiophene substituent reacted with 1a smoothly, giving 3p in good yield. 

Subsequently, we investigated the scope of N-methoxy amide-substituted indoles. As a result, a 

variety of electron-donating and -withdrawing substituents on phenyl ring of indole were well 

tolerated in the reaction, affording the corresponding desired products (3q‒3t and 3x‒3ab) in 

moderate to good yields ranging from 57% to 86%, with the exception of the compounds with 

strong electrophilic methyl ester, nitro or cyano substituents (3u‒3w).
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9

Scheme 2. Synthesis of Products 3 with DG Retained
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The reaction was conducted with 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), Zn(OTf)2 (30 
mol%), NaOAc (0.2 mmol), THF (2 mL), room temperature, yield of isolated products.

Next, we surveyed the substrate scope for the synthesis of DG-coupled products, 4H-

[1,3,5]oxadiazino[3,4-a]indol-4-ones (4, Scheme 3). A broad range of indoles and aryl-

dioxazolones were investigated for their reaction compatibility. Dioxazolones, whether bearing 

neutral hydrogen or phenyl, electron-donating methyl or methoxy, or electron-withdrawing 

fluoro or chloro on the phenyl ring, all successfully reacted with 1a to give corresponding 

products in moderate to good isolated yields (4a‒4h), among which 4d, derived from phenyl-

substituted phenyl-dioxazolone, was achieved in the highest yield of 91%. Employing 

naphthalene, benzyl or styryl-substituted dioxazolones as substrates resulted in moderate yields 
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10

of the desired products (4i‒4k). Similar yields were obtained by replacing the substituents of 

dioxazolone with heterocycles, such as furan and thiophene (4l and 4m). Indoles bearing 

different groups were also found compatible in the coupling assembly of the corresponding 

cyclized heterocycles (4n‒4z), albeit in slightly lower yields. 

Scheme 3. Synthesis of Product 4 with DG Coupled
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The reaction was conducted with 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), NaOAc (0.2 
mmol), KHSO4 (0.2 mmol), THF (2 mL), 60 oC, yield of isolated products.

Notably, a unique reaction occurred when we replaced DCE with aqueous THF as the reaction 

solvent: An elimination of the DG took place in situ following the successful insertion of the 

substituted amide unit to C2 position of the indole ring of 1, leading to the formation of DG-free 

product 5 (Scheme 4). The substrate scope and reaction limitatio.ns were accordingly examined. 
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11

The results indicated that the electron-donating substituents on the phenyl ring of dioxazolones 

resulted in higher isolated yields of products (5b, 5c and 5g) than those obtained with electron-

withdrawing substituents (5d‒5f and 5h). When using naphthalene, benzyl and styryl-substituted 

dioxazolone as substrates, the desired products were yielded in moderate to good amount 

(5i‒5k). We then extended the phenyl substituents of dioxazolones to alkyls and heterocycles, 

and found that isobutyl and furan-dioxazolone were also viable in forming desired products (5l 

and 5m), albeit in slightly lower yields. In addition, substrates with N-carboxamides substituted 

on various positions of indole ring efficiently generated N-(indol-2-yl)amides in moderate to 

good yields (5n‒5x).

Scheme 4. Synthesis of Product 5 with DG Eliminated

R2

N

N
O

O
O

O NH
OMe

N N
H

R2

O

5

[Cp*RhCl2]2 (5 mol%)
Zn(OTf)2 (30 mol%)
CsOAc (1.0 equiv.)

THF:H2O (10:1)
60 oC, 12 h1 2

N N
H

O

R
R=H 5a, 82%

CH3 5b, 85%
OCH3 5c, 75%
F 5d, 69%
Cl 5e, 66%
NO2 5f, 48%

N N
H

O
R

5i, 77%

N N
H

O

5j, 35% 5k, 53%

N N
H

O
O

N N
H

O

N N
H

O

H H H

H
H

H

H

R=CH3 5g, 88%
Cl 5h, 78%

5m, 34%

N N
H

O

H

N N
H

O

H

R=CH3 5p, 76%
OCH3 5q, 85%
Cl 5r, 69%
Br 5s, 62%

5l, 29%

R1

R1

N N
H

OR

H
N N

H

O

H N N
H

O

H

R

R

CH3

R=CH3 5n, 82%
Br 5o, 70%

R=CH3 5t, 79%
F 5u, 45%
Cl 5v, 58%
Br 5w, 67%

5x, 75%

The reaction was conducted with 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), Zn(OTf)2 (30 
mol%), CsOAc (0.2 mmol), THF (2 mL), H2O (0.2 mL), 60 oC, yield of isolated products.
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12

As shown in Scheme 5, N-methoxy-1H-indole-1-carboxamide (1a) reacted smoothly with 

various aromatic dioxazolones to introduce the FG to C2 position of the indole ring while 

transferring the DG from N-1 to C-3, which then generated desired products (6a−6g) in moderate 

to good isolated yields. Using 1a derivatives bearing electron-donating methyl or methoxy 

groups on aromatic ring also afforded the desired products 6h and 6i in good yields. However, no 

observable target product was generated from 1a or 2a containing an electron-withdrawing 

substituent such as chloro or bromo group.

Scheme 5. Synthesis of Product 6 with DG Migrated

R2
N

N
O

O
O

O NH
OMe

6

[Cp*RhCl2]2 (5 mol%)
Zn(OTf)2 (30 mol%)
CsOAc (1.0 equiv.)
DCE, 130 oC, 12 h1 2

6a, 62% R = CH3 6b, 59%
OCH3 6c, 57%

6f, 38% R = CH3 6h, 67%
OCH3 6i, 72%

R = CH3 6d, 65%
OCH3 6e, 53%

R1

R1

6g, 45%

N NH

O R2

N
H

O O

H

N NH

O

N
H

O O

H
N NH

O

N
H

O O

H

R

N NH

O

N
H

O O

H R

N NH

O

N
H

O O

H
N NH

O

N
H

O O

H
N NH

O

N
H

O O

H

R

The reaction was conducted with 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), Zn(OTf)2 (30 
mol%), CsOAc (0.2 mmol), DCE (2 mL), 130 oC, yield of isolated products.

Mechanistic Studies. The versatile N-methoxy amide DG has exhibited great synthetic capacity 

by successfully furnishing four different series of indole amidation products through Rh(III)-

catalyzed C−H activation. To gain insight into the pathways underlying the reaction and its 

diversity, we conducted mechanistic investigations using a combined experimental and 

computational methodology to address specifically: (1) What is the key intermediate in the 
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13

synthesis of products 3a, 4a, 5a or 6a? (2) What cascade steps it takes for these four 

transformations to take place? (3) Why does the C−H amidation prefer the site of C2 instead of 

C7 in similar proximity? (4) How do DG elimination and DG migration occur in the synthesis of 

5 and 6, respectively?

Scheme 6. Intermediate Study for the Amidation
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Figure 1. Molecular structure and atom numbering scheme for IN5 and IN8.

In order to investigate all the possible intermediates, we first obtained a stable five-membered 

rhodacycle IN5 by treating substrate 1a with [Cp*RhCl2]2 at 70 oC as shown in Scheme 6a. The 

subsequent reaction between IN5 and 2a successfully afforded product 3a in excellent yield as 

well as a small amount of di-amidated Rh complex IN8. Both intermediates IN5 and IN8 were 

confirmed by X-ray crystallography (Figure 1). Next, we achieved products 3a, 4a, 5a and 6a in 

92%, 83%, 87% and 56% yield respectively, by coupling IN5 with 2a under different conditions 

(entries 3, 7, 8 and 11, Table 1) without employing additional [Cp*RhCl2]2 (Scheme 6b). This 

finding suggests that IN5 very likely acts as an intermediate in C−H activation to afford desired 

products. In order to verify the role of 3a in the formation of the rest products, we subjected it to 

the standard conditions without adding [Cp*RhCl2]2. As a result, products 4a, 5a and 6a were 

isolated in yields of 84%, 89% and 65% respectively (Scheme 6c), suggesting that 3a is most 

likely the central intermediate to form the three other products.
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Figure 2. Free energy profiles (kcal mol−1) for the generation of 3a from 1a and 2a.

Figure 3. Optimized structures (Å) for selected transition states as shown in Figure 2.

In order to further study the mechanism to form 3a, we conducted a series of density functional 

theory (DFT) calculations at the level of M0614 using the Gaussian 09 suite of computational 
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programs15. (see Supporting Information for computational details). The Rh and Cl atoms were 

described by the Lanl2dz basis set and effective core potential.16 The 6-31G(d,p) basis set17 was 

applied for the C, H, O and N atoms. In addition, polarization functions of Rh(ζf) = 1.350 and 

Cl(ζd) = 0.514 were added.18 Frequencies were calculated at the same level of theory to obtain 

the thermodynamic corrections and to confirm whether the structures were minima (no 

imaginary frequency) or transition states (only one imaginary frequency). Intrinsic reaction 

coordinate (IRC) calculations19 were conducted to confirm all transition-state structures that 

connected the proposed reactants and products. The most plausible pathway from 1a to 3a was 

then identified among several proposed routes (see Supporting Information). As shown in Figure 

2, starting material 1a is initially coordinated to the catalyst to form a complex that undergoes 

subsequent deprotonation by OAc− twice and transforms to the intermediate IN5, confirmed by 

X-ray crystallography. A kinetic isotope effect (KIE) study (kH/kD = 1.31, see Supporting 

Information) suggested that the C−H bond cleavage at the ortho-position of the indole is not the 

rate determining step, a finding consistent with the KIE result of TS1 (kH/kD = 1.46) from the 

DFT calculation (Figure 2). Next, the other starting material 2a is coordinated to Rh(III) complex 

IN5 to give IN6 with an endergonicity of 4.4 kcal/mol, which is followed by the CO2 release 

through TS2 (Figure 3) with a barrier of 16.6 kcal/mol. IN7 further carries out a C−N bond 

coupling, which has a barrier of 13.6 kcal/mol, to transiently form TS3 wherein the C-Rh(III) 

bond was cleaved to deliver intermediate INX. However, the six-membered rhodacycle INX was 

not detected throughout our experiment, presumably because INX is so reactive that it converts 

to 3a immediately after formation. Subsequently, the coupling of INX to acetic acid leads to TS4 

via INX1and the following protonation of TS4 gives rise to INX2. Further coordination of 

additional acetic acid to Rh(III) on INX2 and the N-Rh(III) bond cleavage together generate TS5 
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via INX3, which ultimately results in the formation of the final product 3a through INX4 and the 

regeneration of catalyst Cp*Rh(OAc)2.

Scheme 7. Selective C−H Activation of C2 Over C7
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It is noteworthy that during the treatment of IN5 with 2a (Scheme 6a), a small amount of IN8, 

exhibiting C−H activation potential at C7, was alternatively obtained in place of INX. We thus 

continued investigation using this di-amidated intermediate as a starting material under various 

standard conditions excluding the addition of [Cp*RhCl2]2. As a result, none of the products 3a, 

4a, 5a or 6a was detected. Instead, compound 8 with amidation on both C2 and C7 of indole was 

obtained (Scheme 7a). The C−H activation on C7 was further confirmed by reaction between 

C2-methylated 1aa and 2a, which led to product 9 in good yield (Scheme 7b). However, no C7-

amidated product was observed in the reaction between 1a and 2a, suggesting that the C−H 

activation at C2 was favored in this catalytic system.
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To understand the cause of this distinct selectivity, we computationally analyzed the relative 

Gibbs free energies of C−H activation for both sites C2 and C7. Scheme 7c shows that C2 

exhibits relatively lower energy barrier (12.9 kcal/mol) than C7 (14.7 kcal/mol), hence being the 

preferred activating site. This finding accords with our experimental results shown in Scheme 2, 

7a and 7b, and explains the regioselectivity observed with N-methoxy-1H-indole-1-carboxamide 

(1a).

Also of note, the carbonyl group on the cyclized product 4 has several possible sources: starting 

material 1 or 2, or their spontaneous decomposition product CO2. Through stable-isotope 

labeling experiments with 13C, we were able to clarify that the carbonyl group comes straight 

from 1, a finding that is consistent with Scheme 6c (see Supporting Information for more details).

To our surprise, product 5a and 6a were also formed through intermediate 3a, indicating that DG 

elimination and translocation took place during the process (Scheme 6c). This very unusual 

observation prompted us to investigate the underlying mechanisms. As shown in Scheme 8a, 

compound 1a did not afford DG-free indole under the same elimination condition of 3a (Scheme 

8a), suggesting that the amidation of 3a contributes to the DG removal, presumably by 

increasing the electron density of the adjacent nitrogen to which DG was attached. This effect of 

FG on the translocation of DG was also detected in the transformation of 3a under the standard 

condition to form 6a (Scheme 8b), in contrast to the reaction of 1a or 1aa wherein no DG 

migration was observed. As shown in Scheme 8b, instead of giving any DG-shifted product, 

moderate electron-donating 2-methyl-substituted 1aa delivered mainly DG-free product 10 in 45% 

isolated yield, along with remaining 1aa. However, when 5a reacted with 1aa in a 1:1 ratio, the 

DG-shifted product 6a was obtained in 53% isolated yield and compound 10 was produced in 75% 

yield, leaving no traceable unreacted 1aa. Taken together, these outcomes indicate that the 
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migration of DG from N1 to C3 might also be attributed to the electron-donating effect of the 

amide FG in proximity which activates the amidation of C3 by enhancing its electronegativity 

and hence accelerating the translocation of DG.

Scheme 8. FG Effect on DG Elimination and Migration
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On the basis of the experimental and computational results, we propose four plausible 

mechanisms underlying the C-H bond functionalization as shown in Scheme 9. In the presence 

of CsOAc, dimeric compound [Cp*RhCl2]2 transforms to Cp*Rh(OAc)2, which is then captured 

by 1a to afford rhodacycle IN5 through N-metalation and turnover-limiting C−H activation. The 

transmetalation of IN5 by 2a at room temperature leads to product 3a as well as a small amount 

of IN8, which presumably gives the proposed intermediate INX during the reaction. The fact that 

no INX was detected could be ascribed to its high instability. Next, ortho-amidated product 3a 

serves as a key intermediate to form 4a, 5a and 6a. In the presence of NaOAc, the 
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tautomerization of 3a takes place to give A which then undergoes lactonization to ultimately 

furnish DG-coupled product 4a via [4+2] cyclization. On a parallel pathway, the DG of 3a is 

removed by base CsOAc to obtain B followed by protonation in the presence of water, which 

eventually leads to the formation of DG-free product 5a. Meanwhile, at high temperature, the 

electron rich C3 of the same intermediate B could also attack the carbonyl group in DG of 3a 

through the intermolecular Friedel-Crafts-like acylation to form product 6a, and regenerate 

molecule of B to continuously drive the reaction cycle.

Scheme 9. Proposed Reaction Pathways
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CONCLUSION

In summary, we developed rhodium-catalyzed regioselective C−H amidation of indoles and 

obtained four different products under moderately varied reaction conditions. The four ways of 

C-H functionalization were achieved by fully utilizing the reacting potential of N-methoxy amide 
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as intramolecular DG of N-methoxy-1H-indole-1-carboxamides when interacting with 1,4,2-

dioxazol-5-ones. The traditional mechanism of C−H activation, assisted by N-methoxy amide 

DG, successfully introduces amide FG to the indole moiety to produce compound 3. A slight 

modification of reaction conditions overrides the conventional mechanism and renders the 

chelating carbonyl group of DG so much more reactive that it forms a further coupled product 4. 

Notably, the addition of a small amount of water results in an in situ elimination of DG to give 

product 5, the first time N-methoxy amide acts as a completely removable DG. Furthermore, 

unprecedented DG migration gives rise to unexpected product 6, a process accelerated by high 

reaction temperature and facilitated by ortho-amidated intermediate 3. To our best knowledge, 

this is the first case of DG migration occurring in directed transition-metal-catalyzed C−H 

functionalization wherein the newly installed FG plays a crucial role in the intermolecular 

Friedel-Crafts-like acylation. Mechanistic studies involving both experimental and theoretical 

methodologies were carried out. Two Cp*Rh(III) complexes were isolated and characterized. 

The DFT calculations revealed the possible pathway to obtain 3a and explained preferred C−H 

activation site of C2 over C7 on N-methoxy-1H-indole-1-carboxamide (1a). This rhodium-

catalyzed reaction provides a facile approach to indole amidation with high regioselectivity, 

tolerates a broad range of substrates and efficiently produces a variety of indoles through one-pot 

DG-coupled, -eliminated or -migrated reactions. The enabling manipulations significantly 

expand the synthetic utility of N-methoxy amide, be it an easily accessible directing agent, a C-H 

functional building block, a removable group or a potentially transferable moiety. Such versatile 

strategy and its extension may encourage researchers to discover more promising DGs for 

transition-metal-catalyzed C−H bond activation, making available new targets and materials that 

would have been previously out of range.
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