OZONOLYSIS OF RICINOLIC ACID DERIVATIVES AND TRANSFORMATIONS OF THE OZONOLYSIS PRODUCTS UNDER BARTON REACTION CONDITIONS

G. Yu. Ishmuratov, R. Ya. Kharisov, A. Kh. Shayakhmetova, L. P. Botsman, O. V. Shitikova, and G. A. Tolstikov

UDC 542.85+542.943.5+665.335.5

The possibility of functionalizing the alkyl part of ricinolic acid using the Barton reaction was investigated.

Key words: castor oil, ozonolysis, Barton reaction, ricinolic acid.

Ricinolic acid (1) is a promising substrate for preparing chiral polyfunctional compounds that can in turn act as convenient building blocks for the synthesis of organic compounds with more complicated structures because of its availability from castor oil and the presence of asymmetric C-12 with the *R*-configuration.

Herein we report results of investigations on expanding the synthetic potential of **1** by further functionalization of the chemically stable alkyl part of the molecule (C-12—C-18) using the Barton photochemical rearrangement of nitrites **2-4** in the key step.

In order to simplify the structure of starting 1, it was fragmented by ozonolysis to produce the desired secondary monoacetate of diol 6.

Compound **6** was prepared previously by ozonolysis of methyl *R*-12-acetoxyoctadec-9-enoic acid (**5**) in MeOH [1]. Under the conditions described for reduction of the intermediate peroxides (NaBH₄—MeOH) in the reaction mixture, the product of thermodynamic control, primary acetate **7** (ratio **6**:**7**, 1:2.5), dominated and was formed as a result of intramolecular *trans*-esterification. Furthermore, an equimolar amount of methyl 9-hydroxynonanoic acid (**8**), which is difficult to separate from monoesters **6** and **7**, was necessarily formed as a side product.

We investigated ways of optimizing the ozonolysis of ricinolic acid to synthesize secondary acetate 6. The first approach was based on transformation of the carboxylic acid in 1 to a methyl, for which we used successive hydride reduction of castor oil 9 (ricinolic acid content ~85%) to diol 10 and subsequent deoxygenation of the primary hydroxyl in it through monotosylate 11. The resulting chiral homoallyl alcohol 12 was converted to acetate 13 or benzyl ether 14.

Ozonolytic cleavage of the double bond in 13, carried out in CH_2Cl_2 in the presence of MeOH (2 equiv.) and subsequent treatment of the peroxide products with NaBH₄, gave a mixture (9:5:1) of acetates 6 and 7 and diol 15 with the desired 6 predominating. These were readily freed from the necessary ozonolysis—reduction product 1-nonanol (16) by vacuum distillation. Replacing NaBH₄ by KBH₄ increased the content of 6 (ratio 6:7:15, 6:1.1:1). The best results (ratio 6:7:15, 8.6:1.6:1) were obtained for ozonolysis in CH_2Cl_2 in the presence of two equivalents of AcOH per double bond and with the mild reducing agent NaBH(OAc)₃.

Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 450054, Ufa, pr. Oktyabrya, 71, fax (3472) 35 60 66, e-mail: kharis@anrb.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 529-534, November-December, 2005. Original article submitted April 28, 2005.

In order to extend the results to castor oil, we ozonolyzed **17**, which furthermore enabled the side product of highly polar triglyceride **18** to be easily removed. The highest yield of **6** (ratio **6**:**7**:**15**, 17.7:1.5:1) was obtained, like for **13**, for ozonolysis in CH_2Cl_2 in the presence of two equivalents of AcOH per one double bond and the use of NaBH(OAc)₃ as reductant.

Benzyl ether 14 was ozonolyzed without any complications to give the other key hydroxyether 19 in high yield.

The precursor of alkylnitrate 4, secondary alcohol 20, was prepared from diol 15 by deoxygenation of the corresponding primary tosylate.

The Barton reaction of nitrites **2-4**, which were prepared from alcohols **6**, **19**, and **20** by the standard method [2], was carried out in an inert atmosphere and an aprotonic medium (benzene).

Photolysis of nitrites 2 and 21, synthesized from a mixture (14:1) of hydroxyacetates 6 and 7, produced the starting 6 and 7 in addition to diol 15, which were isolated from the reaction mixture and identified. 1-Acetoxy-3-nonanone (22), the product of disproportionation or a "cage radical" reaction between the alkoxyradical and NO [3] that were formed from nitrite 21, was also observed.

Because the secondary acetate in **6** was labile, we used the corresponding benzyl derivative **19**. Photolysis of its primary nitrite **3** led to an unusual result. The usual product [4] of 1,5-cleavage was missing among the isolated and identified reaction products.

The principal product was 2-phenyl-4R-hexyl-1,3-dioxane (24) resulting from 1,6-cleavage in addition to impurities of 19, 15, and aldehyde 23. This was confirmed by spectral data. The PMR spectrum had signals at chemical shifts for a phenyl

ring (δ 7.25-7.55 ppm) and a singlet for an acetal proton (δ 5.52 ppm). The ¹³C NMR spectrum had a doublet (δ 101.09 ppm) for C-2 and other characteristic signals.

Conversely, photolysis of nitrite **4**, prepared from optically pure secondary alcohol **20**, followed by chromatography of the reaction mixture isolated a compound with a modified alkyl chain of the starting material, 6-nitroso-3*S*-nonanol, existing primarily [5] as the more stable dimer **26**, and **20** and **25** [3].

Thermolysis of **26** gave quantitatively the γ -hydroxyoxime **27** as an equal mixture of the *syn*- and *anti*-isomers. Twodimensional CH CORR and double resonance were used in order to assign unambiguously signals in the PMR and ¹³C NMR spectra of the stereoisomers of **27**. The signals for C-5 [23.46 (*syn*-), 29.76 (*anti*-)] and C-7 [35.88 (*syn*-), 30.45 (*anti*-)] and their protons H-7 [2.35 (*anti*-), 2.15 (*syn*-)] and H_a-5 [2.40 (*syn*-), 2.70 (*anti*-)] were nonequivalent because of different shielding of the corresponding atoms in this pair of compounds and agreed well with the literature [6] (see Experimental).

EXPERIMENTAL

IR spectra were recorded on a Specord M-82 instrument as thin layers. NMR spectra were obtained on a Bruker AMX-300 spectrometer (working frequency 300.13 MHz for ¹H and 75.47 MHz for ¹³C) in CDCl₃ with an internal standard of the CDCl₃ signals (¹H δ 7.27 ppm, ¹³C δ 77.00 ppm). Chromatography was carried out in a Chrom-5 instrument [column length 1.2 m, stationary phase silicone SE-30 (5%) on Chromaton N-AW-DMCS (1.16-0.20 mm), working temperature 50-300°C, He carrier gas] and in a Shimadzu GC-9A chromatograph (quartz capillary column, 25 m, stationary phase OV-101, working temperature 80-260°C). Optical rotation was measured in a Perkin—Elmer 241 MC polarimeter. Photolysis was performed using a mercury lamp OKN-14, TU 64-1-1618-77 (220 V, 950 VA, 1000 W, 50 Hz). The Barton reaction was performed in a thermostatted Pyrex glass cell (λ > 320 nm, 80 mL). TLC monitoring used Sorbfil SiO₂ (Russia). Column chromatography was carried out over SiO₂ (70-230, Lancaster, England) with elution by petroleum ether (40-70°C). The ozonator production was 38 mmol O₃/h. Elemental analyses agreed with those calculated.

Castor Oil Acetate (17). Castor oil (9, 20.00 g) and Ac₂O (40.29 g, 394.9 mmol) were refluxed for 5 h, washed with hot water (3×100 mL), diluted with CH₂Cl₂ (300 mL), dried over Na₂SO₄, and evaporated to afford **17** (22.24 g, 98%). IR spectrum (v, cm⁻¹): 3016 (C=C), 1740 (C=O), 1240, 1164 (C–O–C), 736 (C=C).

*R***-Octadec-9Z-en-1,12-diol (10).** A solution of 9 (10.9 g) in absolute THF (270 mL) and Et₂O (150 mL) (Ar, -10°C) was treated dropwise with a solution of *i*-Bu₂AlH (23.0 mL, 102.4 mmol, 73%). After the entire amount of *i*-Bu₂AlH was added, the reaction mixture was stirred for 1.5 h at 0°C, treated dropwise with H₂O (22 mL, 0-5°C), warmed to room temperature, and stirred for another 2 h. The resulting solid was filtered off and washed with Et₂O. The filtrate was dried over Na₂SO₄ and evaporated to afford the product (8.74 g), column chromatography of which (SiO₂, PE:CH₂Cl₂, 2:1) isolated **10** (7.70 g, 94%), $[\alpha]_D^{18} + 2.24^{\circ}$ (*c* 0.03, CHCl₃).

IR spectrum (v, cm⁻¹): 3304 (OH), 3010, 1660, (C=C), 1110, 1054, (C–O), 724 (C=C).

 $PMR \ spectrum \ (CDCl_3, \delta, ppm, J/Hz): 0.89 \ (3H, t, J = 6.8, CH_3), 1.20 - 1.45 \ (18H, m, 9CH_2), 1.49 \ (2H, m, H-13), 1.53 \ (2H, m, H-2), 1.64 \ (2H, br.s, 2OH), 2.04 \ (2H, q, J = 6.7, H-8), 2.22 \ (2H, t, J = 7.2, H-11), 3.54 \ (1H, quintet, J = 5.8, H-12), 3.63 \ (2H, t, J = 6.6, H-1), 5.40 \ (1H, dt, J = 10.8, 7.4, H-10), 5.55 \ (1H, dt, J = 10.8, 7.1, H-9).$

*R***-Octadec-9Z-en-7-ol (12).** A solution of **10** (8.80 g, 30.9 mmol) in dry Et_3N (7 mL, 128.5 mmol) was stirred (Ar, 0°C), treated in portions over 1 h with TsCl (7.05 g, 36.7 mmol), left overnight in a refrigerator, diluted with *t*-BuOMe (200 mL), washed successively with H₂O, aqueous HCl (10%), and saturated NaHCO₃ and NaCl solutions, and dried over Na₂SO₄ to give **11** (13.56 g), which was used without further purification.

IR spectrum (v, cm⁻¹): 3346 (OH), 3010, 1650 (C=C), 1605 (Ar), 1378, 1185, (S=O), 1110, 1048, (C–O), 724 (C=C).

A solution of **11** (13.56 g, 30.9 mmol) in absolute THF (80 mL) and absolute Et_2O (80 mL) (Ar, 0°C) was treated with LiAlH₄ (2.65 g, 71.0 mmol), stirred for 3 h at room temperature, cooled to 0°C, diluted with H₂O (3.3 mL), warmed to room temperature, and stirred for another 3 h. The resulting solid was filtered off and washed with *t*-BuOMe. The filtrate was dried over Na₂SO₄ and evaporated to give a product (7.02 g), column chromatography of which (SiO₂, PE:CH₂Cl₂, 2:1, R_f 0.3) isolated **12** (4.12 g, 50%), [α]_D²⁰ +2.6° (*c* 0.03, CH₂Cl₂).

IR spectrum (v, cm⁻¹): 3346 (OH), 3010, 1650 (C=C), 1110, 1048 (C–O), 724 (C=C).

PMR spectrum (CDCl₃, δ , ppm, J/Hz): 0.88 (6H, t, J = 6.5, 2CH₃), 1.20-1.45 (20H, m, 10CH₂), 1.47-1.50 (2H, m, H-6), 1.58 (1H, br.s, OH), 2.05 (2H, q, J = 6.8, H-11), 2.22 (2H, t, J = 6.6, H-8), 3.62 (1H, quintet, J = 5.9, H-7), 5.35-5.65 (2H, m, H-9, H-10).

¹³C NMR spectrum (CDCl₃, δ, ppm): 14.01 (both q, C-1, C-18), 22.60 (both t, C-2, C-17), 25.68 (t, C-5), 27.40 (t, C-11), 29.27, 29.30, 29.34 (C-12, C-13, C-14), 29.47 (t, C-4), 29.66 (t, C-15), 31.82 (both t, C-3, C-16), 35.32 (t, C-8), 36.82 (t, C-6), 71.47 (d, C-7), 125.10 (d, C-9), 133.37 (d, C-10).

R-7-Acetoxyoctadec-9*Z*-ene (13). A mixture of 12 (2.50 g, 9.3 mmol) and Ac₂O (20.13 mL, 57.0 mmol) was refluxed for 2 h, washed with hot H₂O (3 × 20 mL), diluted with CH₂Cl₂, dried over Na₂SO₄, and evaporated to afford 13 (2.87 g, 99%), $[\alpha]_D^{18}$ +25.2° (*c* 0.02, CHCl₃).

IR spectrum (v, cm⁻¹): 1738 (C=O), 3010, 1654 (C=C), 1110, 1048 (C–O), 724 (C=C).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 0.86 (6H, t, J = 6.7, 2CH₃), 1.20-1.45 (20H, m, 10CH₂), 1.50-1.62 (2H, m, H-6), 2.00-2.10 (4H, m, H-11, AcO), 2.32 (2H, dd, J = 6.7, J = 6.2, H-8), 4.88 (1H, quintet, J = 6.2, H-7), 5.35 (1H, dt, J = 10.8, J = 7.2, H-9), 5.48 (1H, dt, J = 10.8, J = 7.2, H-10).

*R***-7-Benzyloxyoctadec-9Z-ene (14).** A suspension of NaH (0.56 g, 14.6 mmol, 60% in mineral oil) in DMF (5 mL) was treated dropwise (Ar, 0°C) with **12** (3.5 g, 13.0 mmol) in DMF (5.5 mL), stirred at 0°C for 1 h, treated with BnBr (2.3 mL, 18.3 mmol), stirred for 6 h at room temperature, left overnight, diluted with *t*-BuOMe (200 mL), washed with water and saturated NaCl solution, dried over Na₂SO₄, and evaporated. The solid (5.23 g) was chromatographed (SiO₂, PE) to afford **14** (4.06 g, 87%), $[\alpha]_D^{20}$ +18.1° (*c* 0.02, CH₂Cl₂).

IR spectrum (v, cm⁻¹): 3010, 1662 (C=C), 1625 (Ar), 1110, 1048 (C–O), 755 (C=C).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 0.90 (6H, t, $J = 6.7, 2CH_3$), 1.20-1.55 (20H, m, 10CH₂), 1.50-1.62 (2H, m, H-6), 2.06 (2H, q, J = 6.3, H-11), 2.25-2.45 (2H, m, H-8), 3.43 (1H, quintet, J = 5.8, H-7), 4.51 (1H, d, $J = 11.7, PhCH_a$), 4.60 (1H, d, $J = 11.7, PhCH_b$), 5.35-5.60 (2H, m, H-9, H-10), 7.25-7.40 (5H, m, Ph).

Ozonolysis and reduction of peroxide ozonolysis products: a) An ozone—oxygen mixture was bubbled through a solution of **13** (1.80 g, 8.8 mmol) in CH_2Cl_2 (18 mL) and absolute MeOH (0.7 mL, 17.6 mmol) at 0°C at an O₃:**13** mole ratio of 1:1. The reaction mixture was purged with Ar, diluted with CH_2Cl_2 (20 mL), stirred (10°C), treated with NaBH₄ (0.44 g, 11.6 mmol), stirred at room temperature for 3 h, treated with AcOH (0.14 mL) and H₂O (1.4 mL) (10°C), stirred at room temperature for 0.5 h, and washed with saturated NaCl solution. The organic layer was dried over Na₂SO₄ and evaporated to give a product (0.95 g) that contained **6**, **7**, and **15** in a ratio of 9:5:1, respectively, according to GC.

b) The peroxide ozonolysis product obtained by method **a**) was reduced with KBH₄ (0.63 g, 11.6 mmol), stirred at room temperature for 3 h, treated with AcOH (0.14 mL) and H₂O (1.4 mL) (10°C), stirred at room temperature for 0.5 h, and washed with saturated NaCl solution. The organic layer was dried over Na₂SO₄ and evaporated to give a product (0.90 g) that contained **6**, **7**, and **15** in a ratio of 6:1.1:1 according to GC.

c) An ozone—oxygen mixture was bubbled through a solution of **13** (0.90 g, 4.4 mmol) in CH₂Cl₂ (9 mL) and glacial AcOH (0.35 mL, 8.8 mmol) at 0°C at an O₃:**13** mole ratio of 1:1. The reaction mixture was purged with Ar, diluted with CH₂Cl₂ (20 mL), stirred (10°C), treated wth a previously prepared suspension of NaBH(OAc)₃ [addition of glacial AcOH (3.4 mL, 60.5 mmol) in CH₂Cl₂ (6 mL) to a suspension of NaBH₄ (0.76 g, 20.17 mmol) in CH₂Cl₂ (30 mL) with stirring for 2 h], warmed to room temperature, stirred for 3 h, cooled to 10°C, treated with AcOH (0.24 mL) and H₂O (2.4 mL), stirred at room temperature for 0.5 h, and washed with saturated NaCl solution. The organic layer was dried over Na₂SO₄ and evaporated to give a product (1.03 g) that contained **6**, **7**, and **15** in a 8.6:1.6:1 ratio according to GC.

d) An ozone—oxygen mixture was bubled through a solution of **17** (5.0 g, 4.7 mmol) in CH_2Cl_2 (50 mL) and MeOH (1.1 mL, 28.3 mmol) at 0°C at an O₃:**17** mole ratio of 3:1. The reaction mixture was purged with Ar, diluted with CH_2Cl_2 (30 mL), stirred (10°C), treated with NaBH₄ (1.4 g, 37.2 mmol), stirred at room temperature for 3 h, treated with AcOH (0.44 mL) and H₂O (4.4 mL) (10°C), stirred at room temperature for 0.5 h, and washed with saturated NaCl solution. The organic layer was dried over Na₂SO₄ and evaporated to give a product (5.46 g) that contained **6** and **7** in a 1.6:1 ratio according to GC.

e) The peroxide ozonolysis product obtained by method d) was reduced with KBH_4 (2.0 g, 37.2 mmol), stirred at room temperature for 3 h, treated with AcOH (0.44 mL) and H₂O (4.4 mL) (10°C), stirred at room temperature for 0.5 h, and washed with saturated NaCl solution. The organic layer was dried over Na₂SO₄ and evaporated to give a product (4.9 g) that contained **6**, **7**, and **15** in a 8.7:1.6:1 ratio according to GC.

f) An ozone—oxygen mixture was bubbled through a solution of **17** (5.00 g, 4.7 mmol) in CH₂Cl₂ (50 mL) and glacial AcOH (1.6 mL, 28.3 mmol) at 0°C at an O₃:**17** mole ratio of 3:1. The reaction mixture was purged with Ar, diluted with CH₂Cl₂ (20 mL), stirred (10°C), treated with a previously prepared suspension of NaBH(OAc)₃ [glacial AcOH (11.2 mL, 194.7 mmol) and NaBH₄ (2.46 g, 64.9 mmol) in CH₂Cl₂ (120 mL)], warmed to room temperature, stired for 3 h, cooled to 10°C, treated with glacial AcOH (0.86 mL) and H₂O (8.6 mL), stirred at room temperature for 0.5 h, and washed with saturated NaCl solution. The organic layer was dried over Na₂SO₄ and evaporated to give a product (4.97 g) that contained **6**, **7**, and **15** in a 17.7:1.5:1 ratio according to GC. Column chromatography isolated a mixture of **6** and **7** (1.14 g) in a ratio of 14:1, respectively.

The IR and NMR spectra of 6, 7, and 15 were practically identical to those in the literature [1].

3*R***-Benzyloxynonan-1-ol (19).** Ozonolysis of **14** (4.00 g, 11.2 mmol) by method **a**) followed by vacuum distillation at 1 mm Hg and 100°C produced **19** (2.66 g, 95%), $[\alpha]_D^{20}$ -44.07° (*c* 0.003, CHCl₃).

IR spectrum (v, cm⁻¹): 3420 (OH), 1660 (Ar), 1110, 1048 (C–O).

$$\begin{split} & PMR \ spectrum \ (CDCl_3, \ \delta, \ ppm, \ J/Hz): \ 0.91 \ (3H, \ t, \ J = 7.0, \ CH_3), \ 1.20-1.40 \ (6H, \ m, \ 3CH_2), \ 1.48-1.60 \ (2H, \ m, \ H-5), \\ & 1.60-1.73 \ (2H, \ m, \ H-4), \ 1.70-1.80 \ (2H, \ m, \ H-2), \ 2.50 \ (1H, \ br.s, \ OH), \ 3.60-3.65 \ (1H, \ m, \ H-3), \ 3.65-3.85 \ (2H, \ m, \ H-1), \ 4.48 \ (1H, \ d, \ J = 11.5, \ PhCH_a), \ 4.51 \ (1H, \ d, \ J = 11.5, \ PhCH_b), \ 7.20-7.50 \ (5H, \ m, \ Ph). \end{split}$$

3S-Nonanol (20). A solution of **15** (5.38 g, 33.6 mmol) in Py (11 mL) at 0°C was stirred, treated in portions with TsCl (6.90 g, 36.7 mmol), left overnight in a refrigerator, diluted with *t*-BuOMe (200 mL), washed successively with HCl (10%) and saturated NaHCO₃ and NaCl solutions, dried over Na₂SO₄, and evaporated to afford the tosylate (8.83 g, 80%) [IR spectrum (v, cm⁻¹): 1605 (Ar), 1375, 1180 (S=O), 1112 (C–O)], which was dissolved in absolute *t*-BuOMe (150 mL). The resulting solution was cooled to 0°C, treated with LiAlH₄ (2.38 g, 62.7 mmol), warmed to room temperature, stirred for 3 h, cooled to 0°C, diluted with H₂O (5 mL), warmed to room temperature, and stirred for 3 h. The solid was filtered off and washed with *t*-BuOMe. The filtrate was dried over Na₂SO₄ and evaporated to give a product (4 g), column chromatography of which (SiO₂, PE:EtOAc, 3:1) gave **20** (3.0 g, 75%), $[\alpha]_D^{20} + 8.3^\circ$ (*c* 0.05, CH₃Cl).

IR spectrum (v, cm⁻¹): 3400 (OH), 1150, 1078 (C–O).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 0.88 (3H, t, J = 7.0, CH₃), 0.94 (3H, t, J = 7.3, CH₃), 1.25-1.37 (7H, m, 3CH₂, OH), 1.30-1.60 (6H, m, H-2, H-4, H-5), 3.45-3.55 (1H, m, H-3).

¹³C NMR spectrum (CDCl₃, δ, ppm): 9.79 (q, C-1), 13.98 (q, C-9), 22.56 (t, C-8), 25.56 (t, C-5), 29.32 (t, C-6), 30.00 (t, C-2), 31.78 (t, C-7), 36.85 (t, C-2), 73.20 (d, C-3).

Nitrite Syntheses. 1. A 3-necked flask equipped with a thermometer, stirrer, and dropping funnel reaching to the bottom of the flask was charged with NaNO₂ (0.42 g, 6.1 mmol) and H₂O (1.66 mL) and cooled to 0°C. A cold (0°C) solution of a mixture of **6** and **7** (14:1, 1.12 g, 5.5 mmol) prepared as above in H₂SO₄ (0.28 g, 2.8 mmol) and H₂O (0.11 mL) was added through the dropping funnel with stirring at a rate so that gas was practically not evolved and the temperature did not rise. After the addition the reaction mixture was diluted with *t*-BuOMe (50 mL), washed with saturated NaCl solution, dried over Na₂SO₄, and evaporated to give a mixture of **2** and **21** (1.11 g) that was used without further purification.

IR spectrum (v, cm⁻¹): 1750, 1650, 1620 (N=O), 790, 780, 620 (O–N).

2. Analogously 19 (2.58 g, 10.3 mmol) afforded 3 (2.4 g) that was used without further purification.

IR spectrum (v, cm⁻¹): 1650 (N=O), 1605 (Ar), 1080, 820, 750 (O–N).

3. Analogously **20** (2.20 g, 15.3 mmol) afforded **4** (1.61 g) that was used without further purification. IR spectrum (v, cm⁻¹): 1645 (N=O), 1085, 820 (O–N).

Photolysis of Nitrites. 1. A solution of a mixture of **2** and **21** (0.40 g) in benzene (70 mL) was placed in a thermostatted Pyrex glass cell and irradiated (Ar, 27° C) for 1.5 h. The solvent was evaporated. The solid (0.36 g) was chromatographed (PE:*t*-BuOMe, 15:1) to isolate and identify a mixture of **6** and **7** (0.08 g), **15** (0.20 g), and **22** (0.01 g).

1-Acetoxy-3-nonanone (22). IR spectrum (v, cm⁻¹): 1740 (OC=O), 1714 (C=O).

PMR spectrum (CDCl₃, δ , ppm, J/Hz): 0.90 (3H, t, J = 6.8, CH₃), 1.20-1.40 (6H, m, 3CH₂), 1.50-1.65 (2H, m, H-5), 2.05 (3H, s, OAc), 2.42 (2H, t, J = 7.4, H-4), 2.72 (2H, t, J = 6.3, H-2), 4.32 (2H, t, J = 6.3, H-1).

¹³C NMR spectrum (CDCl₃, δ, ppm): 13.98 (q, C-9), 20.85 (q, C–CO), 22.44 (t, C-8), 23.53 (t, C-5), 29.00 (t, C-6), 31.54 (t, C-7), 41.20 (t, C-2), 43.22 (t, C-4), 59.38 (t, C-1), 170.90 (s, CO₂), 208.08 (d, C-3).

2. Photolysis of **3** (0.40 g) by the method described above gave a mixture of products (0.40 g), column chromatography of which isolated and identified **19** (0.13 g), **23** (0.06 g), **15** (0.02 g), and **24** (0.16 g).

3R-Benzyloxynonanal (23). IR spectrum (v, cm⁻¹): 1720 (C=O), 1650 (Ar).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 0.90 (3H, t, J = 6.7, CH₃), 1.20-1.45 (6H, m, 3CH₂), 1.50-1.65 (2H, m, H-5), 1.65-1.75 (2H, m, H-4), 2.60 (1H, ddd, J = 16.5, J = 4.9, J = 2.0, H_a-2), 2.67 (1H, ddd, J = 16.5, J = 7.2, J = 2.6, H_b-2), 3.95-4.00 (1H, m, H-3), 4.45-4.60 (2H, m, CH₂-Ph), 7.25-7.38 (5H, m, Ph), 9.81 (1H, t, J = 2.2, CHO).

2-Phenyl-4*R***-hexyl-1,3-dioxane (24)**, $[\alpha]_D^{20} + 15.7^\circ$ (*c* 0.02, CHCl₃).

IR spectrum (v, cm⁻¹): 1640 (Ar), 1155, 1125, 1040 (O–C–O),.

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 0.87 (3H, t, J = 7.02, CH₃), 1.25-1.40 (6H, m, 3CH₂), 1.40-1.75 (5H, m, H-1', H-2', H_e-5), 1.82 (1H, dtd, J = 14.0, J = 11.4, J = 4.8, H_a-5), 3.83 (1H, dddd, J = 11.4, J = 7.1, J = 4.8, J = 2.4, H_a-4), 3.95 (1H, td, J = 11.4, J = 2.3, H_a-6), 4.28 (1H, ddd, J = 11.4, J = 4.8, J = 1.2, H_e-6), 5.52 (1H, s, H-2), 7.25-7.55 (5H, m, Ph).

¹³C NMR spectrum (CDCl₃, δ, ppm): 14.04 (q, C-6'), 22.58 (t, C-5'), 24.92 (t, C-2'), 29.23 (t, C-3'), 31.34 (t, C-4'), 31.77 (t, C-1'), 36.01 (t, C-5), 67.09 (d, C-6), 77.41 (t, C-4), 101.09 (d, C-2), 125.99, 128.13, 128.56, 138.93 (m, Ph).

3. Photolysis of 4(0.40 g) by the method described above gave a mixture of products (0.27 g), column chromatography of which isolated and identified **25** (0.02 g), **20** (0.08 g), and **26** (0.15 g).

3-Nonanone (25). IR spectrum (v, cm⁻¹): 1714 (C=O).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 0.90 (3H, t, J = 6.6, H-9), 1.15 (3H, t, J = 7.5, H-1), 1.20-1.35 (6H, m, 3CH₂), 1.59 (2H, quintet, J = 7.3, H-5), 2.39 (2H, t, J = 7.4, H-2), 2.42 (2H, q, J = 7.3, H-4).

¹³C NMR spectrum (CDCl₃, δ, ppm): 7.77 (q, C-1), 13.95 (q, C-9), 22.56 (t, C-8), 24.87 (t, C-5), 29.64 (t, C-6), 31.82 (t, C-3), 35.76 (t, C-2), 42.37 (t, C-4), 211.85 (s, C-3).

Dimer of 6-nitroso-3*S***-nonanol (26)**, $[\alpha]_D^{20} + 5.5^{\circ}$ (*c* 0.01, CH₂Cl₂).

IR spectrum (v, cm⁻¹): 3400 (OH), 1378, 1240, (N=O), 1174 (C–O).

PMR spectrum (CDCl₃, δ, ppm): 0.80-1.00 (6H, m, 2CH₃), 1.20-2.00 (11H, m, 5CH₂, OH), 3.40-3.55 (1H, m, H-3), 5.35-5.50 (1H, m, H-6).

¹³C NMR spectrum (CDCl₃, δ, ppm): 9.85 (q, C-1), 13.60 (q, C-9), 19.08 (t, C-8), 28.17 (t, C-5), 29.96 (t, C-2), 32.74 (t, C-4), 34.14 (t, C-7), 66.59 (d, C-6), 72.22 (d, C-3).

6-Oximino-3S-nonanol (27). Dimer **26** was heated at 60°C for 48 h to produce in quantitative yield an oily product that was a chromatographically inseparable equal mixture of the *syn-* and *anti*-isomers of **27**, $[\alpha]_D^{20}$ -6.2° (*c* 0.02, CH₂Cl₂).

IR spectrum (v, cm⁻¹): 3500 (OH), 1660 (C=N), 1120 (C–O), 960 (N–O).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): *syn*: 0.90-1.00 (6H, m, H-1,9), 1.45-1.60 (4H, m, H-2,8), 3.53 (1H, tdd, ${}^{3}J = 6.3$, ${}^{3}J = 3.5$, ${}^{3}J = 3.5$, ${}^{3}J = 9.5$, H-3), 1.60-1.70 (2H, m, H-4), 2.25 (1H, ddd, ${}^{3}J = 5.3$, ${}^{3}J = 7.5$, ${}^{2}J = 13.0$, H_a-5), 2.70 (1H, td, ${}^{3}J = 8.6$, ${}^{2}J = 13.0$, H_b-5), 2.15 (2H, t, ${}^{3}J = 7.4$, H-7), 1.20-1.70 (2H, br.s, OH).

anti: 0.90-1.00 (6H, m, H-1,9), 1.45-1.60 (4H, m, H-2,8), 3.42 (1H, tdd, ${}^{3}J = 6.3$, ${}^{3}J = 3.5$, ${}^{3}J = 9.5$, H-3), 1.60-1.70 (2H, m, H-4), 2.25 (1H, ddd, ${}^{3}J = 5.3$, ${}^{3}J = 7.5$, ${}^{2}J = 13.0$, H_a-5), 2.40 (1H, td, ${}^{3}J = 8.6$, ${}^{2}J = 13.0$, H_b-5), 2.35 (2H, t, ${}^{3}J = 7.7$, H-7), 1.20-1.70 (2H, br.s, OH).

¹³C NMR spectrum (CDCl₃, δ, ppm): *syn*: 10.04 (C-1), 30.06 (C-2), 72.10 (C-3), 33.04 (C-4), 23.46 (C-5), 161.85 (C-6), 35.88 (C-7), 19.04 (C-8), 14.30 (C-9).

anti: 10.11 (C-1), 29.70 (C-2), 71.99 (C-3), 32.68 (C-4), 29.76 (C-5), 161.85 (C-6), 30.45 (C-7), 19.71 (C-8), 13.79 (C-9).

REFERENCES

- 1. J. Kula, T. B. Quang, and M. Sikora, *Tetrahedron: Asymmetry*, **11**, 943 (2000).
- 2. B. A. Kazanskii, ed., in: Organic Synthesis New York (1946).
- 3. D. H. R. Barton, R. H. Hesse, M. M. Pechet, and L. C. Smith, J. Chem. Soc., Perkin Trans. 1, 1159 (1979).
- 4. P. Kabasakalian and E. Townley, J. Am. Chem. Soc., 84, 2711 (1962).
- 5. N. K. Kochetkov and L. V. Bakinovskii, eds., *Comprehensive Organic Chemistry*, Vol. 3, Pergamon Press, Oxford (1979).
- 6. E. Pretsch, T. Clerc, J. Seibl, and W. Simon, *Tables of Spectral Data for Structure Determination of Organic Compounds*, Springer-Verlag, Berlin (1983).